Cellulose-Based Hydrogels in Topical Drug Delivery: A Challenge in Medical Devices

  • Andreza Maria Ribeiro
  • Mariana Magalhães
  • Francisco Veiga
  • Ana FigueirasEmail author
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)


Drug delivery is a difficult task in the field of dermal therapeutics mainly in the treatment of burns, ulcers, and wounds. Therefore, fundamental research and the development of novel advanced biomaterials as hydrogels are ongoing to overcome these issues. Currently, several approaches are starting to emerge aiming the stabilization of drug loaded in hydrogel material by increasing the mutual interactions between the polymers, the polymers, and the drug and by covalently cross-linking the polymers during hydrogel formation. Hydrogels provide mechanical support and control over architecture, topography, and biochemical characteristics that make them functionally appropriate to biomedical materials. In this regard, cellulose-based biomaterials can be considered as a gold standard for many topical pharmaceutical applications because of their versatility in fabrication, biodegradability, and biocompatibility. In open wounds, a curative ideal hydrogel is proposed for occlusion and maintenance of the moist environment. Healing through the wet medium has comparative advantages such as preventing dehydration of tissue leading to cell death, stimulating epithelization and formation of granulation tissue, facilitating the removal of necrotic tissue and fibrin, serving as a protective barrier against microorganism, and avoiding excessive fluid loss and can still take drugs. On the other hand, another recent challenge is the use of hydrogel in the manufacture of microneedles. The microneedles are able to, with little force, penetrate effectively in the tissues, maintaining the continuous contact, without causing damages in the tissue, providing a high force of adhesion. These devices may be an alternative to the infection-resistant staples used in surgeries to attach skin grafts to patients with severe wounds resulting from burns and to be used in drug release. In this chapter, we discuss recent developments in cellulose-based hydrogels with respect to drug delivery and current applications in the new devices and research settings for infections, inflammations, skin burns, and wound treatment.


Cellulose-based hydrogels Dermal therapeutics Drug delivery Biomaterial Devices 



This work received financial support from National Funds (FCT/MEC, Fundação para a Ciência e Tecnologia/Ministério da Educação e Ciência) through project UID/QUI/50006/2013, co-financed by European Union (FEDER under the Partnership Agreement PT2020). This work was supported by the grant FCT PTDC/CTM-BIO/1518/2014 from the Portuguese Foundation for Science and Technology (FCT) and the European Community Fund (FEDER) through the COMPETE2020 program. The authors acknowledge Fundação para a Ciência e a Tecnologia (FCT), Portuguese Agency for Scientific Research, for financial support through the Research Project n. ° IN0689, POCI-01-0145-FEDER-016642. The authors would like to thank CNPq (praxis 152309-2016/0) for the financial support and would like to thank Ivan Antonio Neumann for helping to draw the figure.

Conflicts of Interest

Authors have no any proprietary or financial interest in the products or approaches discussed. Authors report no conflicts of interest in this work.


  1. 1.
    Zhang Y, Chan HF, Leong KW (2013) Advanced materials and processing for drug delivery: the past and the future. Adv Drug Deliv Rev 65:104–120PubMedCrossRefGoogle Scholar
  2. 2.
    Pang C, Ibrahim A, Bulstrode NW, Ferretti P (2017) An overview of the therapeutic potential of regenerative medicine in cutaneous wound healing. Int Wound J 14:450–459PubMedCrossRefGoogle Scholar
  3. 3.
    Gantwerker EA, Hom DB (2011) Skin: histology and physiology of wound healing. Facial Plast Surg Clin North Am 19:441–453PubMedCrossRefGoogle Scholar
  4. 4.
    Doughty DB, Sparks B (2015) Wound-healing physiology and factors that affect the repair process. In: Bryant R, Nix D (eds) Acute and chronic wounds. Elsevier Health Sciences, St. Louis, pp 62–85Google Scholar
  5. 5.
    Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG, Sawaya A, Patel SB, Khalid L, Isseroff RR, Tomic-Canic M (2014) Epithelialization in wound healing: a comprehensive review. Adv Wound Care 3:445–464CrossRefGoogle Scholar
  6. 6.
    Haury B, Rodeheaver G, Vensko J, Edgerton MT, Edlich RF (1978) Debridement: an essential component of traumatic wound care. Am J Surg 135:238–242PubMedCrossRefGoogle Scholar
  7. 7.
    Boateng J, Catanzano O (2015) Advanced therapeutic dressings for effective wound healing – a review. J Pharm Sci 104:3653–3680PubMedCrossRefGoogle Scholar
  8. 8.
    Kennedy JF, Knill CJ, Thorley M (2001) Natural polymers for healing wounds. In: Kennedy JF, Phillips GO, Williams PA (eds) Recent advances in environmentally compatible polymers. Woodhead Publishing, Elsevier, St. Louis, pp 97–104CrossRefGoogle Scholar
  9. 9.
    Mahmoudi N, Eslahi N, Mehdipour A, Mohammadi M, Akbari M, Samadikuchaksaraei A, Simchi A (2017) Temporary skin grafts based on hybrid graphene oxide-natural biopolymer nanofibers as effective wound healing substitutes: pre-clinical and pathological studies in animal models. J Mater Sci Mater Med 28:73–86PubMedCrossRefGoogle Scholar
  10. 10.
    Mele E (2016) Electrospinning of natural polymers for advanced wound care: towards responsive and adaptive dressings. J Mater Chem B 4:4801–4812CrossRefGoogle Scholar
  11. 11.
    Tummalapalli M, Berthet M, Verrier B, Deopura B, Alam M, Gupta B (2016) Composite wound dressings of pectin and gelatin with aloe vera and curcumin as bioactive agents. Int J Biol Macromol 82:104–113PubMedCrossRefGoogle Scholar
  12. 12.
    Dyson M, Young S, Pendle CL, Webster DF, Lang SM (1988) Comparison of the effects of moist and dry conditions on dermal repair. J Invest Dermatol 91:434–439PubMedCrossRefGoogle Scholar
  13. 13.
    Helfman T, Ovington L, Falanga V (1994) Occlusive dressings and wound healing. Clin Dermatol 12:121–127PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Hoffman AS (2013) Stimuli-responsive polymers: biomedical applications and challenges for clinical translation. Adv Drug Deliv Rev 65:10–16PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Gupta P, Vermani K, Garg S (2002) Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today 7:569–579PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Ribeiro AM, Figueiras A, Freire C, Santos D, Veiga F (2010) Combining strategies to optimize a gel formulation containing miconazole: the influence of modified cyclodextrin on textural properties and drug release. Drug Dev Ind Pharm 36:705–714PubMedCrossRefGoogle Scholar
  17. 17.
    Rodriguez-Tenreiro C, Alvarez-Lorenzo C, Rodriguez-Perez A, Concheiro A, Torres-Labandeira JJ (2006) New cyclodextrin hydrogels cross-linked with diglycidylethers with a high drug loading and controlled release ability. Pharm Res 23:121–130PubMedCrossRefGoogle Scholar
  18. 18.
    Kanjickal D, Lopina S, Evancho Chapman MM, Schmidt S, Donovan D (2005) Improving delivery of hydrophobic drugs from hydrogels through cyclodextrins. J Biomed Mater Res A 74:454–460PubMedCrossRefGoogle Scholar
  19. 19.
    Kundu B, Kundu SC (2012) Silk sericin/polyacrylamide in situ forming hydrogels for dermal reconstruction. Biomaterials 33:7456–7467PubMedCrossRefGoogle Scholar
  20. 20.
    Paudel KS, Milewski M, Swadley CL, Brogden NK, Ghosh P, Stinchcomb AL (2010) Challenges and opportunities in dermal/transdermal delivery. Ther Deliv 1:109–131PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Kashyap N, Kumar N, Kumar MR (2005) Hydrogels for pharmaceutical and biomedical applications. Crit Rev Ther Drug Carrier Syst 22:107–149PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Liu W, Teng L, Yu K, Sun X, Fan C, Long C, Liu N, Li S, Wu B, Xu Q (2017) Design of hydrogels of 5-hydroxymethyl tolterodine and their studies on pharmacokinetics, pharmacodynamics and transdermal mechanism. Eur J Pharm Sci 96:530–541PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Vlaia L, Coneac G, Olariu I, Vlaia V, Lupuleasa D (2016) Cellulose-derivatives-based hydrogels as vehicles for dermal and transdermal drug delivery. In: Majee SB (ed) Emerging concepts in analysis and applications of hydrogels. InTech, Rijeka, pp 159–200Google Scholar
  24. 24.
    Kong BJ, Kim A, Park SN (2016) Properties and in vitro drug release of hyaluronic acid-hydroxyethyl cellulose hydrogels for transdermal delivery of isoliquiritigenin. Carbohydr Polym 147:473–481PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Namazi H, Rakhshaei R, Hamishehkar H, Kafil HS (2016) Antibiotic loaded carboxymethylcellulose/MCM-41 nanocomposite hydrogel films as potential wound dressing. Int J Biol Macromol 85:327–334PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Barbosa MA (2013) Soft tissue response. In: Black J, Hastings G (eds) Handbook of biomaterial properties. Springer Science & Business Media, New York, p 571Google Scholar
  27. 27.
    Schuurman W, Levett PA, Pot MW, Van Weeren PR, Dhert WJ, Hutmacher DW, Melchels FP, Klein TJ, Malda J (2013) Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromol Biosci 13:551–561PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Chattopadhyay S, Raines RT (2014) Review collagen-based biomaterials for wound healing. Biopolymers 101:821–833PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Hu MS, Maan ZN, Wu J-C, Rennert RC, Hong WX, Lai TS, Cheung AT, Walmsley GG, Chung MT, Mcardle A (2014) Tissue engineering and regenerative repair in wound healing. Ann Biomed Eng 42:1494–1507PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    GhobriL C, Grinstaff M (2015) The chemistry and engineering of polymeric hydrogel adhesives for wound closure: a tutorial. Chem Soc Rev 44:1820–1835PubMedCrossRefGoogle Scholar
  31. 31.
    Kamoun EA, Chen X, Eldin MSM, Kenawy E-RS (2015) Crosslinked poly (vinyl alcohol) hydrogels for wound dressing applications: a review of remarkably blended polymers. Arab J Chem 8:1–14CrossRefGoogle Scholar
  32. 32.
    Ribeiro A, Veiga F, Santos D, Torres-Labandeira JJ, Concheiro A, Alvarez-Lorenzo C (2011) Receptor-based biomimetic NVP/DMA contact lenses for loading/eluting carbonic anhydrase inhibitors. J Membr Sci 383:60–69CrossRefGoogle Scholar
  33. 33.
    Wu W, Cheng R, Das Neves J, Tang J, Xiao J, Ni Q, Liu X, Pan G, Li D, Cui W (2017) Advances in biomaterials for preventing tissue adhesion. J Control Release 261:318–336PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267CrossRefGoogle Scholar
  35. 35.
    Mahato R (2017) Microneedles in drug delivery. In: Mitra A, Cholkar K, Mandal A (eds) Emerging nanotechnologies for diagnostics, drug delivery and medical devices. Elsevier, St. Louis, pp 331–353Google Scholar
  36. 36.
    Garland MJ, Migalska K, Mahmood TMT, Singh TRR, Woolfson AD, Donnelly RF (2011) Microneedle arrays as medical devices for enhanced transdermal drug delivery. Expert Rev Med Devices 8:459–482PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Kalluri H, Choi SO, Guo XD, Lee JW, Norman J, Prausnitz MR (2017) Evaluation of microneedles in human subjects. In: Dragicevic N, Maibach HI (eds) Percutaneous penetration enhancers physical methods in penetration enhancement. Springer, Berlin, pp 325–340CrossRefGoogle Scholar
  38. 38.
    Gill HS, Prausnitz MR (2007) Coating formulations for microneedles. Pharm Res 24:1369–1380PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Vemulapalli V, Yang Y, Friden PM, Banga AK (2008) Synergistic effect of iontophoresis and soluble microneedles for transdermal delivery of methotrexate. J Pharm Pharmacol 60:27–33PubMedCrossRefGoogle Scholar
  40. 40.
    Pramanick B, Martinez-Chapa SO, Madou MJ (2016) Fabrication of biocompatible hollow microneedles using the C-MEMS process for transdermal drug delivery. ECS Trans 72:45–50CrossRefGoogle Scholar
  41. 41.
    Sivaraman A, Banga AK (2017) Novel in situ forming hydrogel microneedles for transdermal drug delivery. Drug Deliv Transl Res 7:16–26PubMedCrossRefGoogle Scholar
  42. 42.
    Hardy JG, Larrañeta E, Donnelly RF, Mcgoldrick N, Migalska K, Mccrudden MT, Irwin NJ, Donnelly L, Mccoy CP (2016) Hydrogel-forming microneedle arrays made from light-responsive materials for on-demand transdermal drug delivery. Mol Pharm 13:907–914PubMedCrossRefGoogle Scholar
  43. 43.
    Demir YK, Metin AÜ, Şatıroğlu B, Solmaz ME, Kayser V, Mäder K (2017) Poly (methyl vinyl ether-co-maleic acid)–Pectin based hydrogel-forming systems: gel, film, and microneedles. Eur J Pharm Biopharm 117:182–194PubMedCrossRefGoogle Scholar
  44. 44.
    Khavkin J, Ellis DA (2011) Aging skin: histology, physiology, and pathology. Facial Plast Surg Clin North Am 19:229–234PubMedCrossRefGoogle Scholar
  45. 45.
    Montagna W (2012) The epidermis. The structure and function of skin. Elsevier, Academic, New York, pp 18–74Google Scholar
  46. 46.
    Nestle FO, Di Meglio P, Qin J-Z, Nickoloff BJ (2009) Skin immune sentinels in health and disease. Nat Rev Immunol 9:679PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Mcglone F, Reilly D (2010) The cutaneous sensory system. Neurosci Biobehav Rev 34:148–159PubMedCrossRefGoogle Scholar
  48. 48.
    Holick MF, Chen TC, Lu Z, Sauter E (2007) Vitamin d and skin physiology: a D-lightful story. J Bone Miner Res 22:28–33CrossRefGoogle Scholar
  49. 49.
    Zaidi Z, Lanigan SW (2010) Skin: structure and function. Dermatology in clinical practice. Springer, New York, pp 1–14CrossRefGoogle Scholar
  50. 50.
    Agache P, Humbert P (2004) Measuring the skin. Skin and structural: physiology and metrology. Springer, New York, pp 17–399CrossRefGoogle Scholar
  51. 51.
    Madison KC (2003) Barrier function of the skin: “la raison d’etre” of the epidermis. J Invest Dermatol 121:231–241PubMedCrossRefGoogle Scholar
  52. 52.
    Breitkreutz D, Koxholt I, Thiemann K, Nischt R (2013) Skin basement membrane: the foundation of epidermal integrity – BM functions and diverse roles of bridging molecules nidogen and perlecan. Biomed Res Int 2013:179784PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Blanpain C (2010) Stem cells: skin regeneration and repair. Nature 464:686–687PubMedCrossRefGoogle Scholar
  54. 54.
    Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453:314–321PubMedCrossRefGoogle Scholar
  55. 55.
    Velnar T, Bailey T, Smrkolj V (2009) The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res 37:1528–1542PubMedCrossRefGoogle Scholar
  56. 56.
    Simmons BP (1982) Guideline for prevention of surgical wound infections. Infect Control Hosp Epidemiol 3:188–196CrossRefGoogle Scholar
  57. 57.
    Martin Y, Lali F, Metcalfe A (2016) Modelling wound healing. In: Ågren M (ed) Wound healing biomaterials-volume 1: therapies and regeneration. Elsevier, St. Louis, pp 151–173CrossRefGoogle Scholar
  58. 58.
    Alvarez OM, Kalinski C, Nusbaum J, Hernandez L, Pappous E, Kyriannis C, Parker R, Chrzanowski G, Comfort CP (2007) Incorporating wound healing strategies to improve palliation (symptom management) in patients with chronic wounds. J Palliat Med 10: 1161–1189PubMedCrossRefGoogle Scholar
  59. 59.
    Harding K, Morris H, Patel G (2002) Science, medicine, and the future: healing chronic wounds. BMJ 324:160–163PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    James GA, Swogger E, Wolcott R, Secor P, Sestrich J, Costerton JW, Stewart PS (2008) Biofilms in chronic wounds. Wound Repair Regen 16:37–44PubMedCrossRefGoogle Scholar
  61. 61.
    Falanga V (2005) Wound healing and its impairment in the diabetic foot. Lancet 366:1736–1743PubMedCrossRefGoogle Scholar
  62. 62.
    Dissemond J (2017) Chronic leg ulcers. Der Hautarzt. Zeitschrift Dermatol Venerologie verwandte Gebiete 68:614–620CrossRefGoogle Scholar
  63. 63.
    Nguyen T, Prudhomme K, Yamamoto R, Lowe AG, Green AM (2017) Methods and compositions for wound treatment. US Patent No. 8709393 B2Google Scholar
  64. 64.
    O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellul 4:173–207CrossRefGoogle Scholar
  65. 65.
    Orts WJ, Shey J, Imam SH, Glenn GM, Guttman ME, Revol J-F (2005) Application of cellulose microfibrils in polymer nanocomposites. J Polym Environ 13:301–306CrossRefGoogle Scholar
  66. 66.
    Leppänen K, Andersson S, Torkkeli M, Knaapila M, Kotelnikova N, Serimaa R (2009) Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering. Cellul 16:999–1015CrossRefGoogle Scholar
  67. 67.
    Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393CrossRefGoogle Scholar
  68. 68.
    Park S, Venditti RA, Jameel H, Pawlak JJ (2007) Studies of the heat of vaporization of water associated with cellulose fibers characterized by thermal analysis. Cellul 14:195–204CrossRefGoogle Scholar
  69. 69.
    Kafy A, Sadasivuni KK, Kim H-C, Akther A, Kim J (2015) Designing flexible energy and memory storage materials using cellulose modified graphene oxide nanocomposites. Phys Chem Chem Phys 17:5923–5931PubMedCrossRefGoogle Scholar
  70. 70.
    Helenius G, Bäckdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res A 76:431–438PubMedCrossRefGoogle Scholar
  71. 71.
    Lin S-P, Calvar IL, Catchmark JM, Liu J-R, Demirci A, Cheng K-C (2013) Biosynthesis, production and applications of bacterial cellulose. Cellul 20:2191–2219CrossRefGoogle Scholar
  72. 72.
    Lin W-C, Lien C-C, Yeh H-J, Yu C-M, Hsu S-H (2013) Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr Polym 94:603–611PubMedCrossRefGoogle Scholar
  73. 73.
    Sulaeva I, Henniges U, Rosenau T, Potthast A (2015) Bacterial cellulose as a material for wound treatment: properties and modifications. A review. Biotechnol Adv 33:1547–1571PubMedCrossRefGoogle Scholar
  74. 74.
    Hon DN-S (1996) Cellulose and its derivatives: structures, reactions, and medical uses. In: Dumitriu S (ed) Polysaccharides in medicinal applications. Marcel Dekker, New York, pp 87–105Google Scholar
  75. 75.
    Heinze T (2015) Cellulose: structure and properties. In: Rojas OJ (ed) Cellulose chemistry and properties: fibers, nanocelluloses and advanced materials. Springer, Berlin, pp 1–52Google Scholar
  76. 76.
    Ramos LDA, Frollini E, Heinze T (2005) Carboxymethylation of cellulose in the new solvent dimethyl sulfoxide/tetrabutylammonium fluoride. Carbohydr Polym 60:259–267CrossRefGoogle Scholar
  77. 77.
    Bozaci E, Akar E, Ozdogan E, Demir A, Altinisik A, Seki Y (2015) Application of carboxymethylcellulose hydrogel based silver nanocomposites on cotton fabrics for antibacterial property. Carbohydr Polym 134:128–135PubMedCrossRefGoogle Scholar
  78. 78.
    El-sakhawy M, Kamel S, Salama A, Sarhan H-A (2014) Carboxymethyl cellulose acetate butyrate: a review of the preparations, properties, and applications. J Drug Deliv 2014:575969PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Babu VR, Kanth VR, Mukund JM, Aminabhavi TM (2010) Novel methyl cellulose-grafted-acrylamide/gelatin microspheres for controlled release of nifedipine. J Appl Polym Sci 115:3542–3549CrossRefGoogle Scholar
  80. 80.
    Lin C-P, Boehnke M (1999) Influences of methylcellulose on corneal epithelial wound healing. J Ocul Pharmacol Ther 15:59–63PubMedCrossRefGoogle Scholar
  81. 81.
    Iqbal HM, Kyazze G, Locke IC, Tron T, Keshavarz T (2015) Poly (3-hydroxybutyrate)-ethyl cellulose based bio-composites with novel characteristics for infection free wound healing application. Int J Biol Macromol 81:552–559PubMedCrossRefGoogle Scholar
  82. 82.
    Jedvert K, Heinze T (2017) Cellulose modification and shaping–a review. J Polym Eng 37:845–860CrossRefGoogle Scholar
  83. 83.
    Marcos X, Pérez-Casas S, Llovo J, Concheiro A, Alvarez-Lorenzo C (2016) Poloxamer-hydroxyethyl cellulose-α-cyclodextrin supramolecular gels for sustained release of griseofulvin. Int J Pharm 500:11–19PubMedCrossRefGoogle Scholar
  84. 84.
    Pekel N, Yoshii F, Kume T, Güven O (2004) Radiation crosslinking of biodegradable hydroxypropylmethylcellulose. Carbohydr Polym 55:139–147CrossRefGoogle Scholar
  85. 85.
    Agubata CO, Okereke C, Nzekwe IT, Onoja RI, Obitte NC (2016) Development and evaluation of wound healing hydrogels based on a quinolone, hydroxypropyl methylcellulose and biodegradable microfibres. Eur J Pharm Sci 89:1–10PubMedCrossRefGoogle Scholar
  86. 86.
    Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Fukaya Y, Hayashi K, Wada M, Ohno H (2008) Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions. Green Chem 10:44–46CrossRefGoogle Scholar
  88. 88.
    Alves L, Medronho B, Antunes FE, Topgaard D, Lindman B (2016) Dissolution state of cellulose in aqueous systems. 1. Alkaline solvents. Cellul 23:247–258CrossRefGoogle Scholar
  89. 89.
    Alves L, Medronho B, Antunes FE, Topgaard D, Lindman B (2016) Dissolution state of cellulose in aqueous systems. 2. Acidic solvents. Carbohydr Polym 151:707–715PubMedCrossRefGoogle Scholar
  90. 90.
    Ghasemi M, Tsianou M, Alexandridis P (2017) Assessment of solvents for cellulose dissolution. Bioresour Technol 228:330–338PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Shen X, Shamshina JL, Berton P, Gurau G, Rogers RD (2016) Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chem 18:53–75CrossRefGoogle Scholar
  92. 92.
    Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84:40–53CrossRefGoogle Scholar
  93. 93.
    Navarra MA, Dal Bosco C, Serra Moreno J, Vitucci FM, Paolone A, Panero S (2015) Synthesis and characterization of cellulose-based hydrogels to be used as gel electrolytes. Membranes 5:810–823PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Escobar J, García D, Zaldivar D, Katime I (2002) Hidrogeles. Principales características en el diseño de sistemas de liberación controlada de fármacos. Rev Iberoam 3:1–25Google Scholar
  95. 95.
    Maitra J, Shukla VK (2014) Cross-linking in hydrogels-a review. Am J Polym Sci 4:25–31Google Scholar
  96. 96.
    Wang Y, Wang Z, Wu K, Wu J, Meng G, Liu Z, Guo X (2017) Synthesis of cellulose-based double-network hydrogels demonstrating high strength, self-healing, and antibacterial properties. Carbohydr Polym 168:112–120PubMedCrossRefGoogle Scholar
  97. 97.
    Song H, Niu Y, Wang Z, Zhang J (2011) Liquid crystalline phase and gel−sol transitions for concentrated microcrystalline cellulose (MCC)/1-Ethyl-3-methylimidazolium acetate (EMIMAc) solutions. Biomacromolecules 12:1087–1096PubMedCrossRefGoogle Scholar
  98. 98.
    Akhtar MF, Hanif M, Ranjha NM (2016) Methods of synthesis of hydrogels … a review. Saudi Pharm J 24:554–559PubMedCrossRefGoogle Scholar
  99. 99.
    Vasquez JMG, Tumolva TP (2015) Synthesis and characterization of a self-assembling hydrogel from water-soluble cellulose derivatives and sodium hydroxide/thiourea solution. Am J Chem 5:60–65Google Scholar
  100. 100.
    Jensen BE, Dávila I, Zelikin AN (2016) Poly (vinyl alcohol) physical hydrogels: matrix-mediated drug delivery using spontaneously eroding substrate. J Phys Chem B 120: 5916–5926PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Lopez-Sanchez P, Wang D, Zhang Z, Flanagan B, Gidley MJ (2016) Microstructure and mechanical properties of arabinoxylan and (1, 3; 1, 4)-β-glucan gels produced by cryo-gelation. Carbohydr Polym 151:862–870PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2:353–373PubMedCentralCrossRefGoogle Scholar
  103. 103.
    Stoyneva V, Momekova D, Kostova B, Petrov P (2014) Stimuli sensitive super-macroporous cryogels based on photo-crosslinked 2-hydroxyethylcellulose and chitosan. Carbohydr Polym 99:825–830PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Yue Z, Wen F, Gao S, Ang MY, Pallathadka PK, Liu L, Yu H (2010) Preparation of three-dimensional interconnected macroporous cellulosic hydrogels for soft tissue engineering. Biomaterials 31:8141–8152PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Chang C, He M, Zhou J, Zhang L (2011) Swelling behaviors of pH-and salt-responsive cellulose-based hydrogels. Macromolecules 44:1642–1648CrossRefGoogle Scholar
  106. 106.
    Barros SC, Da Silva AA, Costa DB, Costa CM, Lanceros-Méndez S, Maciavello MT, Ribelles JG, Sentanin F, Pawlicka A, Silva MM (2015) Thermal–mechanical behaviour of chitosan–cellulose derivative thermoreversible hydrogel films. Cellul 22:1911–1929CrossRefGoogle Scholar
  107. 107.
    Jeong B, Kim SW, Bae YH (2012) Thermosensitive sol–gel reversible hydrogels. Adv Drug Deliv Rev 64:154–162CrossRefGoogle Scholar
  108. 108.
    Masrat R, Maswal M, Chat OA, Rather GM, Dar AA (2016) A rheological investigation of sol–gel transition of hydroxypropyl cellulose with nonionic surfactant sorbitan monopalmitate: modulation of gel strength by UV irradiation. Colloids Surf A Physicochem Eng Asp 489:113–121CrossRefGoogle Scholar
  109. 109.
    Moreira R, Chenlo F, Silva C, Torres MD (2017) Rheological behaviour of aqueous methylcellulose systems: effect of concentration, temperature and presence of tragacanth. LWT-Food Sci Technol 84:764–770CrossRefGoogle Scholar
  110. 110.
    Jiang Y, Chen J, Deng C, Suuronen EJ, Zhong Z (2014) Click hydrogels, microgels and nanogels: emerging platforms for drug delivery and tissue engineering. Biomaterials 35:4969–4985PubMedCrossRefGoogle Scholar
  111. 111.
    Onofrei M-D, Filimon A (2016) Cellulose-based hydrogels: designing concepts, properties, and perspectives for biomedical and environmental applications. In: Méndez-Vilas A, Solano A (eds) Polymer science: research advances, practical applications, and educational aspects. Formatex Research Center, Badajoz, pp 108–120Google Scholar
  112. 112.
    Fathi M, Barar J, Aghanejad A, Omidi Y (2015) Hydrogels for ocular drug delivery and tissue engineering. Bioimpacts 5:159–164PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Liu L, Gao Q, Lu X, Zhou H (2016) In situ forming hydrogels based on chitosan for drug delivery and tissue regeneration. Asian J Pharmacol 11:673–683Google Scholar
  114. 114.
    Hoarea TR, Kohaneb DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007CrossRefGoogle Scholar
  115. 115.
    Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23CrossRefGoogle Scholar
  116. 116.
    Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46:92–100CrossRefGoogle Scholar
  117. 117.
    Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62:83–99PubMedCrossRefGoogle Scholar
  118. 118.
    Peppas NA (1997) Hydrogels and drug delivery. Curr Opin Colloid Interface Sci 2:531–537CrossRefGoogle Scholar
  119. 119.
    El-Hag, Abd El-Rehim H, Kamal H, Hegazi D (2008) Synthesis of carboxymethyl cellulose based drug carrier hydrogel using ionizing radiation for possible use as specific delivery system. J Macromol Sci Pure Appl Chem 45:628–634CrossRefGoogle Scholar
  120. 120.
    Vinatier C, Magne D, Weiss P, Trojani C, Rochet N, Carle GF, Vignes-Colombeix C, Chadjichristos C, Galera P, Daculsi G, Guicheux J (2005) A silanized hydroxypropyl methylcellulose hydrogel for the three-dimensional culture of chondrocytes. Biomaterials 26:6643–6651PubMedCrossRefGoogle Scholar
  121. 121.
    Vinatier C, Magne D, Moreau A, Gauthier O, Malard O, Vignes-Colombeix C, Daculsi G, Weiss P, Guicheux J (2007) Engineering cartilage with human nasal chondrocytes and a silanized hydroxypropyl methylcellulose hydrogel. J Biomed Mater Res A 80:66–74PubMedCrossRefGoogle Scholar
  122. 122.
    Zaki NM, Awad GA, Mortada ND, Abd ElHady SS (2007) Enhanced bioavailability of metoclopramide HCl by intranasal administration of mucoadhesive in situ gel with modulated rheological and mucociliary transport properties. Eur J Pharm Sci 32:296–307PubMedCrossRefGoogle Scholar
  123. 123.
    Kapoor D, Vyas RB, Lad C, Patel M, Lal B (2015) Site specific drug delivery through nasal route using bioadhesive polymers. J Drug Deliv Ther 5:1–9Google Scholar
  124. 124.
    Lazarus GS, Cooper DM, Knighton DR, Margolis DJ, Percoraro ER, Rodeheaver G, Robson MC (1994) Definitions and guidelines for assessment of wounds and evaluation of healing. Arch Dermatol 130:489–493PubMedCrossRefGoogle Scholar
  125. 125.
    Moore K, McCallion R, Searle RJ, Stacey MC, Harding KG (2006) Prediction and monitoring the therapeutic response of chronic dermal wounds. Int Wound J 3:89–96PubMedCrossRefGoogle Scholar
  126. 126.
    Medaghiele M, Demitri C, Sannino A, Ambrosio L (2014) Polymeric hydrogels for burn wound care: advanced skin wound dressings and regenerative templates. Burns and Trauma 2:153–161CrossRefGoogle Scholar
  127. 127.
    Dai T, Huang Y-Y, Sharma SK, Hashmi JT, Kurup DB, Hamblin MR (2010) Topical antimicrobials for burn wound infections. Recent Pat Antiinfect Drug Discov 5:124–151PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Monier M, Abdel-Latif DA, Ji HF (2016) Synthesis and application of photo-active carboxymethyl cellulose derivatives. React Funct Polym 102:137–146CrossRefGoogle Scholar
  129. 129.
    Ng SF, Jumaat N (2014) Carboxymethyl cellulose wafers containing antimicrobials: a modern drug delivery system for wound infections. Eur J Pharm Sci 51:173–179PubMedCrossRefGoogle Scholar
  130. 130.
    Furst T, Piette M, Lechanteur A, Evrard B, Piel G (2015) Mucoadhesive cellulosic derivative sponges as drug delivery system for vaginal application. Eur J Pharm Biopharm 95:128–135PubMedCrossRefGoogle Scholar
  131. 131.
    Lin Q, Zheng Y, Ren L, Wu J, Wang H, An J, Fan W (2014) Preparation and characteristic of a sodium alginate/carboxymethylated bacterial cellulose composite with crosslinking semi-interpenetrating network. J Appl Polym Sci 131:3948–3957CrossRefGoogle Scholar
  132. 132.
    Sood S, Gupta VK, Agarwal S, Dev K, Pathania D (2017) Controlled release of antibiotic amoxicillin drug using carboxymethyl cellulose-cl-poly (lactic acid-co-itaconic acid) hydrogel. Int J Biol Macromol 101:612–620PubMedCrossRefGoogle Scholar
  133. 133.
    Oliveira RN, Moreira APD, Thiré RMSM, Quilty B, Passos TM, Simon P, Mancini MC, McGuinness GB (2017) Absorbent polyvinyl alcohol–sodium carboxymethyl cellulose hydrogels for propolis delivery in wound healing applications. Polym Eng Sci 57:1224–1233Google Scholar
  134. 134.
    Malik NS, Ahmad M, Minhas MU (2017) Cross-linked β-cyclodextrin and carboxymethyl cellulose hydrogels for controlled drug delivery of acyclovir. PLoS One 12:e0172727PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Huber D, Tegl G, Mensah A, Beer B, Baumann M, Borth N, Sygmund C, Ludwig R, Guebitz GM (2017) A dual-enzyme hydrogen peroxide generation machinery in hydrogels supports antimicrobial wound treatment. ACS Appl Mater Interfaces 9:15307–15316PubMedCrossRefGoogle Scholar
  136. 136.
    Huang B, Liu M, Zhou C (2017) Cellulose–halloysite nanotube composite hydrogels for curcumin delivery. Cellul 24:2861–2875CrossRefGoogle Scholar
  137. 137.
    Sun N, Wang T, Yan X (2017) Self-assembled supermolecular hydrogel based on hydroxyethyl cellulose: formation, in vitro release and bacteriostasis application. Carbohydr Polym 172:49–59PubMedCrossRefGoogle Scholar
  138. 138.
    Bang S, Ko YG, Kim WI, Cho D, Park WH, Kwon OH (2017) Preventing postoperative tissue adhesion using injectable carboxymethyl cellulose-pullulan hydrogels. Int J Biol Macromol S0141-8130:31292–31298Google Scholar
  139. 139.
    Jeong D, Kim HK, Jeong J-P, Dindulkar SD, Cho E, Yang Y-H, Jung S (2016) Cyclosophoraose/cellulose hydrogels as an efficient delivery system for galangin, a hydrophobic antibacterial drug. Cellul 23:2609–2625CrossRefGoogle Scholar
  140. 140.
    Zubik K, Singhsa P, Wang Y, Manuspiya H, Narain R (2017) Thermo-responsive poly(N-isopropylacrylamide)-cellulose nanocrystals hybrid hydrogels for wound dressing. Polymers 9:119–136CrossRefGoogle Scholar
  141. 141.
    Ahmed EM (2015) Hydrogel: preparation, characterization, and applications. A review. J Adv Res 6:105–121PubMedCrossRefGoogle Scholar
  142. 142.
    Fernandes EM (2013) Bionanocomposites from lignocellulosic resources: properties, applications and future trends for their use in the biomedical field. Prog Polym Sci 38:1415–1441CrossRefGoogle Scholar
  143. 143.
    Pillai AB, Nair JV, Gupta NK, Gupta S (2015) Microemulsion-loaded hydrogel formulation of butenafine hydrochloride for improved topical delivery. Arch Dermatol Res 307:625–633PubMedCrossRefGoogle Scholar
  144. 144.
    Sabale V, Vora S (2012) Formulation and evaluation of microemulsion-based hydrogel for topical delivery. Int J Pharm Invest 2:140–149CrossRefGoogle Scholar
  145. 145.
    Jantharaprapap R, Stagni G (2007) Effects of penetration enhancers on in vitro permeability of meloxicam gels. Int J Pharm 343:26–33PubMedCrossRefGoogle Scholar
  146. 146.
    Hosny KM, Tayeb MM, Fallatah OM, Mahmoud AA, Mandoura MS, Al-Sawahli MM (2013) Preparation and evaluation of ketorolac tromethamine hydrogel. Int J Pharm Sci Rev Res 20:269–274Google Scholar
  147. 147.
    Kouchak M, Handali S (2014) Effects of various penetration enhancers on penetration of aminophylline through shed snake skin. Jundishapur J Nat Pharm Prod 9:24–29PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Arunkumar S, Shivakumar HN, Desai BG, Ashok P (2016) Effect of gel properties on transdermal iontophoretic delivery of diclofenac sodium. e-Polymers 16:25–32CrossRefGoogle Scholar
  149. 149.
    Gupta A, Mishra AK, Singh AK, Gupta V, Bansal P (2010) Formulation and evaluation of topical gel of diclofenac sodium using different polymers. Drug Invent Today 2:250–253Google Scholar
  150. 150.
    Prakash PR, Rao NGR, Soujanya C (2010) Formulation, evaluation and anti-inflammatory activity of topical etoricoxib gel. Asian J Pharm Clin Res 3:126–129Google Scholar
  151. 151.
    Abdel-Mottaleb MMA, Mortada ND, Elshamy AA, Awad GAS (2007) Preparation and evaluation of fluconazole gels. Egypt J Biomed Sci 23:35–41Google Scholar
  152. 152.
    Sawant PD, Luu D, Ye R, Buchta R (2010) Drug release from hydroethanolic gels. Effect of drug’s lipophilicity (log P), polymer-drug interactions and solvent lipophilicity. Int J Pharm 396:45–52PubMedCrossRefGoogle Scholar
  153. 153.
    Cho CW, Choi JS, Shin SC (2011) Enhanced local anesthetic action of mepivacaine from the bioadhesive gels. Pak J Pharm Sci 24:87–93PubMedGoogle Scholar
  154. 154.
    Huang YC, Huang KY, Yang BY, Ko CH, Huang HM (2016) Fabrication of novel hydrogel with berberine-enriched carboxymethylcellulose and hyaluronic acid as an anti-inflammatory barrier membrane. Biomed Res Int 2016:3640182PubMedPubMedCentralGoogle Scholar
  155. 155.
    Vlaia L, Olariu I, Coneac G, Vlaia V, Popoiu C, Stănciulescu C, Muţ AM, Szabadai Z, Lupuleasa D (2014) Percutaneous penetration enhancement of propranolol hydrochloride from HPMC-based hydroethanolic gels containing terpenes. Farmacia 62:991–1008Google Scholar
  156. 156.
    Guyot M, Fawaz F (2000) Design and in vitro evaluation of adhesive matrix for transdermal delivery of propranolol. Int J Pharm 204:171–182PubMedCrossRefGoogle Scholar
  157. 157.
    Donnelly RF, Raj Singh TR, Woolfson AD (2010) Microneedle-based drug delivery systems: microfabrication, drug delivery, and safety. Drug Deliv 17:187–207PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Nayak A, Das DB, Vladisavljević GT (2014) Microneedle-assisted permeation of lidocaine carboxymethylcellulose with gelatine co-polymer hydrogel. Pharm Res 31:1170–1184PubMedCrossRefGoogle Scholar
  159. 159.
    Caffarel-Salvador E, Brady AJ, Eltayib E, Meng T, Alonso-Vicente A, Gonzalez-Vazquez P, Torrisi BM, Vicente-Perez EM, Mooney K, Jones DS, Bell SE, McCoy CP, McCarthy HO, McElnay JC, Donnelly RF (2015) Hydrogel-forming microneedle arrays allow detection of drugs and glucose in vivo: potential for use in diagnosis and therapeutic drug monitoring. PLoS One 10:e0145644PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Andreza Maria Ribeiro
    • 1
    • 2
  • Mariana Magalhães
    • 1
    • 3
  • Francisco Veiga
    • 1
    • 3
  • Ana Figueiras
    • 1
    • 3
    Email author
  1. 1.Faculty of PharmacyUniversity of CoimbraCoimbraPortugal
  2. 2.Department of Engineering and Material SciencesUniversity of Federal of Paraná (UFPR)CuritibaBrazil
  3. 3.REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of PharmacyUniversity of CoimbraCoimbraPortugal

Personalised recommendations