Advertisement

Collagen-Based Hydrogels and Their Applications for Tissue Engineering and Regenerative Medicine

  • Sorina Dinescu
  • Madalina Albu Kaya
  • Leona Chitoiu
  • Simona Ignat
  • Durmus Alpaslan Kaya
  • Marieta Costache
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)

Abstract

A promising solution for soft tissue regeneration is tissue engineering, a multidisciplinary field of research which involves the use of biomaterials, growth factors, and stem cells in order to repair, replace, or regenerate tissues and organs damaged by injury or disease. The success of tissue engineering (TE) depends on the composition and microstructure of the used scaffolds. Ideally, scaffolds have to be similar to natural tissues. Collagen is the major component of the extracellular matrix of most soft tissues. The interactions between collagen and cells are vital in the wound healing process and in adult tissue remodeling, collagen being able to support differentiation and maintenance of cellular phenotype. As a natural molecule, collagen possesses the major advantage of being biodegradable, biocompatible, easily available, and highly versatile and presents low antigenicity. This chapter aims to present an overview on the structure, properties, and biomedical applications of collagen hydrogels. Moreover, it introduces the reader to the latest research in the field of tissue engineering related to collagen. It also displays the results we obtained as a joint bioengineering group on collagen hydrogels designed for soft (ATE) or cartilage tissue engineering (CTE) applications: type I collagen hydrogels improved with either silk sericin (CollSS) or with pro-chondrogenic factors – hyaluronic acid and chondroitin sulfate (CollSSHACS). Results indicated in both cases the positive influence of sericin on the interaction between cells and the surface of the hydrogels. In the absence of HA and CS, specific chondrogenic inducers, CollSS hydrogel is adapted for soft tissue reconstruction, whether the addition of HA and CS transforms CollSSHACS into a suitable hydrogel formula for semihard tissue repair via modern strategies in tissue engineering and regenerative medicine.

Keywords

Collagen hydrogels Biomaterial Regenerative medicine Tissue engineering Sericin Hyaluronic acid Chondroitin sulfate 

Notes

Acknowledgments

The authors would like to acknowledge the funding sources that supported this work: grant 65PCCDI/2018 (REGMED), Project 3- dedicated to regeneration of soft tissues and to national project Bridge Grant PNIII-P2-2.1-BG-2016660 0458 (123BG/2016), as well as the National Executive Agency for Research Funding.

References

  1. 1.
    Varaprasad K, Raghavendra GM, Jayaramudu T, Yallapu MM, Sadiku R (2017) A mini review on hydrogels classification and recent developments in miscellaneous applications. Mater Sci Eng C Mater Biol Appl 79:958–971CrossRefPubMedGoogle Scholar
  2. 2.
    Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351CrossRefGoogle Scholar
  3. 3.
    Gyles DA, Castro LD, Carrera Silva JO Jr, Ribeiro-Costa RM (2017) A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations. Eur Polym J 88:373–392CrossRefGoogle Scholar
  4. 4.
    Naahidi S, Jafari M, Logan M, Wang Y, Yuan Y, Bae H, Dixon B, Chen P (2017) Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol Adv 35(5):530–544CrossRefPubMedGoogle Scholar
  5. 5.
    Vedadghavami A, Minooei F, Mohammadi MH, Khetani S, Rezaei A, Mashayekhan S, Sanati-Nezhad A (2017) Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications. Acta Biomater 62:42CrossRefPubMedGoogle Scholar
  6. 6.
    Saldin LT, Cramer MC, Velankar S, White LJ, Badylak SF (2017) Extracellular matrix hydrogels from decellularized tissues: structure and function. Acta Biomater 49:1–15CrossRefPubMedGoogle Scholar
  7. 7.
    Ramachandran GN (1967) Structure of collagen at the molecular level. In: Ramachandran GN (ed) Treatise on Collagen. Academic, London, pp 747–748Google Scholar
  8. 8.
    Prockop DJ, Kivirikko KI (1995) Collagens: molecular biology, diseases, and potential for therapy. Annu Rev Biochem 64:403–434CrossRefPubMedGoogle Scholar
  9. 9.
    Uitto J, Pulkkinen L, Chu ML (1999) Collagen. In: Freedberg IM (ed) Dermatology in general medicine. McGraw-Hill, New York, pp 303–314Google Scholar
  10. 10.
    Mecham R (2012) Overview of extracellular matrix. Curr Protoc Cell Biol 57:10.1.1–10.1.16Google Scholar
  11. 11.
    Eyre DR (1980) Collagen: molecular diversity in the body’s protein scaffold. Science 207(4437):1315–1322CrossRefPubMedGoogle Scholar
  12. 12.
    Tian Z, Liu W, Li G (2016) The microstructure and stability of collagen hydrogel cross-linked by glutaraldehyde. Polym Degrad Stab 130:264–270CrossRefGoogle Scholar
  13. 13.
    Friess W (1998) Collagen – biomaterial for drug delivery. Eur J Pharm Biopharm 45:113–136CrossRefPubMedGoogle Scholar
  14. 14.
    Khor E (1997) Methods for the treatment of collagenous tissues for bioprostheses. Biomaterials 18:95–105CrossRefPubMedGoogle Scholar
  15. 15.
    Jayakrishnan A, Jameela SR (1996) Glutaraldehyde as a fixative in bioprosthetic and drug delivery matrices. Biomaterials 17:471–484CrossRefPubMedGoogle Scholar
  16. 16.
    Dunn MG, Avasarala PN, Zawadsky JP (1993) Optimization of extruded collagen fibers for ACL reconstruction. J Biomed Mater Res 27:1545–1552CrossRefPubMedGoogle Scholar
  17. 17.
    Bigi A, Cojazzi G, Panzavolta S, Rubini K, Roveri N (2001) Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials 22:763–768CrossRefPubMedGoogle Scholar
  18. 18.
    Nimni ME, Cheung DT, Strates B, Kodama M, Sheikh K (1988) Bioprosthesis derived from cross-linked and chemically modified collagen tissues. In: Collagen and biomechanics, vol 2. CRC Press, Boca Raton, pp 202–206Google Scholar
  19. 19.
    Olde Damink LHH, Dijkstra PJ, van Luyn MJA, van Wachem PB, Nieuwenhuis P, Feijen J (1985) Glutaraldehyde as a crosslinking agent for collagen-based biomaterials. J Mater Sci Mater Med 6:460–472CrossRefGoogle Scholar
  20. 20.
    Speer DP, Chvapil M, Eskelson CD, Ulreich J (1980) Biological effects of residual glutaraldehyde in glutaraldehyde-tanned collagen biomaterials. J Biomed Mater Res 14:753–764CrossRefPubMedGoogle Scholar
  21. 21.
    Goissis G, Marcantonio E Jr, Marcantonio RAC, Lia RCC, Cancia DCJ, De Carvalho WM (1999) Biocompatibility studies of anionic collagen membranes with different degree of glutaraldehyde cross-linking. Biomaterials 20:27–34CrossRefPubMedGoogle Scholar
  22. 22.
    Tu R, Lu CL, Thzagarajan K, Wang E, Nguyen H, Shen S, Hata C, Quijano RC (1993) Kinetic study of collagen fixation with polyepoxy fixatives. J Biomed Mater Res 27:3–9CrossRefPubMedGoogle Scholar
  23. 23.
    Nishi C, Nakajima N, Ikada Y (1995) In vitro evaluation of cytotoxicity of diepoxy compounds used for biomedical modification. J Biomed Mater Res 29:829–834CrossRefPubMedGoogle Scholar
  24. 24.
    Petide H, Rault I, Huc A, Menasche PH, Herbage D (1990) Use of the acyl azide method for crosslinking collagen-rich tissues such as pericardium. J Biomed Mater Res 24:179–187CrossRefGoogle Scholar
  25. 25.
    Anselme K, Petite H, Herbage D (1992) Inhibition of calcification in vivo by acyl azide crosslinking of a collagen-glycosaminoglycan sponge. Matrix 12:264–273CrossRefPubMedGoogle Scholar
  26. 26.
    Liu T, Shi L, Gu Z, Dan W, Dan N (2017) A novel combined polyphenol-aldehyde crosslinking of collagen film- applications in biomedical materials. Int J Biol Macromol 101:889–895CrossRefPubMedGoogle Scholar
  27. 27.
    Yang X, Guo L, Fan Y, Zhang X (2013) Preparation and characterization of macromolecule cross-linked collagen hydrogels for chondrocyte delivery. Int J Biol Macromol 61:487–493CrossRefPubMedGoogle Scholar
  28. 28.
    Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Sassi ML, Eriksen H, Risteli L, Niemi S, Mansell J, Gowen M, Risteli J (2000) Immunochemical characterization of assay for carboxyterminal telopeptide of human type I collagen: loss of antigenicity by treatment with cathepsin. Bone 26:367–373CrossRefPubMedGoogle Scholar
  30. 30.
    Kleimann HK, Klebe RJ, Martin GR (1981) Role of collagenous matrices in the adhesion and growth of cells. J Cell Biol 88:473–485CrossRefGoogle Scholar
  31. 31.
    Skopinska-Wisniewska J, Kuderko J, Bajek A, Maj M, Sionkowska A, Ziegler-Borowska M (2016) Collagen/elastin hydrogels cross-linked by squaric acid. Mater Sci Eng C Mater Biol Appl 60:100–108CrossRefPubMedGoogle Scholar
  32. 32.
    Vulpe R, Le Cerf D, Dulong V, Popa M, Peptu C, Verestiuc L, Picton L (2016) Rheological study of in-situ crosslinkable hydrogels based on hyaluronanic acid, collagen and sericin. Mater Sci Eng C Mater Biol Appl 69:388–397CrossRefPubMedGoogle Scholar
  33. 33.
    Ma Z, He Z, Han F, Zhong Z, Chen L, Li B (2016) Preparation of collagen/hydroxyapatite/alendronate hybrid hydrogels as potential scaffolds for bone regeneration. Colloids Surf B Biointerfaces 143:81–87CrossRefPubMedGoogle Scholar
  34. 34.
    Demeter M, Virgolici M, Vancea C, Scarisoreanu A, Albu Kaya MG, Meltzer V (2017) Network structure studies on γ–irradiated collagen–PVP superabsorbent hydrogels. Radiat Phys Chem 131:51–59CrossRefGoogle Scholar
  35. 35.
    Deepthi S, Nivedhitha Sundaram M, Deepti Kadavan J, Jayakumar R (2016) Layered chitosan-collagen hydrogel/aligned PLLA nanofiber construct for flexor tendon regeneration. Carbohydr Polym 153:492–500CrossRefPubMedGoogle Scholar
  36. 36.
    Nistor MT, Vasile C, Chiriac AP (2015) Hybrid collagen-based hydrogels with embedded montmorillonite nanoparticles. Mater Sci Eng C Mater Biol Appl 53:212–221CrossRefPubMedGoogle Scholar
  37. 37.
    Burgeson RE, Nimni ME (1992) Molecular structure and tissue distribution. Clin Orthop Relat Res 282:250–272Google Scholar
  38. 38.
    Hayrapetyan A, Bongio M, Leeuwenburgh SC, Jansen JA, van den Beuken JJ (2016) Effect of nano-HA/collagen composite hydrogels on osteogenic behaviour of mesenchymal stromal cells. Stem Cell Rev 12(3):352–364CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Gurumurty B, Bierdeman PC, Janorkar AV (2016) Composition of elastin like polypeptide-collagen composite scaffold influences in vitro osteogenic activity of human adipose derived stem cells. Dent Mater 32(10):1270–1280CrossRefGoogle Scholar
  40. 40.
    Chen L, Wu Z, Zhou Y, Li L, Wang Y, Wang Z, Chen Y, Zhang P (2017) Biomimetic porous collagen/hydroxyapatite scaffold for bone tissue engineering. J Appl Polym Sci 134(37):45271CrossRefGoogle Scholar
  41. 41.
    Hertweck J, Ritz U, Götz H, Schottel PC, Rommens PM, Hofmann A (2018) CD34+ cells 756 seeded in collagen scaffolds promote bone formation in a mouse calvarial defect model. 757 J Biomed Mater Res B Appl Biomater 106(4):1505–1516Google Scholar
  42. 42.
    Nguyen BB, Moriarty RA, Kamalitdinov T, Etheridge JM, Fisher JP (2017) Collagen hydrogel scaffold promotes mesenchymal stem cell and endothelial cell coculture for bone tissue engineering. J Biomed Mater Res A 105(4):1123–1131CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Lee HJ, Kim YB, Ahn SH, Lee JS, Jang CH, Yoon H, Chun W, Kim GH (2015) A new approach for fabricating collagen/ECM-based bioinks using preosteoblasts and human adipose stem cells. Adv Healthc Mater 244(9):1359–1368CrossRefGoogle Scholar
  44. 44.
    Parmar PA, Skaalure SC, Chow LW, St-Pierre JP, Stoichevska V, Peng YY, Werkmeister JA, Ramshaw JA, Stevens MM (2015) Temporally degradable collagen-mimetic hydrogels tuned to chondrogenesis of human mesenchymal stem cells. Biomaterials 99:56–71CrossRefGoogle Scholar
  45. 45.
    Fensky F, Reichert JC, Traube A, Rackwitz L, Siebenlist S, Nöth U (2014) Chondrogenic predifferentiation of human mesenchymal stem cells in collagen type I hydrogels. Biomed Tech (Berl) 59(5):375–383CrossRefGoogle Scholar
  46. 46.
    Chen X, Zhang F, He X, Xu Y, Yang Z, Chen L, Zhou S, Yang Y, Zhou Z, Sheng W, Zeng Y (2013) Chondrogenic differentiation of umbilical cord-derived mesenchymal stem cells in type I collagen-hydrogel for cartilage engineering. Injury 44(4):540–549CrossRefPubMedGoogle Scholar
  47. 47.
    Yuan T, Zhang L, Li K, Fan H, Fan Y, Liang J, Zhang X (2014) Collagen hydrogel as an immunomodulatory scaffold in cartilage tissue engineering. J Biomed Mater Res B Appl Biomater 102(2):337–344CrossRefPubMedGoogle Scholar
  48. 48.
    Yang J, Chen X, Yuan T, Yang X, Fan Y, Zhang X (2017) Regulation of the secretion of immunoregulatory factors of mesenchymal stem cells (MSCs) by collagen-based scaffolds during chondrogenesis. Mater Sci Eng C Mater Biol Appl 70.(Pt 2:983–991CrossRefPubMedGoogle Scholar
  49. 49.
    Li MT, Ruehle MA, Stevens HY, Servies N, Willett NJ, Karthikeyakannan S, Warren GL, Guldberg RE, Krishnan L (2017) Skeletal myoblast-seeded vascularized tissue scaffolds in the treatment of a large volumetric muscle defect in the rat biceps femoris muscle. Tissue Eng Part A 23:989CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Xu G, Wang X, Deng C, Teng X, Suuronen EJ, Shen Z, Zhong Z (2015) Injectable biodegradable hybrid hydrogels based on thiolated collagen and oligo(acryloyl carbonate)-poly(ethylene glycol)-oligo(acryloyl carbonate) copolymer for functional cardiac regeneration. Acta Biomater 15:55–64CrossRefPubMedGoogle Scholar
  51. 51.
    van Marion MH, Bax NA, van Turnhout MC, Mauretti A, van der Schaft DW, Goumans MJ, Bouten CV (2015) Behavior of CMPCs in unidirectional constrained and stress-free 3D hydrogels. J Mol Cell Cardiol 87:79–91CrossRefPubMedGoogle Scholar
  52. 52.
    Ketabat F, Karkhaneh A, Mehdinavaz Aghdam R, Hossein Ahmadi Tafti S (2017) Injectable conductive collagen/alginate/polypyrrole hydrogels as a biocompatible system for biomedical applications. J Biomater Sci Polym Ed 28(8):794–805CrossRefPubMedGoogle Scholar
  53. 53.
    Kaneko A, Matsushita A, Sankai Y (2015) A 3D nanofibrous hydrogel and collagen sponge scaffold promotes locomotor functional recovery, spinal repair, and neuronal regeneration after complete transection of the spinal cord in adult rats. Biomed Mater 10(1):015008CrossRefPubMedGoogle Scholar
  54. 54.
    Lee JH, Lee JY, Yang SH, Lee EJ, Kim HW (2014) Carbon nanotube-collagen three-dimensional culture of mesenchymal stem cells promotes expression of neural phenotypes and secretion of neurotrophic factors. Acta Biomater 10(10):4425–4436CrossRefPubMedGoogle Scholar
  55. 55.
    Park JW, Kang YD, Kim JS, Lee JH, Kim HW (2014) 3D microenvironment of collagen hydrogel enhances the release of neurotrophic factors from human umbilical cord blood cells and stimulates the neurite outgrowth of human neural precursor cells. Biochem Biophys Res Commun 447(3):400–406CrossRefPubMedGoogle Scholar
  56. 56.
    Roberts MA, Kotha SS, Phong KT, Zheng Y (2016) Micropatterning and assembly of 3D microvessels. J Vis Exp 115:e54457, 1–10Google Scholar
  57. 57.
    Kuo KC, Lin RZ, Tien HW, Wu PY, Li YC, Melero-Martin JM, Chen YC (2015) Bioengineering vascularized tissue constructs using an injectable cell-laden enzymatically crosslinked collagen hydrogel derived from dermal extracellular matrix. Acta Biomater 27:151–166CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Rafat M, Xeroudaki M, Koulikovska M, Sherrell P, Groth F, Fagerholm P, Lagali N (2016) Composite core-and-skirt collagen hydrogels with differential degradation for corneal therapeutic applications. Biomaterials 83:142–155CrossRefPubMedGoogle Scholar
  59. 59.
    Ahn JI, Kuffova L, Merrett K, Mitra D, Forrester JV, Li F, Griffith M (2013) Crosslinked collagen hydrogels as corneal implants: effects of sterically bulky vs. non-bulky carbodiimides as crosslinkers. Acta Biomater 9(8):7796–7805CrossRefPubMedGoogle Scholar
  60. 60.
    Liu W, Deng C, McLaughlin CR, Fagerholm P, Lagali NS, Heyne B, Scaiano JC, Watsky MA, Kato Y, Munger R, Shinozaki N, Li F, Griffith M (2009) Collagen-phosphorylcholine interpenetrating network hydrogels as corneal substitutes. Biomaterials 30(8):1551–1559CrossRefPubMedGoogle Scholar
  61. 61.
    Liu W, Merrett K, Griffith M, Fagerholm P, Dravida S, Heyne B, Scaiano JC, Watsky MA, Shinozaki N, Lagali N, Munger R, Li F (2008) Recombinant human collagen for tissue engineered corneal substitutes. Biomaterials 29(9):1147–1158CrossRefPubMedGoogle Scholar
  62. 62.
    McLaughlin CR, Fagerholm P, Muzakare L, Lagali N, Forrester JV, Kuffova L, Rafat MA, Liu Y, Shinozaki N, Vascotto SG, Munger R, Griffith M (2008) Regeneration of corneal cells and nerves in an implanted collagen corneal substitute. Cornea 27(5):580–589CrossRefPubMedGoogle Scholar
  63. 63.
    Jain A, Betancur M, Patel GD, Valmikinathan CM, Mukhatyar VJ, Vakharia A, Pai SB, Brahma B, MacDonald TJ, Bellamkonda RV (2014) Guiding intracortical brain tumour cells to an extracortical cytotoxic hydrogel using aligned polymeric nanofibers. Nat Mater 13(3):308–316CrossRefPubMedGoogle Scholar
  64. 64.
    Rao SS, Dejesus J, Short AR, Otero JJ, Sarkar A, Winter JO (2013) Glioblastoma behaviors in three-dimensional collagen-hyaluronan composite hydrogels. ACS Appl Mater Interfaces 5(19):9276–9284CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Lungu A, Albu MG, Stancu IC, Florea NM, Vasile E, Iovu H (2013) Superporous collagen-sericin scaffolds. J Appl Polym Sci 127(3):2269–2279CrossRefGoogle Scholar
  66. 66.
    Mitran V, Albu MG, Vasile E, Cimpean A, Costache M (2015) Dose-related effects of sericin on preadipocyte behavior within collagen/sericin hybrid scaffolds. Prog Nat Sci Mater Int 25(2):122–130CrossRefGoogle Scholar
  67. 67.
    Dinescu S, Galateanu B, Albu M, Cimpean A, Dinischiotu A, Costache M (2013) Sericin enhances the bioperformance of collagen-based matrices preseeded with hADSCs. Int J Mol Sci 14(1):1870–1889CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Tsubouchi K, Igarashi Y, Takasu Y, Yamada H (2005) Sericin enhances attachment of cultured human skin fibroblasts. Biosci Biotechnol Biochem 69:403–405CrossRefPubMedGoogle Scholar
  69. 69.
    Aramwit P, Kanokpanont S, Nakpheng T, Srichana T (2010) The effects of sericin from various extraction methods on cell viability and collagen production. Int J Mol Sci 11:2200–2211CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Dinescu S, Gălățeanu B, Albu M, Lungu A, Radu E, Hermenean A, Costache M (2013) Biocompatibility assessment of novel collagen-sericin scaffolds improved with hyaluronic acid and chondroitin sulfate for cartilage regeneration. Biomed Res Int 2013(111):article ID 598056Google Scholar
  71. 71.
    Kaya DA, Albu MG, Vuluga Z, Duran N, Albu L, Mert A. Collagen biomaterials with zeolite and essential oils for treatment of skin infections and method for their preparation. National Patent Application, OSIM no A 01269/29.11.2011Google Scholar
  72. 72.
    Houdek MT, Wyles CC, Stalboerger PG, Terzic A, Behfar A, Moran SL (2016) Collagen and fractionated platelet-rich plasma scaffold for dermal regeneration. Plast Reconstr Surg 137(5):1498–1506CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sorina Dinescu
    • 1
  • Madalina Albu Kaya
    • 2
  • Leona Chitoiu
    • 1
  • Simona Ignat
    • 1
  • Durmus Alpaslan Kaya
    • 3
  • Marieta Costache
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyUniversity of BucharestBucharestRomania
  2. 2.Collagen DepartmentINCDTP – Leather and Footwear Research InstituteBucharestRomania
  3. 3.Department of Medicinal and Aromatic PlantsMustafa-Kemal UniversityHatayTurkey

Personalised recommendations