Synthesis and Applications of Carbohydrate-Based Hydrogels

  • Sarah FarrukhEmail author
  • Kiran Mustafa
  • Arshad Hussain
  • Muhammad Ayoub
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)


Carbohydrate-based hydrogels are cross-linked three-dimensional structures of polymers, utilized for several purposes such as cell culturing, regenerative medicine, agriculture, contact lenses, biosensors, drug delivery, and tissue developing technology. The primary aim of this chapter is to review the literature regarding the classification of the carbohydrate-based hydrogels on the basis of their chemical structure, synthesis, and viability of their utilization. It also involved technologies adopted for hydrogel manufacturing. Hydrogels are most of the times manufactured from polar monomeric units. Based on the substrate material, they can be classified into natural polymer hydrogels, synthetic polymer hydrogels, and combinations of the two classes. Different fabrication processes such as polymerization, grafting, physical and chemical cross-linking, solution polymerization, and polymerization by irradiation are being discussed in this chapter. The synthesis of hydrogels is based on required applications. So this chapter also includes applications of carbohydrate-based hydrogels.


Carbohydrates Hydrogels Pollution control Bio materials Polymerization Cross-linking Drug delivery 



We acknowledge the support of the School of Chemical and Materials Engineering, National University of Sciences and Technology.


  1. 1.
    Hoffman A (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23CrossRefGoogle Scholar
  2. 2.
    Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulation. Eur J Pharm Biopharm 50:27–46CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bernward AM, Kremer K, Holm C (2006) The swelling behavior of charged hydrogels. Macromol Symp 237(1):90–107CrossRefGoogle Scholar
  4. 4.
    Rosiak JM, Yoshii F (1999) Hydrogels and their medical applications. Nucl Instrum Methods Phys Res 151:56–64CrossRefGoogle Scholar
  5. 5.
    Bajpai AK, Mishra A (2008) Carboxymethyl cellulose (CMC) based semi-IPNs as carriers for controlled release of ciprofloxacine: an in-vitro dynamic study. J Mater Sci Mater Med 19(5):2121–2130CrossRefPubMedGoogle Scholar
  6. 6.
    Khan F, Tare RS, Oreffo RO, Bradley M (2009) Versatile biocompatible polymer hydrogels: scaffolds for cell growth. Angew Chem Int Ed 48(5):978–982. Scholar
  7. 7.
    Lee YJ, Braun PV (2003) Tunable inverse opal hydrogel pH sensors. Adv Mater 15(7–8): 563–566CrossRefGoogle Scholar
  8. 8.
    Katsoulos C, Karageorgiadis L, Vasileiou N, Mousafeiropoulos T, Asimellis G (2009) Customized hydrogel contact lenses for keratoconus incorporating correction for vertical coma aberration. Ophthalmic Physiol Opt 29(3):321–329. Scholar
  9. 9.
    Nagahama K, Ouchi T, Ohya Y (2008) Temperature-induced hydrogels through self-assembly of cholesterol-substituted star PEG-b-PLLA copolymers: an injectable scaffold for tissue engineering. Adv Funct Mater 18(8):1220–1231CrossRefGoogle Scholar
  10. 10.
    Martens PJ, Bryant SJ, Anseth KS (2003) Tailoring the degradation of hydrogels formed from multivinyl poly(ethylene glycol) and poly(vinyl alcohol) macromers for cartilage tissue engineering. Biomacromolecules 4(2):283–292CrossRefPubMedGoogle Scholar
  11. 11.
    Ferruti P, Bianchi S, Ranucci E, Chiellini F, Piras AM (2005) Novel agmatine-containing poly(amidoamine)hydrogel as scaffolds for tissue engineering. Biomacromolecules 6(4):2229–2235CrossRefPubMedGoogle Scholar
  12. 12.
    Nayak S, Lee H, Chmielewski J, Lyon LA (2004) Folate-mediated cell targeting and cytotoxicity using thermoresponsive microgels. J Am Chem Soc 126(33):10258–10259CrossRefPubMedGoogle Scholar
  13. 13.
    Gao D, Xu H, Philbert MA, Kopelman R (2007) Ultrafine hydrogel nanoparticles: synthetic approach and therapeutic application in living cells. Angew Chem Int Ed 46(13):2224–2227CrossRefGoogle Scholar
  14. 14.
    Tomatsu I, Hashidzume A, Harada A (2006) Contrast viscosity changes upon photoirradiation for mixtures of poly(acrylic acid)-based -cyclodextrin and azobenzene polymers. J Am Chem Soc 128:2226–2227CrossRefPubMedGoogle Scholar
  15. 15.
    Kim J, Singh N, Lyon LA (2006) Label-free biosensing with hydrogel microlenses. Angew Chem Int Ed 45(9):1446–1449CrossRefGoogle Scholar
  16. 16.
    Zhu J (2010) Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 31(17):4639–4659CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Carl B, Edward A, Norbert T (2000) Tietz fundamentals of clinical chemistry, 5th edn. Medical, Palme, pp 248–250Google Scholar
  18. 18.
    William P, Derek H, Herp A (1972) The carbohydrates: chemistry and biochemistry, vol 1A, 2nd edn. Academic, San Diego, pp 1–6Google Scholar
  19. 19.
    Sabine LF, Rein VU (2003) Sugars tied to the spot. Nature 421(6920):219–220CrossRefGoogle Scholar
  20. 20.
    Neil AC, Brad W, Robin JH (2006) Biology: exploring life, 0th edn. Pearson Prentice Hall, Boston, MA, p 17Google Scholar
  21. 21.
    Westman EC (2002) Is dietary carbohydrate essential for human nutrition? Am J Clin Nutr 75(5):951–953CrossRefPubMedGoogle Scholar
  22. 22.
    Bhattacharyya S, Guillot S, Dabboue H, Tranchant JF, Salvetat JP (2008) Carbon nanotubes as structural nanofibers for hyaluronic acid hydrogel scaffolds. Biomacromolecules 9(2):505–509CrossRefPubMedGoogle Scholar
  23. 23.
    Chan AW, Whitney RA, Neufeld RJ (2009) Semisynthesis of a controlled stimuli-responsive alginate hydrogel. Biomacromolecules 10(3):609–616CrossRefPubMedGoogle Scholar
  24. 24.
    Li X, Xu S, Pen Y, Wang J (2008) The swelling behaviors and network parameters of cationic starch-g-acrylic acid/poly(dimethyldiallylammonium chloride) semi-interpenetrating polymer networks hydrogels. J Appl Polym Sci 110(3):1828–1836CrossRefGoogle Scholar
  25. 25.
    Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46:92–100CrossRefGoogle Scholar
  26. 26.
    Moura MJ, Figueiredo MM, Gil MH (2007) Rheological study of genipin cross-linked chitosan hydrogels. Biomacromolecules 8(12):3823–3829CrossRefPubMedGoogle Scholar
  27. 27.
    Valle LJ, Díaz A, Puiggali J (2017) Hydrogels for biomedical applications: cellulose, chitosan, and protein/peptide derivatives. Gels 3(3):27. Scholar
  28. 28.
    Fink HP, Weiel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solution. Prog Polym Sci 26(9):1473–1524CrossRefGoogle Scholar
  29. 29.
    Liang S, Zhang L, Li Y, Xu J (2007) Fabrication and properties of cellulose hydrated membrane with unique structure. Macromol Chem Phys 208(6):594–602CrossRefGoogle Scholar
  30. 30.
    Vinatier C, Gauthier O, Fatimi A, Merceron C, Masson M, Moreau A, Moreau F, Fellah B, Weiss P, Guicheux J (2009) An injectable cellulose-based hydrogel for the transfer of autologous nasal chondrocytes in articular cartilage defects. Biotechnol Bioeng 102(4):1259–1267CrossRefPubMedGoogle Scholar
  31. 31.
    Oliveira WD, Glasser WG (1996) Hydrogels from polysaccharides. I. Cellulose beads for chromatographic support. J Appl Polym Sci 60(1):63–73CrossRefGoogle Scholar
  32. 32.
    Zhao H, Kwak J, Wang Y, Franz J, Withte J, Holladay J (2007) Interactions between cellulose and N-methylmorpholine-N-oxide. Carbohydr Polym 67(1):97–103CrossRefGoogle Scholar
  33. 33.
    Swatloski RP, Spear SK, Holbrey JD, Roger RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124(18):4974–4975CrossRefGoogle Scholar
  34. 34.
    Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, Ding Y, Wu G (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8(4):325–328CrossRefGoogle Scholar
  35. 35.
    Li L, Lin ZB, Xiao Y, Wan ZZ, Cui SX (2009) A novel cellulose hydrogel prepared from its ionic liquid solution. Chin Sci Bull 54(9):1622–1625Google Scholar
  36. 36.
    Kadokawa J, Murakami M, Kaneko Y (2008) A facile preparation of gel materials from a solution of cellulose in ionic liquid. Carbohydr Res 343(4):769–772CrossRefPubMedGoogle Scholar
  37. 37.
    Cai J, Zhang L, Liu S, Liu Y, Xu X, Chen X, Chu B, Xu G, Xu J, Cheng H, Han CH, Kuga S (2008) Dynamic self-assembly induced rapid dissolution of cellulose at low temperature. Macromolecules 41(23):9345–9351CrossRefGoogle Scholar
  38. 38.
    Lue A, Zhang L, Ruan D (2007) Inclusion complex formation of cellulose in NaOH-Thiourea aqueous system at low temperature. Macromol Chem Phys 208(21):2359–2366CrossRefGoogle Scholar
  39. 39.
    Marcì G, Mele G, Palmardo L, Pulito P, Sannino A (2006) Environmentally sustainable production of cellulose-based superabsorbent hydrogels. Green Chem 8(5):439–445CrossRefGoogle Scholar
  40. 40.
    Sannino A, Madaghiele M, Lionetto MG, Schettino T, Maffezzoli A (2006) A cellulose-based hydrogel as a potential bulking agent for hypocaloric diets: an in vitro biocompatibility study on rat intestine. J Appl Polym Sci 102(2):1524–1530CrossRefGoogle Scholar
  41. 41.
    Pelletier S, Hubert P, Payan E, Marchal P, Choplin L, Dellacherie E (2001) Amphiphilic derivatives of sodium alginate and hyaluronate for cartilage repair: rheological properties. J Biomed Mater Res 54(1):102–108CrossRefPubMedGoogle Scholar
  42. 42.
    Dausse Y, Grossin L, Miralles G, Pelletier S, Mainard D, Hubert P, Baptiste D, Gillet P, Dellacherie E, Netter P, Payan E (2003) Cartilage repair using new polysaccharidic biomaterials: macroscopic, histological and biochemical approaches in a rat model of cartilage defect. Osteoarthr Cartil 11(1):16–28CrossRefPubMedGoogle Scholar
  43. 43.
    Amargier HC, Marchal P, Payan E, Netter E, Dellacherie E (2005) New physically and chemically crosslinked hyaluronate (HA)-based hydrogels for cartilage repair. J Biomed Mater Res A 76(2):416–424Google Scholar
  44. 44.
    Park YD, Tirelli N, Hubbell JA (2002) Photopolymerized hyaluronic acid-based hydrogels and interpenetrating networks. Biomaterials 24(6):893–900CrossRefGoogle Scholar
  45. 45.
    Luo Y, Kirker KR, Prestwich GD (2000) Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery. J Control Release 69(1):169–184CrossRefPubMedGoogle Scholar
  46. 46.
    Park H, Lee KY, Woo EK (2014) Ionically cross-linkable hyaluronate-based hydrogels for injectable cell delivery. J Control Release 196:146–153. Scholar
  47. 47.
    Zarembinski TI, Doty NJ, Erickson EI, Srinivas R, Wirostko BM, Tew WP (2014) Thiolated hyaluronan-based hydrogels crosslinked using oxidized glutathione: an injectable matrix designed for ophthalmic applications. Acta Biomater 10(1):94–103CrossRefPubMedGoogle Scholar
  48. 48.
    Dubbini A, Censi R, Butini ME, Sabbieti G, Agas D, Vermonden T, Martino PD (2015) Injectable hyaluronic acid/peg-p(HPMAm-lac)-based hydrogels dually cross-linked by thermal gelling and michael addition. Eur Polym J 72:423–437CrossRefGoogle Scholar
  49. 49.
    Li L, Deng R, Wang N, Jin X, Nie S, Sun L, Wu Q, Wei Y, Gong C (2014) Biodegradable and injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for postoperative adhesion prevention. Biomaterials 35(12):3903–3917CrossRefPubMedGoogle Scholar
  50. 50.
    Currao M, Malara A, Buduo CA, Abbonate V, Tozzi L, Balduini A (2016) Hyaluronan based hydrogels provide an improved model to study megakaryocyte–matrix interactions. Exp Cell Res 346(1):1–8. Scholar
  51. 51.
    Kim IY, Seo SJ, Moon HS, Yoo MK, Park IY, Kim BC, Cho CS (2008) Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv 26(1):1–21CrossRefPubMedGoogle Scholar
  52. 52.
    Kuflet O, Tamer AE, Shering C, Meißnera M, Schile-Wolter SS, Chicklov BN (2015) Water-soluble photopolymerizable chitosan hydrogels for biofabrication via two-photon polymerization. Acta Biomater 18:186–195CrossRefGoogle Scholar
  53. 53.
    Sayyar S, Murray E, Thompson BC, Chung J, Officer DL, Gambhir S, Wallace GG (2015) Processable conducting graphene/chitosan hydrogels for tissue engineering. J Mater Chem B 3(3):481–490CrossRefGoogle Scholar
  54. 54.
    Kono H, Teshirogi T (2014) Cyclodextrin-grafted chitosan hydrogels for controlled drug delivery. Int J Biol Macromol 72:299–308. Scholar
  55. 55.
    Herrera MM, Gandini A, Goycoolea FM, Jacobsen NE, Mendoza LJ, Mota RM, Monal WM (2015) N-(furfural) chitosan hydrogels based on diels-alder cycloadditions and application as microspheres for controlled drug release. Carbohydr Polym 128:220–227. Scholar
  56. 56.
    Gao L, Gan H, Meng Z, Gu R, Wu Z, Zhang L, Zhu X, Sun W, Li J, Zheng Y, Dou G (2014) Effects of genipin cross-linking of chitosan hydrogels on cellular adhesion and viability. Colloids Surf B Biointerfaces 1(117):398–405. Scholar
  57. 57.
    Delmar K, Peled BH (2015) Composite chitosan hydrogels for extended release of hydrophobic drugs. Carbohydr Polym 136:570–580. Scholar
  58. 58.
    Duan J, Liang X, Cao Y, Wang S, Zhang L (2015) High strength chitosan hydrogels with biocompatibility via new avenue based on constructing nanofibrous architecture. Macromolecules 8(8):2706–2714CrossRefGoogle Scholar
  59. 59.
    Emmerichs N, Wingender J, Flemming HC, Mayer C (2004) Interaction between alginates and manganese cations: identification of preferred cation binding sites. Int J Biol Macromol 34(1–2):73–79CrossRefPubMedGoogle Scholar
  60. 60.
    Zhang J, Li X, Zhang D, Xiu Z (2007) Theoretical and experimental investigations on the size of alginate microspheres prepared by dropping and spraying. J Microencapsul 24(4):303–322CrossRefPubMedGoogle Scholar
  61. 61.
    Gombotz WR, Wee S (1998) Protein release from alginate matrices. Adv Drug Deliv Rev 31(3):267–285CrossRefPubMedGoogle Scholar
  62. 62.
    Cui JH, Goh JS, Park SY, Kim PH, Lee BJ (2001) Preparation and physical characterization of alginate microparticles using air atomization method. Drug Dev Ind Pharm 27(4):309–319CrossRefPubMedGoogle Scholar
  63. 63.
    Ding WK, Shah NP (2009) Effect of homogenization techniques on reducing the size of microcapsules and the survival of probiotic bacteria therein. J Food Sci 74(6):231–236CrossRefGoogle Scholar
  64. 64.
    Haug A, Smidsrod O (1970) Selectivity of some anionic polymers for divalent metal ions. Acta Chem Scand 24(3):843–854CrossRefGoogle Scholar
  65. 65.
    Zhang H, Tumarkin E, Peerani R, Nie Z, Sullan RMA, Walker GC, Kumacheva E (2006) Microfluidic production of biopolymer microcapsules with controlled morphology. J Am Chem Soc 128(37):12205–12210CrossRefPubMedGoogle Scholar
  66. 66.
    Stark D, Kornmann H, Münch T, Sonnleitner B, Marison IW, Stockar VU (2003) Novel type of in situ extraction: use of solvent containing micro- capsules for the bioconversion of 2-phenylethanol from l-phenylalanine by Saccharomyces cerevisiae. Biotechnol Bioeng 83(4):376–385CrossRefPubMedGoogle Scholar
  67. 67.
    Song H, Yu W, Gao M, Liu X, Ma X (2013) Microencapsulated probiotics using emulsification technique coupled with internal or external gelation process. Carbohydr Polym 96(1):181–189CrossRefPubMedGoogle Scholar
  68. 68.
    López MD, Maudhuit A, Pascual-Villalobos MJ, Poncelet D (2012) Development of formulations to improve the controlled-release of linalool to be applied as an insecticide. J Agric Food Chem 60(5):1187–1192CrossRefPubMedGoogle Scholar
  69. 69.
    Leong JY, Tey BT, Tan CP, Chan ES (2015) Nozzleless fabrication of oil-core biopolymeric microcapsules by the interfacial gelation of Pickering emulsion templates. ACS Appl Mater Interfaces 7(30):16169–16176CrossRefPubMedGoogle Scholar
  70. 70.
    Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289CrossRefGoogle Scholar
  71. 71.
    Gibson LJ (2013) The hierarchical structure and mechanics of plant materials. J R Soc Interface 9(76):2749–2766CrossRefGoogle Scholar
  72. 72.
    Ranucci E, Spagnoli G, Ferruti P (1999) 2-[(1-Imidazolyl)formyloxy]ethyl methacrylate as a new chemical precursor of functional polymers. Macromol Rapid Commun 20(1):1–6CrossRefGoogle Scholar
  73. 73.
    Lindblad MS, Alberstsson AC, Ranucci E, Laus M, Giani E (2001) Biodegradable polymers from renewable sources. New hemicellulose-based hydrogels. Macromol Rapid Commun 22(1):962–967CrossRefGoogle Scholar
  74. 74.
    Yang JY, Zhou XS, Fang J (2011) Synthesis and characterization of temperature sensitive hemicellulose-based hydrogels. Carbohydr Polym 86(3):1113–1117CrossRefGoogle Scholar
  75. 75.
    Sun XF, Wang HH, Jing ZX, Mohanathas R (2013) Hemicellulose-based pH-sensitive and biodegradable hydrogel for controlled drug delivery. Carbohydr Polym 92(2):1357–1366. Scholar
  76. 76.
    Gabrielii I, Gatenholm P (1998) Preparation and properties of hydrogels based on hemicellulose. J Appl Polym Sci 69(8):1661–1667CrossRefGoogle Scholar
  77. 77.
    Dax D, Chavez MS, Xu C, Willfor S, Mendonca RT, Sanchez J (2014) Cationic hemicellulose-based hydrogels for arsenic and chromium removal from aqueous solutions. Carbohydr Polym 111:797–805CrossRefPubMedGoogle Scholar
  78. 78.
    Peng XW, Zhong LX, Ren JL, Sun CR (2012) Highly effective adsorption of heavy metal ions from aqueous solutions by macroporous xylan-rich hemicelluloses-based hydrogel. J Agric Food Chem 60:3909–3916CrossRefPubMedGoogle Scholar
  79. 79.
    Guan Y, Bian J, Peng F, Zhang MX, Sun CR (2014) High strength of hemicelluloses based hydrogels by freeze/thaw technique. Carbohydr Polym 101:272–280CrossRefPubMedGoogle Scholar
  80. 80.
    Zhang W, Zhu S, Bai Y, Wang S, Bian Y, Zhang Y (2015) Glow discharge electrolysis plasma initiated preparation of temperature/pH dual sensitivity reed hemicellulose-based hydrogels. Carbohydr Polym 122:11–17CrossRefPubMedGoogle Scholar
  81. 81.
    Wang J, Zhou X, Xiao H (2013) Structure and properties of cellulose/poly(N-isopropylacrylamide) hydrogels prepared by SIPN strategy. Carbohydr Polym 94:749–754CrossRefPubMedGoogle Scholar
  82. 82.
    Chen H, Fan M (2008) Novel thermally sensitive pH-dependent chitosan/carboxymethyl compatible polymer. J Bioact Compat Polym 23:38–48CrossRefGoogle Scholar
  83. 83.
    Marler JJ, Upton J, Langer R, Vacanti JP (1998) Transplantation of cells in matrices for tissue generation. Adv Drug Deliv Rev 33:165–182CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51CrossRefGoogle Scholar
  85. 85.
    Tang H, Chang C, Zhang L (2011) Efficient adsorption of Hg2+ ions on chitin/cellulose composite membranes prepared via environmentally friendly pathway. J Chem Eng 173: 689–697CrossRefGoogle Scholar
  86. 86.
    Yamazaki S, Takegawa A, Kaneko Y, Kadokawa J, Yamagata M, Ishikawa M (2010) Performance of electric double-layer capacitor with acidic, cellulose-chitin hybrid gel electrolyte. J Electrochem Soc 157:A203–A208CrossRefGoogle Scholar
  87. 87.
    Murugadoss A, Chattopadhyay A (2008) A ‘green’ chitosan–silver nanoparticle composite as a heterogeneous as well as micro-heterogeneous catalyst. Nanotechnology 19:9. Scholar
  88. 88.
    Kadib AE, Molvinger K, Guimon C, Quignard F, Brunel D (2008) Design of stable nanoporous hybrid chitosan/titania as cooperative bifunctional catalysts. Chem Mater 20:2198–2204CrossRefGoogle Scholar
  89. 89.
    Reijnen MM, Falk P, Goor VH, Holmdahl L (2000) The antiadhesive agent sodium hyaluronate increases the proliferation rate of human peritoneal mesothelial cells. Fertil Steril 74(1): 146–151CrossRefPubMedGoogle Scholar
  90. 90.
    Currao M, Malara A, Gruupi C, Celesti G, Viarengo G, Buracchi C, Laghi L, Kaplan DL, Balduini A (2014) Megakaryocytes contribute to the bone marrow-matrix environment by expressing fibronectin, type IV collagen, and laminin. Stem Cells 32(4):926–937. Scholar
  91. 91.
    Gustafson SB, Fulkerson P, Bildfell R, Aguilera L, Hazzard TM (2007) Chitosan dressing provides hemostasis in swine femoral arterial injury model. Prehosp Emerg Care 11(2): 172–178. Scholar
  92. 92.
    Rabea EI, Badawy ME-T, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4(6):1457–1465CrossRefPubMedGoogle Scholar
  93. 93.
    Choi B, Kim S, Lin B, Wu BM, Lee M (2014) Cartilaginous extracellular matrix-modified chitosan hydrogels for cartilage tissue engineering. Appl Mater Interfaces 6(22):20110–20121. Scholar
  94. 94.
    Niidome T, Huang L (2002) Gene therapy progress and prospects: non viral vectors. Gene Ther 9(24):1647–1622CrossRefPubMedGoogle Scholar
  95. 95.
    Augst AD, Kong HJ, Mooney DJ (2006) Alginate hydrogels as biomaterials. Macromol Biosci 6(8):623–633CrossRefPubMedGoogle Scholar
  96. 96.
    Cho ER, Kang SW, Kim BS (2005) Poly(lactic-co-glycolic acid) microspheres as a potential bulking agent for urological injection therapy: preliminary results. J Biomed Mater Res B Appl Biomater 72(1):166–172CrossRefPubMedGoogle Scholar
  97. 97.
    Mazue G, Newman AJ, Scampini G, Della TP, Hard GC, Latropoulos MJ, Williams GM, Bagnasco SM (1993) The histopathology of kidney changes in rats and monkeys following intravenous administration of massive doses of FCE 26184, human basic fibroblast growth factor. Toxicol Pathol 21(5):490–501CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sarah Farrukh
    • 1
    Email author
  • Kiran Mustafa
    • 2
  • Arshad Hussain
    • 1
  • Muhammad Ayoub
    • 3
  1. 1.School of Chemical and Materials Engineering (SCME)National University of Sciences & TechnologyIslamabadPakistan
  2. 2.Department of ChemistryThe Women UniversityMultanPakistan
  3. 3.Chemical Engineering DepartmentUniversiti Teknologi PETRONASBandar Seri IskandarMalaysia

Personalised recommendations