Elastic Modulus Measurement of Hydrogels

  • Donghee Lee
  • Haipeng Zhang
  • Sangjin RyuEmail author
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)


Hydrogels have been employed for a wide variety of applications, and their mechanical properties need to be modulated based on the applications. In particular, the Young’s modulus, or elastic modulus, of hydrogels is a critical property for understanding their mechanical behaviors. In principle, the Young’s modulus of a hydrogel can be measured by finding a relationship between a force applied to the hydrogel and the resultant deformation of the hydrogel. On a macroscale, Young’s modulus is usually obtained by measuring the stress-strain curves of a hydrogel specimen through the compression method or the tensile method and then finding the slope of the curve. Also, the shear modulus of a hydrogel is measured using a rheometer with parallel plates and then converted into Young’s modulus considering Poisson’s ratio. On a mesoscale, the elastic modulus can be measured by the imaging-based indentation methods which measure the indentation depth of a hydrogel sample deformed by a static ball indenter on the gel. The measured indentation depth is converted to the Young’s modulus of the hydrogel via a contact mechanics model. The mesoscale indentation method and pipette aspiration method are also available. On a microscale, the elastic modulus is usually measured using the atomic force microscopy (AFM)-based indentation method. A hydrogel specimen is locally indented by a sharp or colloidal tip of an AFM probe, and the Young’s modulus of the hydrogel is obtained by fitting an appropriate indentation model against the recorded force-distance curves. An appropriate elastic modulus measurement method needs to be chosen depending on the application, length scale and expected elastic property of the hydrogels.


Young’s modulus Shear modulus Atomic force microscopy Indentation Rheometer Compression test 



We acknowledge supports from the Nebraska Tobacco Settlement Biomedical Research Development Fund through (1) Bioengineering for Human Health Grant of the University of Nebraska-Lincoln (UNL) and the University of Nebraska Medical Center (UNMC) and (2) Biomedical Research Seed Grant of UNL. AFM measurements were performed at the NanoEngineering Research Core Facility of UNL, which is partially funded from Nebraska Research Initiative Funds.


  1. 1.
    Anseth KS, Bowman CN, Brannon-Peppas L (1996) Mechanical properties of hydrogels and their experimental determination. Biomaterials 17:1647–1657CrossRefPubMedGoogle Scholar
  2. 2.
    Ahearne M, Yang Y, Liu K-K (2008) Mechanical characterization of hydrogels for tissue engineering application. Topics in tissue Engineering 4:1–16Google Scholar
  3. 3.
    Oyen ML (2014) Mechanical characterization of hydrogel materials. Int Mater Rev 59:44–59CrossRefGoogle Scholar
  4. 4.
    Vedadghavami A, Minooei F, Mohammadi MH, Khetani S, Rezaei A, Mashayekhan S, Sanati-Nezhad A (2017) Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications. Acta Biomater 62:42–63CrossRefPubMedGoogle Scholar
  5. 5.
    Schramm-Baxter J, Katrencik J, Mitragotri S (2004) Jet injection into polyacrylamide gels: investigation of jet injection mechanics. J Biomech 37:1181–1188CrossRefPubMedGoogle Scholar
  6. 6.
    Buckley CT, Thorpe SD, O’Brien FJ, Robinson AJ, Kelly DJ (2009) The effect of concentration, thermal history and cell seeding density on the initial mechanical properties of agarose hydrogels. J Mech Behav Biomed Mater 2:512–521CrossRefPubMedGoogle Scholar
  7. 7.
    Delaine-Smitha RM, Burneya S, Balkwillb FR, Knight MM (2016) Experimental validation of a flat punch indentation methodology calibrated against unconfined compression tests for determination of soft tissue biomechanics. J Mech Behav Biomed Mater 60:401–415CrossRefGoogle Scholar
  8. 8.
    Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Boontheekul T, Kong H-J, Mooney DJ (2005) Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials 26:2455–2465CrossRefPubMedGoogle Scholar
  10. 10.
    Ouwerx C, Velings N, Mestdagh MM, Axelos MAV (1998) Physico-chemical properties and rheology of alginate gel beads formed with various divalent cations. Polym Gels Netw 6:393–408CrossRefGoogle Scholar
  11. 11.
    Chan E-S, Lim T-K, Voo W-P, Pogaku R, Tey BT, Zhang Z (2011) Effect of formulation of alginate beads on their mechanical behavior and stiffness. Particuology 9:228–234CrossRefGoogle Scholar
  12. 12.
    Normand V, Lootens DL, Amici E, Plucknett KP, Aymard P (2000) New insight into agarose gel mechanical properties. Biomacromolecules 1:730–738CrossRefPubMedGoogle Scholar
  13. 13.
    Brujan E-A, Nahen K, Schmidt P, Vogel A (2001) Dynamics of laser-induced cavitation bubbles near an elastic boundary. J Fluid Mech 433:251–281CrossRefGoogle Scholar
  14. 14.
    Roeder BA, Kokini K, Sturgis JE, Robinson JP, Voytik-Harbin SL (2002) Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. J Biomech Eng 124:214–222CrossRefPubMedGoogle Scholar
  15. 15.
    Engler A, Bacakova L, Newman C, Hategan A, Griffin M, Discher D (2004) Substrate compliance versus ligand density in cell on gel responses. Biophys J 86:617–628CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Peyton SR, Putnam AJ (2005) Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. J Cell Physiol 204:198–209CrossRefPubMedGoogle Scholar
  17. 17.
    Sun J-Y, Zhao X, Illeperuma WRK, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo Z (2012) Highly stretchable and tough hydrogels. Nature 489:133–136CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gross W, Kress H (2017) Simultaneous measurement of the Young’s modulus and the Poisson ratio of thin elastic layers. Soft Matter 13:1048–1055CrossRefPubMedGoogle Scholar
  19. 19.
    Wong JY, Velasco A, Rajagopalan P, Pham Q (2003) Directed movement of vascular smooth muscle cells on gradient-compliant hydrogels. Langmuir 19:1908–1913CrossRefGoogle Scholar
  20. 20.
    Kong HJ, Wong E, Mooney DJ (2003) Independent control of rigidity and toughness of polymeric hydrogels. Macromolecules 36:4582–4588CrossRefGoogle Scholar
  21. 21.
    Janmey PA, Georges PC, Hvidt S (2007) Basic rheology for biologists. In: Wang Y-L, Discher DE (eds) Cell mechanics. Academic, San Diego, pp 3–27Google Scholar
  22. 22.
    Chippada U, Yurke B, Langrana NA (2010) Simultaneous determination of Young’s modulus, shear modulus, and Poisson’s ratio of soft hydrogels. J Mater Res 25:545–555CrossRefGoogle Scholar
  23. 23.
    Hammond NA, Kamm RD (2013) Mechanical characterization of self-assembling peptide hydrogels by microindentation. J Biomed Mater Res B 101:981–990CrossRefGoogle Scholar
  24. 24.
    Lee D, Rahman MM, Zhou Y, Ryu S (2015) Three-dimensional confocal microscopy indentation method for hydrogel elasticity measurement. Langmuir 31:9684–9693CrossRefPubMedGoogle Scholar
  25. 25.
    Lee D, Ryu S (2017) A validation study of the repeatability and accuracy of atomic force microscopy indentation using polyacrylamide gels and colloidal probes. J Biomech Eng 139:044502CrossRefGoogle Scholar
  26. 26.
    Kandow CE, Georges PC, Janmey PA, Beningo KA (2007) Polyacrylamide hydrogels for cell mechanics: steps toward optimization and alternative uses. In: Wang Y-L, Discher DE (eds) Cell mechanics. Academic, San Diego, pp 29–46CrossRefGoogle Scholar
  27. 27.
    Tse JR, Engler AJ (2010) Preparation of hydrogel substrates with tunable mechanical properties. Curr Protoc Cell Biol 16:10–16Google Scholar
  28. 28.
    Ross KA, Scanlon MG (1999) Analysis of the elastic modulus of agar gel by indentation. J Texture Stud 30:17–27CrossRefGoogle Scholar
  29. 29.
    Peng X, Huang J, Qin L, Xiong C, Fang J (2009) A method to determine Young’s modulus of soft gels for cell adhesion. Acta Mech Sin 25:565–570CrossRefGoogle Scholar
  30. 30.
    Lo C-M, Wang H-B, Dembo M, Wang Y-L (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79:144–152CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Munevar S, Wang Y-L, Dembo M (2001) Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts. Biophys J 80:1744–1757CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Reinhart-King CA, Dembo M, Hammer DA (2003) Endothelial cell traction forces on RGD-derivatized polyacrylamide substrata. Langmuir 19:1573–1579CrossRefGoogle Scholar
  33. 33.
    Damljanovic V, Lagerholm BC, Jacobson K (2005) Bulk and micropatterned conjugation of extracellular matrix proteins to characterized polyacrylamide substrates for cell mechanotransduction assays. Biotechniques 39:847–851CrossRefPubMedGoogle Scholar
  34. 34.
    Frey MT, Engler A, Discher DE, Lee J, Wang YL (2007) Microscopic methods for measuring the elasticity of gel substrates for cell culture: microspheres, microindenters, and atomic force microscopy. In: Wang Y-L, Discher DE (eds) Cell mechanics. Academic, San Diego, pp 47–65CrossRefGoogle Scholar
  35. 35.
    Long R, Hall MS, Wu M, Hui C-Y (2011) Effects of gel thickness on microscopic indentation measurements of gel modulus. Biophys J 101:643–650CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    D’Sa DJ, de Juan Pardo EM, de las Rivas Astiz R, Sen S, Kumar S (2009) High-throughput indentational elasticity measurements of hydrogel extracellular matrix substrates. Appl Phys Lett 95:063701CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Peng X, Huang J, Deng H, Xiong C, Fang J (2011) A multi-sphere indentation method to determine Young’s modulus of soft polymeric materials based on the Johnson–Kendall–Roberts contact model. Meas Sci Technol 22:027003CrossRefGoogle Scholar
  38. 38.
    Kuznetsova TG, Starodubtseva MN, Yegorenkov NI, Chizhik SA, Zhdanov RI (2007) Atomic force microscopy probing of cell elasticity. Micron 38:824–833CrossRefPubMedGoogle Scholar
  39. 39.
    Yoffe EH (1984) Modified Hertz theory for spherical indentation. Philos Mag A 50:813–828CrossRefGoogle Scholar
  40. 40.
    Mahaffy RE, Shih CK, MacKintosh FC, Käs J (2000) Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells. Phys Rev Lett 85:880–883CrossRefPubMedGoogle Scholar
  41. 41.
    Mahaffy RE, Park S, Gerde E, Käs J, Shih CK (2004) Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. Biophys J 86:1777–1793CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Dimitriadis EK, Horkay F, Maresca J, Kachar B, Chadwick RS (2002) Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys J 82:2798–2810CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Yang Y, Bagnaninchi PO, Ahearne M, Wang RK, Liu K-K (2007) A novel optical coherence tomography-based micro-indentation technique for mechanical characterization of hydrogels. J R Soc Interface 4:1169–1173CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Lee SJ, Sun J, Flint JJ, Guo S, Xie HK, King MA, Sarntinoranont M (2011) Optically based-indentation technique for acute rat brain tissue slices and thin biomaterials. J Biomed Mater Res B 97:84–95CrossRefGoogle Scholar
  45. 45.
    Jacot JG, Dianis S, Schnall J, Wong JY (2006) A simple microindentation technique for mapping the microscale compliance of soft hydrated materials and tissues. J Biomed Mater Res A 79:485–494CrossRefPubMedGoogle Scholar
  46. 46.
    Frey MT, Wang Y-L (2009) A photo-modulatable material for probing cellular responses to substrate rigidity. Soft Matter 5:1918–1924CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Beekmans SV, Iannuzzi D (2016) Characterizing tissue stiffness at the tip of a rigid needle using an opto-mechanical force sensor. Biomed Microdevices 18:15CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Saxena T, Gilbert JL, Hasenwinkel JM (2009) A versatile mesoindentation system to evaluate the micromechanical properties of soft, hydrated substrates on a cellular scale. J Biomed Mater Res A 90:1206–1217CrossRefPubMedGoogle Scholar
  49. 49.
    Levental I, Levental KR, Klein EA, Assoian R, Miller RT, Wells RG, Janmey PA (2010) A simple indentation device for measuring micrometer-scale tissue stiffness. J Phys Condens Matter 22:194120CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Chevalier NR, Dantan P, Gazquez E, Cornelissen AJM, Fleury V (2016) Water jet indentation for local elasticity measurements of soft materials. Eur Phys J E 39:10CrossRefPubMedGoogle Scholar
  51. 51.
    Lin DC, Yurke B, Langrana NA (2004) Mechanical properties of a reversible, DNA-crosslinked polyacrylamide hydrogel. J Biomech Eng 126:104–110CrossRefPubMedGoogle Scholar
  52. 52.
    Lin DC, Yurke B, Langrana NA (2005) Inducing reversible stiffness changes in DNA-crosslinked gels. J Mater Res 20:1456–1464CrossRefGoogle Scholar
  53. 53.
    Boudou T, Ohayon J, Picart C, Tracqui P (2006) An extended relationship for the characterization of Young’s modulus and Poisson’s ratio of tunable polyacrylamide gels. Biorheology 43:721–728PubMedGoogle Scholar
  54. 54.
    Buffinton CM, Tong KJ, Blaho RA, Buffinton EM, Ebenstein DM (2015) Comparison of mechanical testing methods for biomaterials: pipette aspiration, nanoindentation, and macroscale testing. J Mech Behav Biomed Mater 51:367–379CrossRefPubMedGoogle Scholar
  55. 55.
    Kleinberger RM, Burke NAA, Dalnoki-Veress K, Stöver HDH (2013) Systematic study of alginate-based microcapsules by micropipette aspiration and confocal fluorescence microscopy. Mater Sci Eng C 33:4295–4304CrossRefGoogle Scholar
  56. 56.
    Wyss HM, Franke T, Mele E, Weitz DA (2010) Capillary micromechanics: measuring the elasticity of microscopic soft objects. Soft Matter 6:4550–4555CrossRefGoogle Scholar
  57. 57.
    Engler AJ, Richert L, Wong JY, Picart C, Discher DE (2004) Surface probe measurements of the elasticity of sectioned tissue, thin gels and polyelectrolyte multilayer films: correlations between surface substrate stiffness and cell adhesion. Surf Sci 570:142–154CrossRefGoogle Scholar
  58. 58.
    Radmacher M (2007) Studying the mechanics of cellular processes by atomic force microscopy. In: Wang Y-L, Discher DE (eds) Cell mechanics. Academic, San Diego, pp 347–372CrossRefGoogle Scholar
  59. 59.
    Engler AJ, Rehfeldt F, Sen S, Discher DE (2007) Microtissue elasticity: measurements by atomic force microscopy and its influence on cell differentiation. In: Wang Y-L, Discher DE (eds) Cell mechanics. Academic, San Diego, pp 521–545CrossRefGoogle Scholar
  60. 60.
    Markert CD, Guo X, Skardal A, Wang Z, Bharadwaj S, Zhang Y, Bonin K, Guthold M (2013) Characterizing the micro-scale elastic modulus of hydrogels for use in regenerative medicine. J Mech Behav Biomed Mater 27:115–127CrossRefPubMedGoogle Scholar
  61. 61.
    Li C, Allen J, Alliston T, Pruitt LA (2011) The use of polyacrylamide gels for mechanical calibration of cartilage – a combined nanoindentation and unconfined compression study. J Mech Behav Biomed Mater 4:1540–1547CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Ondeck MG, Engler AJ (2016) Mechanical characterization of a dynamic and tunable methacrylated hyaluronic acid hydrogel. J Biomech Eng 138:021003CrossRefPubMedGoogle Scholar
  63. 63.
    Sneddon IN (1965) The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3:47–57CrossRefGoogle Scholar
  64. 64.
    Heuberger M, Dietler G, Schlapbach L (1995) Mapping the local Young’s modulus by analysis of the elastic deformations occurring in atomic force microscopy. Nanotechnology 6:12–23CrossRefGoogle Scholar
  65. 65.
    Puricelli L, Galluzzi M, Schulte C, Podestà A, Milani P (2015) Nanomechanical and topographical imaging of living cells by atomic force microscopy with colloidal probes. Rev Sci Instrum 86:033705CrossRefPubMedGoogle Scholar
  66. 66.
    Hermanowicz P, Sarna M, Burda K, Gabryś H (2014) AtomicJ: an open source software for analysis of force curves. Rev Sci Instrum 85:063703CrossRefPubMedGoogle Scholar
  67. 67.
    Carl P, Schillers H (2008) Elasticity measurement of living cells with an atomic force microscope: data acquisition and processing. Pflugers Arch 457:551–559CrossRefPubMedGoogle Scholar
  68. 68.
    Harris AR, Charras GT (2011) Experimental validation of atomic force microscopy-based cell elasticity measurements. Nanotechnology 22:345102CrossRefPubMedGoogle Scholar
  69. 69.
    Lin DC, Horkay F (2008) Nanomechanics of polymer gels and biological tissues: a critical review of analytical approaches in the Hertzian regime and beyond. Soft Matter 4:669–682CrossRefGoogle Scholar
  70. 70.
    McKee CT, Last JA, Russell P, Murphy CJ (2011) Indentation versus tensile measurements of Young’s modulus of soft biological tissues. Tissue Eng B 17:155–164CrossRefGoogle Scholar
  71. 71.
    Lin DC, Dimitriadis EK, Horkay F (2007) Robust strategies for automated AFM force curve analysis-I. Non-adhesive indentation of soft, inhomogeneous materials. J Biomech Eng 129:430–440CrossRefPubMedGoogle Scholar
  72. 72.
    Chippada U, Yurke B, Georges PC, Langrana NA (2008) A nonintrusive method of measuring the local mechanical properties of soft hydrogels using magnetic microneedles. J Biomech Eng 31:021014Google Scholar
  73. 73.
    Kim K, Liu X, Zhang Y, Cheng J, Wu XY, Sun Y (2009) Elastic and viscoelastic characterization of microcapsules for drug delivery using a force-feedback MEMS microgripper. Biomed Microdevices 11:421–427CrossRefPubMedGoogle Scholar
  74. 74.
    Corbin EA, Millet LJ, Pikul JH, Johnson CL, Georgiadis JG, King WP, Bashir R (2013) Micromechanical properties of hydrogels measured with MEMS resonant sensors. Biomed Microdevices 15:311–319CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical and Materials EngineeringLincolnUSA
  2. 2.Nebraska Center for Materials and Nanoscience, University of Nebraska-LincolnLincolnUSA

Personalised recommendations