Advertisement

Enzyme-Responsive Hydrogels

  • Shah M. Reduwan Billah
  • Md. Ibrahim H. Mondal
  • Sazzad H. Somoal
  • M. Nahid Pervez
  • Md. Obidul Haque
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)

Abstract

In an enzymatically responsive system, a suitable enzyme is used as a stimulus for a control release or delivery at a specifically targeted site where that enzyme is designed in such a way that can work at certain controlled conditions (such as temperature, pH). Enzyme-responsive hydrogels prepared from cellulose along with other materials have suitable macromolecular networks and can work in controlled environment. Specifically designed enzymatic stimuli-responsive system, one of the highly explored techniques, popularly explored to add a triggerable agent (such as a polymer or a lipid) that can encapsulate the active component in a protective manner. Usually, this active agent is responsive to degradation or swelling when it reaches at the target site. An enzymatic stimulus-responsive system is highly attractive field of research due to its many potential applications (e.g., in controlled release, drug delivery, and other areas of life and material sciences). This chapter gives a brief overview on the design and uses of enzyme-responsive hydrogels based on cellulose and other polymers for their various applications in different fields including in controlled drug delivery and other areas of biomedical and material sciences.

Keywords

Cellulose Hydrogels Enzyme Enzyme-responsive hydrogels Stimuli-responsive hydrogels Drug delivery Biomedical 

References

  1. 1.
    Hoffman AS (2004) Applications of “Smart Polymers” as biomaterials, 2nd edn. Elsevier Academic Press, LondonGoogle Scholar
  2. 2.
    Kopecek J (2003) Smart and genetically engineered biomaterials and drug delivery systems. Eur J Pharm Sci 20:1–16PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Mano JF (2008) Stimuli-responsive polymeric systems for biomedical applications. Adv Eng Mater 10:515–527CrossRefGoogle Scholar
  4. 4.
    Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Roy D, Cambre JN, Sumerlin BS (2010) Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci 35:278–301CrossRefGoogle Scholar
  6. 6.
    Ghadiali JE, Stevens MM (2008) Enzyme-responsive nanoparticle systems. Adv Mater 20:4359–4363CrossRefGoogle Scholar
  7. 7.
    Williams RJ, Mart RJ, Ulijn RV (2010) Exploiting biocatalysis in peptide self-assembly. Biopolymers 94:107–117PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Zelzer M, Ulijn RV (2010) Next-generation peptide nanomaterials: molecular networks, interfaces and supramolecular functionality. Chem Soc Rev 39:3351–3357PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Ulijn RV (2006) Enzyme-responsive materials: a new class of smart biomaterials. J Mater Chem 16:2217–2225CrossRefGoogle Scholar
  10. 10.
    Ghadiali JE, Cohen BE, Stevens MM (2010) Protein kinase-actuated resonance energy transfer in quantum dot−peptide conjugates. ACS Nano 4:4915–4919PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Privman M, Tam TK, Pita M, Katz E (2008) Network analysis of biochemical logic for noise reduction and stability: a system of three coupled enzymatic and gates. J Am Chem Soc 131:1314–1321CrossRefGoogle Scholar
  12. 12.
    Bonomi R, Cazzolaro A, Sansone A, Scrimin P, Prins LJ (2011) Detection of enzyme activity through catalytic signal amplification with functionalized gold nanoparticles. Angew Chem Int Ed 50:2307–2312CrossRefGoogle Scholar
  13. 13.
    Zhao WR, Zhang HT, He QJ, Li YS, Gu JL, Li L, Li H, Shi JL (2011) A glucose-responsive controlled release of insulin system based on enzyme multilayers-coated meso porous silica particles. Chem Commun 47:9459–9461CrossRefGoogle Scholar
  14. 14.
    Gordijo CR, Shuhendler AJ, Wu XY (2010) Glucose-responsive bioinorganic nanohybrid membrane for self-regulated insulin release. Adv Funct Mater 20:1404–1412CrossRefGoogle Scholar
  15. 15.
    Hahn ME, Gianneschi NC (2011) Enzyme-directed assembly and manipulation of organic nanomaterials. Chem Commun 47:11814–11821CrossRefGoogle Scholar
  16. 16.
    Welser K, Adsley R, Moore BM, Chan WC, Aylott JW (2011) Protease sensing with nanoparticle based platforms. Analyst 136(1):29–41PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Cheng R, Meng F, Deng C, Klok HA, Zhong Z (2013) Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 34:3647–3657PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Place ES, Evans ND, Stevens MM (2009) Complexity in biomaterials for tissue engineering. Nat Mater 8:457–470PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Tibbitt MW, Rodell CB, Burdick JA, Anseth KS (2015) Progress in material design for biomedical applications. Proc Natl Acad Sci 112:14444–14451PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Howes PD, Chandrawati R, Stevens MM (2014) Colloidal nanoparticles as advanced biological sensors. Science 346:1247390–1247390PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Su J, Chen F, Cryns VL, Messersmith PB (2011) Catechol polymers for pH-responsive, targeted drug delivery to cancer cells. J Am Chem Soc 133:11850–11853PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Park I-K, Singha K, Arote RB, Choi Y-J, Kim WJ, Cho C-S (2010) pH-responsive polymers as gene carriers. Macromol Rapid Commun 31:1122–1133PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Jochum FD, Theato P (2013) Temperature- and light-responsive smart polymer materials. Chem Soc Rev 42:7468–7483PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Ercole F, Davis TP, Evans RA (2010) Photo-responsive systems and biomaterials: photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond. Polym Chem 1:37–54CrossRefGoogle Scholar
  26. 26.
    Chandrawati R, Städler B, Postma A, Connal LA, Chong SF, Zelikin AN, Caruso F (2009) Cholesterol-mediated anchoring of enzyme-loaded liposomes within disulfide-stabilized polymer carrier capsules. Biomaterials 30:5988–5998PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Phillips DJ, Gibson MI (2012) Degradable thermoresponsive polymers which display redox-responsive LCST behaviour. Chem Commun 48:1054–1056CrossRefGoogle Scholar
  28. 28.
    Chen W, Du J (2013) Ultrasound and pH dually responsive polymer vesicles for anticancer drug delivery. Sci Rep 3:2162–2162PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Roy R, Yang J, Moses MA (2009) Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. J Clin Oncol 27:5287–5297PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Park J, Yun HS, Lee KH, Lee KT, Lee JK, Lee S-Y (2015) Discovery and validation of biomarkers that distinguish mucinous and nonmucinous pancreatic cysts. Cancer Res 75:3227–3235PubMedCrossRefGoogle Scholar
  31. 31.
    Khademhosseini A, Langer R (2007) Microengineered hydrogels for tissue engineering. Biomaterials 28:5087–5092PubMedCrossRefGoogle Scholar
  32. 32.
    Ulijn RV, Bibi N, Jayawarna V, Thornton PD, Todd SJ, Mart RJ, Smith AM, Gough JE (2007) Bioresponsive hydrogels. Mater Today 10:40–48CrossRefGoogle Scholar
  33. 33.
    Tibbitt MW, Anseth KS (2009) Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 103:655–663PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Singh SP, Schwartz MP, Tokuda EY, Luo Y, Rogers RE, Fujita M, Ahn NG, Anseth KS (2015) A synthetic modular approach for modeling the role of the 3D microenvironment in tumor progression. Sci Rep 5:17814–17814PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    McCall JD, Anseth KS (2012) Thiol–ene photopolymerizations provide a facile method to encapsulate proteins and maintain their bioactivity. Biomacromolecules 13:2410–2417. 45PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Phelps EA, Enemchukwu NO, Fiore VF, Sy JC, Murthy N, Sulchek TA, Barker TH, García AJ (2012) Maleimide cross-linked bioactive PEG hydrogel exhibits improved reaction kinetics and cross-linking for cell encapsulation and in situ delivery. Adv Mater 24:64–70PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Khetan S, Guvendiren M, Legant WR, Cohen DM, Chen CS, Burdick JA (2013) Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat Mater 12:458–465PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Vandenbroucke RE, Libert C (2014) Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat Rev Drug Discov 13:904–927PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Chwalek K, Tsurkan MV, Freudenberg U, Werner C (2014) Glycosaminoglycan-based hydrogels to modulate heterocellular communication in in vitro angiogenesis models. Sci Rep 4:4414–4414PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Turk BE, Huang LL, Piro ET, Cantley LC (2001) Determination of protease cleavage site motifs using mixture-based oriented peptide libraries. Nat Biotechnol 19:661–667PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Hsu C-W, Olabisi RM, Olmsted-Davis EA, Davis AR, West JL (2011) Cathepsin K-sensitive poly(ethylene glycol) hydrogels for degradation in response to bone resorption. J Biomed Mater Res A 98:53–62PubMedCrossRefGoogle Scholar
  42. 42.
    Brubaker CE, Messersmith PB (2011) Enzymatically degradable mussel-inspired adhesive hydrogel. Biomacromolecules 12:4326–4334PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Vandamme TF, Lenourry A, Charrueau C, Chaumeil JC (2002) The use of polysaccharides to target drugs to the colon. Carbohydr Polym 48:219–231CrossRefGoogle Scholar
  44. 44.
    Chourasia MK, Jain SK (2004) Polysaccharides for colon targeted drug delivery. Drug 11:129–148Google Scholar
  45. 45.
    Yao X, Liu Y, Gao J, Yang L, Mao D, Stefanitsch C, Li Y, Zhang J, Ou L, Kong D, Zhao Q, Li Z (2015) Nitric oxide releasing hydrogel enhances the therapeutic efficacy of mesenchymal stem cells for myocardial infarction. Biomaterials 60:130–140PubMedCrossRefGoogle Scholar
  46. 46.
    Martino MM, Briquez PS, Ranga A, Lutolf MP, Hubbell JA (2013) Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. Proc Natl Acad Sci 110:4563–4568PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Thornton PD, Billah SMR, Cameron NR (2013) Enzyme-degradable self-assembled hydrogels from polyalanine-modified poly(ethylene glycol) star polymers. Macromol Rapid Commun 34:257–262PubMedCrossRefGoogle Scholar
  48. 48.
    Zelzer M, Todd SJ, Hirst AR, McDonald TO, Ulijn RV (2013) Enzyme responsive materials: design strategies and future developments. Biomater Sci 1:11–39CrossRefGoogle Scholar
  49. 49.
    Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185(4706):117–118CrossRefGoogle Scholar
  50. 50.
    Lim F, Sun AM (1980) Microencapsulated islets as bioartificial endocrine pancreas. Science 210:908–910PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Yannas IV, Lee E, Orgill DP, Skrabut EM, Murphy GF (1989) Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc Natl Aca Sci USA 86:933–937CrossRefGoogle Scholar
  52. 52.
    Ratner B, Hoffman AS, Schoen F, Lemons JE (2004) Biomaterials science: introduction to materials in medicine, vol 2004, 2nd edn. Elsevier Academic Press, San Diego, pp 162–164Google Scholar
  53. 53.
    Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler JA, Stupp SI (2004) Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303:1352–1355PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Banwell EF, Abelardo ES, Adams DJ, Birchall MA, Corrigan A, Donald MA, Kirkland M, Serpell LC, Butler MF, Woolfson DN (2009) Rational design and application of responsive alpha-helical peptide hydrogels. Nat Mater 8:596–600PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Kiyonaka S, Sada K, Yoshimura I, Shinkai S, Kato N, Hamachi I (2004) Semi-wet peptide/protein array using supramolecular hydrogel. Nat Mater 3(1):58–64PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Lutolf M, Hubbell J (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23:47–55PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Engler AJ, Sen S, Sweeney HL, Discher HL (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689CrossRefGoogle Scholar
  58. 58.
    Ehrbar M, Rizzi SC, Schoenmakers RG, Miguel BS, Hubbell JA, Weber FE, Lutolf MP (2007) Biomolecular hydrogels formed and degraded via site-specific enzymatic reactions. Biomacromolecules 8:3000–3007PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2004) Biomaterials science: introduction to materials in medicine, 2nd edn. Elsevier Academic Press, San DiegoGoogle Scholar
  60. 60.
    Koutsopoulos S, Unsworth LD, Nagai Y, Zhang S (2009) Controlled release of functional proteins through designer self-assembling peptide nanofiber hydrogel scaffold. Proc Natl Acad Sci U S A 106:4623–4628PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Chen L, Morris K, Laybourn A, Elias D, Hicks MR, Rodger A, Serpell L, Adams DJ (2009) Self-assembly mechanism for a naphthalene−dipeptide leading to hydrogelation. Langmuir 26:5232–5242CrossRefGoogle Scholar
  62. 62.
    Soppimath K, Aminabhavi T, Dave A, Kumbar S, Rudzinski W (2002) Stimulus-responsive “smart” hydrogels as novel drug delivery systems. Drug Dev Ind Pharm 28:957–974PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Walsh C (2001) Enabling the chemistry of life. Nature 409:226–231PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Yang ZM, Liang GL, Guo ZH, Xu B (2007) Intracellular hydrogelation of small molecules inhibits bacterial growth. Angew Chem Int Ed 46:8216–8219CrossRefGoogle Scholar
  65. 65.
    West JL, Hubbell JA (1999) Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules 32:241–244CrossRefGoogle Scholar
  66. 66.
    Reches M, Gazit E (2003) Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300:625–627PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Ozbas B, Kretsinger J, Rajagopal K, Schneider JP, Pochan DJ (2004) Salt-triggered peptide folding and consequent self-assembly into hydrogels with tunable modulus. Macromolecules 37:7331–7337CrossRefGoogle Scholar
  68. 68.
    Tang C, Smith AM, Collins RF, Ulijn RV, Saiani A (2009) FMOC-diphenylalanine self-assembly mechanism induces apparent pKa shifts. Langmuir 25:9447–9453PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Hong H, Mai Y, Zhou Y, Yan D, Chen Y (2007) Synthesis and supramolecular self-assembly of thermosensitive amphiphilic star copolymers based on a hyperbranched polyether core. J Polym Sci A 46:668–681CrossRefGoogle Scholar
  70. 70.
    Yang Z, Gu H, Fu D, Gao P, Lam JK, Xu B (2004) Enzymatic formation of supramolecular hydrogels. Adv Mater 16:1440–1444CrossRefGoogle Scholar
  71. 71.
    Toledano S, Williams RJ, Jayawarna V, Ulijn RV (2006) Enzyme-triggered self-assembly of peptide hydrogels via reversed hydrolysis. J Am Chem Soc 128:1070–1071PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Xu B (2009) Gels as functional nanomaterials for biology and medicine. Langmuir 25:8375–8377PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Yang Z, Xu K, Guo Z, Guo Z, Xu B (2007) Intracellular enzymatic formation of nanofibers results in hydrogelation and regulated cell death. Adv Mater 19:3152–3156CrossRefGoogle Scholar
  74. 74.
    Hirst AR, Roy S, Arora M, Das AK, Hodson N, Murray P, Marshall S, Javid N, Sefcik J, Boekhoven J, van Esch JH, Santabarbara S, Hunt NT, Ulijn RV (2010) Biocatalytic induction of supramolecular order. Nat Chem 2:1089–1094PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Williams RJ, Smith AM, Collins R, Hodson N, Das AK, Ulijn RV (2008) Enzyme-assisted self-assembly under thermodynamic control. Nat Nanotechnol 4:19–24PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Das AK, Hirst AR, Ulijn RV (2009) Evolving nanomaterials using enzyme-driven dynamic peptide libraries (eDPL). Faraday Discuss 143:293–303PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Sadownik JW, Ulijn RV (2010) Locking an oxidation-sensitive dynamic peptide system in the gel state. Chem Commun 46:3481–3483CrossRefGoogle Scholar
  78. 78.
    Ryan DM, Nilsson BL (2012) Self-assembled amino acids and dipeptides as noncovalent hydrogels for tissue engineering. Polym Chem 3:18–33CrossRefGoogle Scholar
  79. 79.
    Adams DJ, Topham PD (2010) Peptide conjugate hydrogelators. Soft Matter 6:3707–3721CrossRefGoogle Scholar
  80. 80.
    Yang Z, Liang G, Xu B (2008) Enzymatic hydrogelation of small molecules. Acc Chem Res 41:315–326PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Collier JH, Messersmith PB (2003) Enzymatic modification of self-assembled peptide structures with tissue transglutaminase. Bioconjug Chem 14:748–755PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Winkler S, Wilson D, Kaplan D (2000) Controlling beta-sheet assembly in genetically engineered silk by enzymatic phosphorylation/dephosphorylation. Biochemistry 39:12739–12746PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Hirst AR, Coates IA, Boucheteau TR, Miravet JF, Escuder B, Castelletto V, Hamley IW, Smith DK (2008) Low-molecular-weight gelators: elucidating the principles of gelation based on gelator solubility and a cooperative self-assembly model. J Am Chem Soc 130:9113–9121PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Adams DJ, Butler MF, Frith WJ, Kirkland M, Mullen L, Sanderson P (2009) A new method for maintaining homogeneity during liquid–hydrogel transitions using low molecular weight hydrogelators. Soft Matter 5:1856–1862CrossRefGoogle Scholar
  85. 85.
    Sadownik JW, Leckie J, Ulijn RV (2011) Micelle to fibre biocatalytic supramolecular transformation of an aromatic peptide amphiphile. Chem Commun 47:728–730CrossRefGoogle Scholar
  86. 86.
    Yang Z, Ho P-L, Liang G, Chow KH, Wang Q, Cao Y, Guo Z, Xu B (2007) J Am Chem Soc 129:266–267PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Roy S, Ulijn RV (2010) Advances in polymer science. In: ARA P, Heise A (eds) Enzymatic polymerisation, vol 237. Springer, Berlin, pp 127–143CrossRefGoogle Scholar
  88. 88.
    Thornton K, Smith A, Merry CLR, Ulijn RV (2009) Controlling stiffness in nanostructured hydrogels produced by enzymatic dephosphorylation. Biochem Soc Trans 37:660–664PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Prabaharan M, Mano JF (2006) Stimuli-responsive hydrogels based on polysaccharides incorporated with thermo-responsive polymers as novel biomaterials. Macromol Biosci 6:991–1008PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Santos SD, Chandravarkar A, Mandal B, Mimna R, Murat K, Saucede L, Tella P, Tuchscherer G, Mutter M (2005) Switch-peptides: controlling self-assembly of amyloid beta-derived peptides in vitro by consecutive triggering of acyl migrations. J Am Chem Soc 127(34):11888–11889PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Yanlian Y, Ulung K, Xiumei W, Horii A, Yokoi H, Shuguang Z (2009) Designer self-assembling peptide nanomaterials. Nanotechnol Today 4:193–210CrossRefGoogle Scholar
  92. 92.
    Ehrbar M, Rizzi SC, Schoenmakers RG, San Miguel B, Hubbell JA, Weber FE, Lutolf MP (2007) Biomolecular hydrogels formed and degraded via site-specific enzymatic reactions. Biomacromolecules 8:3000–3007PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Corbett PT, Leclaire J, Vial L, West KR, Wietor J-L, Sanders JKM, Otto S (2006) Dynamic combinatorial chemistry. Chem Rev 106(9):3652–3711PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Rowan SJ, Cantrill SJ, Cousins GRL, Sanders JKM, Stoddart JF (2002) Dynamic covalent chemistry. Angew Chem Int Ed 41:898–952CrossRefGoogle Scholar
  95. 95.
    Vegners R, Shestakova I, Kalvinsh I, Ezzell RM, Janmey PA (1995) Use of a gel-forming dipeptide derivative as a carrier for antigen presentation. J Pept Sci 1:371–378PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Zhang Y, Gu H, Yang Z, Xu B (2003) Supramolecular hydrogels respond to ligand−receptor interaction. J Am Chem Soc 125(45):13680–13681PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Hughes M, Frederix PWJM, Raeburn J, Birchall LS, Sadownik J, Coomer FC, Lin I-H, Cussen EJ, Hunt NT, Tuttle T, Webb SJ, Adams DJ, Ulijn RV (2012) Sequence/structure relationships in aromatic dipeptide hydrogels formed under thermodynamic control by enzyme-assisted self-assembly. Soft Matter 8:5595–5602CrossRefGoogle Scholar
  98. 98.
    Hughes M, Xu H, Frederix PWJM, Smith AM, Hunt NT, Tuttle T, Kinloch IA, Ulijn RV (2011) Biocatalytic self-assembly of 2D peptide-based nanostructures. Soft Matter 7(21):10032–10038CrossRefGoogle Scholar
  99. 99.
    Hughes M, Birchall LS, Zuberi K, Aitkin LA, Debnath S, Javid N, Ulijn RV (2012) Differential supramolecular organisation of fmoc-dipeptides with hydrophilic terminal amino acid residues by biocatalytic self-assembly. Soft Matter 8:11565–11574CrossRefGoogle Scholar
  100. 100.
    Jayawarna V, Richardson SM, Hirst AR, Hodson NW, Saiani A, Gough JE, Ulijn RV (2009) Introducing chemical functionality in FMOC-peptide gels for cell culture. Acta Biomater 5(3):934–943PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Ruoslahti E (1996) RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12:697–715PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Hughes M, Debnath S, Knapp CW, Ulijn RV (2013) Antimicrobial properties of enzymatically triggered self-assembling aromatic peptide amphiphiles. Biomater Sci 1:1138–1142CrossRefGoogle Scholar
  103. 103.
    Brake JM, Daschner MK, Luk Y-Y, Abbott NL (2003) Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals. Science 302:2094–2097PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Lin IH, Birchall LS, Hodson N, Ulijn RV, Webb SJ (2013) Interfacing biodegradable molecular hydrogels with liquid crystals. Soft Matter 9:1188–1193CrossRefGoogle Scholar
  105. 105.
    Gao Y, Kuang Y, Guo Z-F, Guo Z, Krauss IJ, Xu B (2009) Enzyme-instructed molecular self-assembly confers nanofibers and a supramolecular hydrogel of taxol derivative. J Am Chem Soc 131(38):13576–13577PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Williams RJ, Hall TE, Glattauer V, White J, Pasic PJ, Sorensen AB, Waddington L, McLean KM, Currie PD, Hartley PG (2011) The in vivo performance of an enzyme-assisted self-assembled peptide/protein hydrogel. Biomaterials 32:5304–5310PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Andrieu J, Kotman N, Maier M, Mailänder V, Strauss WSL, Weiss CK, Landfester K (2012) Live monitoring of cargo release from peptide-based hybrid nanocapsules induced by enzyme cleavage. Macromol Rapid Commun 33(3):248–253PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Fuchs AV, Kotman N, Andrieu J, Mailander V, Weiss CK, Landfester K (2013) Enzyme cleavable nanoparticles from peptide based triblock copolymers. Nanoscale 5(11):4829–4839PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Baier G, Cavallaro A, Vasilev K, Mailänder V, Musyanovych A, Landfester K (2013) Enzyme responsive hyaluronic acid nanocapsules containing polyhexanide and their exposure to bacteria to prevent infection. Biomacromolecules 14(4):1103–1112PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Lin C-C (2015) Recent advances in crosslinking chemistry of biomimetic poly(ethylene glycol) hydrogels. RSC Adv 5:39844–39853PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, Wilkinson CD, Oreffo RO (2007) The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 6:997–1003PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Shah M. Reduwan Billah
    • 1
    • 2
    • 3
  • Md. Ibrahim H. Mondal
    • 4
  • Sazzad H. Somoal
    • 5
  • M. Nahid Pervez
    • 3
  • Md. Obidul Haque
    • 4
  1. 1.CCIRA UK LimitedGalashielsUK
  2. 2.Department of ChemistryDurham UniversityDurhamUK
  3. 3.School of Textiles and DesignHeriot-Watt University, Scottish Borders CampusGalashielsUK
  4. 4.Polymer and Textiles Research Lab, Department of Applied Chemistry and Chemical EngineeringRajshahi UniversityRajshahiBangladesh
  5. 5.Institute for Environmental SciencesUniversity of Koblenz-LandauLandauGermany

Personalised recommendations