Cellulose-Based Hydrogels as Biomaterials

  • Serdar SezerEmail author
  • İsa Şahin
  • Kevser Öztürk
  • Vildan Şanko
  • Zeynep Koçer
  • Ümran Aydemir Sezer
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)


Hydrogels are three-dimensional hydrophilic network structures that vary greatly in swelling/shrinkage properties against minor changes such as light density, solvent composition, ionic strength, pH, and temperature. Cellulose-based hydrogels are derived from natural sources which are biodegradable and low-immunologic. These hydrogels are produced in four different ways: those obtained directly from native cellulose (including bacterial cellulose), those derived from cellulose derivatives (methyl cellulose, carboxymethyl cellulose, hydroxy methyl cellulose, etc.), those obtained with other polymers as a composite, and finally those obtained from cellulose-inorganic hybrids. Cellulose hydrogels and its derivatives have many desirable properties such as high water retention capacity, high crystallinity, fine fiber network, easy formability, and high tensile strength. In addition, some cellulose derivatives exhibit intelligent behavior against physiological variables such as pH and ionic strength. Cellulose-based hydrogels have advantages such as better biocompatibility, less latent toxicity, and lower cost than the most synthetic polymer hydrogels. Because of these advantages, cellulose-based hydrogels are preferred to be used in industrial pharmaceutics and biomedical fields. This chapter will discuss applications of cellulose-based hydrogels in pharmaceutical industry and biomedical fields such as drug release systems, wound healing, and tissue engineering. In addition, future prospects on cellulose-based hydrogels will be addressed.


Hydrogel Cellulose Biomaterial Biomedical Drug delivery Wound healing Tissue engineering 



The authors acknowledge the Scientific and Technological Research Council of Turkey (BIYOTEG-5130028 Project) for providing platform.


  1. 1.
    Buwalda SJ, Boere KWM, Dijkstra PJ, Feijen J, Vermonden T, Hennink WE (2014) Hydrogels in a historical perspective: from simple networks to smart materials. J Control Release 190:254–273PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Esposito A, Sannino A, Cozzolino A, Nappo QS, Lamberti M, Ambrosio L, Nicolais L (2005) Response of intestinal cells and macrophages to an orally administered cellulose-PEG based polymer as a potential treatment for intractable edemas. Biomaterials 26:4101–4110PubMedCrossRefGoogle Scholar
  3. 3.
    Ogushi Y, Sakai S, Kawakami K (2007) Synthesis of enzymatically-gellable carboxymethylcellulose for biomedical applications. J Biosci Bioeng 104:30–33PubMedCrossRefGoogle Scholar
  4. 4.
    Markets&Markets Reports. Hydrocolloids market: global forecast to 2020Google Scholar
  5. 5.
    Jorfi M, Foster EJ (2015) Recent advances in nanocellulose for biomedical applications. J Appl Polym Sci 132:1–19CrossRefGoogle Scholar
  6. 6.
    Joubert F, Musa OM, Hodgson DRW, Cameron NR (2014) The preparation of graft copolymers of cellulose and cellulose derivatives using ATRP under homogeneous reaction conditions. Chem Soc Rev 43:7217–7235PubMedCrossRefGoogle Scholar
  7. 7.
    Nokhodchi A, Raja S, Patel P, Asare-Addo K (2012) The role of oral controlled release matrix tablets in drug delivery systems. Bioimpacts 2(4):175–187PubMedPubMedCentralGoogle Scholar
  8. 8.
    Sharpe LA, Daily AM, Horava SD, Peppas NA (2014) Therapeutic applications of hydrogels in oral drug delivery. Expert Opin Drug Deliv 11(6):901–915PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Li Y, Zhu L, Fan Y, Li Y, Cheng L, Liu W, Li X, Fan X (2016) Formation and controlled drug release using a three-component supramolecular hydrogel for anti-schistosoma japonicum cercariae. Nanomaterials 6(3):46PubMedCentralCrossRefGoogle Scholar
  10. 10.
    Buwalda SJ, Vermonden T, Hennink WE (2017) Hydrogels for therapeutic delivery: current developments and future directions. Biomacromolecules 18:316–330PubMedCrossRefGoogle Scholar
  11. 11.
    Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007CrossRefGoogle Scholar
  12. 12.
    Bindu SM, Vadithya A, Chatterjee A (2012) As a review on hydrogels as drug delivery in the pharmaceutical field. Int J Pharm Chem Sci 1(2):642–661Google Scholar
  13. 13.
    Lee SC, Kwon K, Park K (2013) Hydrogels for delivery of bioactive agents: a historical perspective. Adv Drug Deliv Rev 65(1):17–20PubMedCrossRefGoogle Scholar
  14. 14.
    Simões S, Figueiras A, Veiga F (2012) Modular hydrogels for drug delivery. J Biomater Nanobiotechnol 3:185–199CrossRefGoogle Scholar
  15. 15.
    De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29:4609–4631CrossRefGoogle Scholar
  16. 16.
    Mironi-Harpaz I, Wang DY, Venkatraman S, Seliktar D (2012) Photopolymerization of cell-encapsulating hydrogels: crosslinking efficiency versus cytotoxicity. Acta Biomater 8(5):1838–1848PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Liang R, Yuan H, Xi G, Zhou Q (2009) Synthesis of wheat straw-g-poly(acrylic acid) superabsorbent composites and release of urea from it. Carbohydr Polym 77:181–187CrossRefGoogle Scholar
  18. 18.
    Peng Z, Chen F (2010) Synthesis and properties of temperature-sensitive hydrogel based on hydroxyethyl cellulose. Int J Polym Mater 59:450–461CrossRefGoogle Scholar
  19. 19.
    Medronho B, Romano A, Miguel MG, Stigsson L, Lindman B (2012) Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19:581–587CrossRefGoogle Scholar
  20. 20.
    Bastedo W (1939) The United States Pharmacopeial Convention, Inc., decennial period, 1930–1940 committee of revision of the United States Pharmacopeia. J Am Med Assoc 113(2):164CrossRefGoogle Scholar
  21. 21.
    Malhotra B, Kharkwal H, Yadav MP (2016) Cellulose-based polymeric system in drug delivery. In: Kharkwal H, Janaswamy S (eds) Natural polymers for drug delivery, CABI, Oxfordshire, pp 10–21Google Scholar
  22. 22.
    Jaiyeoba K, Alfa J, Odeniyi M (2006) Direct compression properties of microcrystalline cellulose and its silicified product. East Cent Afr J Pharm Sci 7(3):56–59Google Scholar
  23. 23.
    Lilienfeld A, Hunna E (1943) Dressing of fabrics and artificial structures, United States Patent Office US2327912 AGoogle Scholar
  24. 24.
    Martina B, Kateřina K, Miloslava R, Jan G, Ruta M (2009) Oxycellulose: significant characteristics in relation to its pharmaceutical and medical applications. Adv Polym Technol 28:199–208CrossRefGoogle Scholar
  25. 25.
    Malhotra B, Kharkwal H, Yadav MP (1999) Textbook of organic medicinal and pharmaceutical chemistry, 10th edn, edited by Jaime N Delgado, William A. Remers, reviewed in J Med Chem 42(13):2491–2491Google Scholar
  26. 26.
    Banker GS, Kumar V (1995) Microfibrillated oxycellulose. US patent 5405953Google Scholar
  27. 27.
    Silvestre AJ, Freire CS, Neto CP (2014) Do bacterial cellulose membranes have potential in drug-delivery systems? Expert Opin Drug Deliv 11(7):1113–1124PubMedCrossRefGoogle Scholar
  28. 28.
    Lonnberg H, Fogelstrom L, Samir MASA, Berglund L, Malmstrom E, Hult A (2008) Surface grafting of microfibrillated cellulose with poly(e-caprolactone) – synthesis and characterization. Eur Polym J 44(9):2991–2997CrossRefGoogle Scholar
  29. 29.
    Cai J, Zhang L (2006) Unique gelation behavior of cellulose in NaOH/urea aqueous. Biomacromolecules 7(1):183–189PubMedCrossRefGoogle Scholar
  30. 30.
    Dogan H, Hilmioglu ND (2009) Dissolution of cellulose with NMMO by microwave heating. Carbohydr Polym 75(1):90–94CrossRefGoogle Scholar
  31. 31.
    Halib N, Amin M, Ahmad I (2012) Physicochemical properties and characterization of nata de coco as a source of cellulose. Sains Malays 41:205–211Google Scholar
  32. 32.
    Ibrahim SM, El Salmawi KM, Zahran AH (2007) Synthesis of crosslinked superabsorbent carboxymethyl cellulose/acrylamide hydrogels through electron-beam irradiation. J Appl Polym Sci 104:2003–2008CrossRefGoogle Scholar
  33. 33.
    Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46:92–100CrossRefGoogle Scholar
  34. 34.
    Pandey M, Mohamad N, Amin MC (2014) Bacterial cellulose/acrylamide pH-sensitive smart hydrogel: development, characterization, and toxicity studies in ICR mice model. Mol Pharm 11(10):3596–3608PubMedCrossRefGoogle Scholar
  35. 35.
    Roman M, Dong S, Hirani A, Lee YW (2009) Cellulose nanocrystals for drug delivery. In: Edgar KJ, Heinze T, Buchanan CM (eds) Polysaccharide materials, performance by design. ACS Symp Ser eBooks. American Chemical Society, Washington DC, pp 81–91Google Scholar
  36. 36.
    Zakaria A, Afifi SA, Elkhodairy K (2016) Newly developed topical cefotaxime sodium hydrogels: antibacterial activity and in vivo evaluation. Biomed Res Int 2016:1–15CrossRefGoogle Scholar
  37. 37.
    Uppugunduri S (2006) Topical compositions comprising one or more of 44-thiouridine, isomaltitol and uridine. WO 2006073359 A1Google Scholar
  38. 38.
    Vlaia L, Coneac G, Olariu I, Vlaia V, Lupuleasa D (2016) Cellulose derivatives based hydrogels as vehicles for dermal and transdermal drug delivery. In: Majee SB (ed) Emerging concepts in analysis and applications of hydrogels. InTech, pp 159–200Google Scholar
  39. 39.
    Kadjji VG, Betageri GV (2011) Water soluble polymers for pharmaceutical applications. Polymers 3(4):1972–2009CrossRefGoogle Scholar
  40. 40.
    Onofrei MD, Filimon A (2016) Cellulose-based hydrogels: designing concepts, properties, and perspectives for biomedical and environmental applications. In: Mendez-Vilas A, Solano-Martin A Polymer science: research advances, practical applications and educational aspects. Formatex Research Center, pp 108–120Google Scholar
  41. 41.
    Rowe RC, Sheskey PJ, Quinn ME (2009) Handbook of pharmaceutical excipients. Pharmaceutical Press, LondonGoogle Scholar
  42. 42.
    Hamed E, Moe D, Khankari R, Hontz J (2005) Binders and solvents. In: Parikh DM (ed) Handbook of pharmaceutical granulation technology. Taylor & Francis Group LLC, pp 109–128Google Scholar
  43. 43.
    Ghatnekar G (2013) Topical gels containing alpha connexin c-terminal (act) peptides. WO 2013131040 A1Google Scholar
  44. 44.
    Ashland Aqualon (1999) NATROSOL®hydroxyethylcellulose a nonionic water-soluble polymer. Physical and chemical properties. Ashland Aqualon Functional Ingredients, Wilmington. Technical literatureGoogle Scholar
  45. 45.
    Ashland Aqualon (2012) Functional ingredients. Technical literature: Klucel hydroxypropyl-cellulose physical and chemical properties. Ashland Aqualon Functional Ingredients, Wilmington. Technical literatureGoogle Scholar
  46. 46.
    Ofner IIICM, Klech-Gelotte CM (2007) Gels and jellies. In: Swarbrick J (ed) Encyclopedia of pharmaceutical technology, vol 3, 3rd edn. Informa Healthcare, New York, pp 1875–1890Google Scholar
  47. 47.
    Dow Chemical Company (2002) Methocel cellulose ethers technical book, USAGoogle Scholar
  48. 48.
    Dow Chemical Company (2000) Using METHOCEL cellulose ethers for controlled release of drugs in hydrophilic matrix systems, USAGoogle Scholar
  49. 49.
    Grover JA (1993) Methylcellulose and derivatives. In: Whistler RL, BeMiller JN (eds) Industrial gums: polysaccharides and their derivatives, 3rd edn. Academic Press Inc, San Diego, pp 475–500CrossRefGoogle Scholar
  50. 50.
    Shin Etsu Chemical Co. Ltd. (2005) Metolose® water-soluble cellulose ethers, JapanGoogle Scholar
  51. 51.
    Chakraborty P, Ghosh A, Chakraborty DD (2015) Polymeric systems in quick dissolving novel films. In: Thakur VK, Thakur MK (eds) Handbook of polymers for pharmaceutical technologies, structure and chemistry. Scrivener Publishing LLC, Wiley, Beverly, pp 143–165Google Scholar
  52. 52.
    Silva SM, Pinto FV, Antunes FE, Miguel MG, Sousa JJ, Pais AA (2008) Aggregation and gelation in hydroxypropylmethyl cellulose aqueous solutions. J Colloid Interface Sci 327(2):333–340PubMedCrossRefGoogle Scholar
  53. 53.
    Joshi SC (2011) Sol-gel behavior of hydroxypropyl methylcellulose (HPMC) in ionic media including drug release. Materials 4:1861–1905PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Banks SR, Sammon C, Melia CD, Timmins P (2005) Monitoring the thermal gelation of cellulose ethers in situ using attenuated total reflectance fourier transform infrared spectroscopy. Appl Spectrosc 59(4):452–459PubMedCrossRefGoogle Scholar
  55. 55.
    Acevedo A, Takhistov P, de la Rosa CP, Florián V (2014) Thermal gelation of aqueous hydroxypropylmethyl cellulose solutions with SDS and hydrophobic drug particles. Carbohydr Polym 102:74–90PubMedCrossRefGoogle Scholar
  56. 56.
    Yoo YJ, Um IC (2013) Examination of thermo-gelation behavior of HPMC and HEMC aqueous solutions using rheology. Korea-Aust Rheol J 25(2):67–75CrossRefGoogle Scholar
  57. 57.
    Barbucci L, Leone G, Vecchiullo A (2004) Novel carboxymethyl cellulose-based microporous hydrogels suitable for drug delivery. J Biomater Sci Polym Ed 15(5):607–619PubMedCrossRefGoogle Scholar
  58. 58.
    Kono H (2014) Characterization and properties of carboxymethyl cellulose hydrogels crosslinked by polyethyleneglycol. Carbohydr Polym 106:84–93PubMedCrossRefGoogle Scholar
  59. 59.
    Kamel S, Ali N, Jahangir K, Shah SM, El-Gendy AA (2008) Pharmaceutical significance of cellulose: a review. Express Polym Lett 2:758–778CrossRefGoogle Scholar
  60. 60.
    Pifferi G, Restani P (2003) The safety of pharmaceutical excipients. Il Farmaco 58(8):541–550PubMedCrossRefGoogle Scholar
  61. 61.
    Edgar KJ (2007) Cellulose esters in drug delivery. Cellulose 14:49–64CrossRefGoogle Scholar
  62. 62.
    Christie RJ, Findley DJ, Dunfee M, Hansen RD, Olsen SC, Grainger DW (2006) Photopolymerized hydrogel carriers for live vaccine ballistic delivery. Vaccine 24(9):1462–1469PubMedCrossRefGoogle Scholar
  63. 63.
    Tokumura T, Machida Y (2006) Preparation of amoxicillin intragastric buoyant sustained-release tablets and the dissolution characteristics. J Control Release 110(3):581–586PubMedCrossRefGoogle Scholar
  64. 64.
    Ludwig A (2005) The use of mucoadhesive polymers in ocular drug delivery. Adv Drug Deliv Rev 57:1595–1639PubMedCrossRefGoogle Scholar
  65. 65.
    Huber HE, Dale LB, Christenson GL (1966) Utilization of hydrophilic gums for the control of drug release from tablet formulations I. Disintegration and dissolution behavior. J Pharm Sci 55:974–976PubMedCrossRefGoogle Scholar
  66. 66.
    Ford JL, Rubinstein MH, McCaul F, Hogan JE, Edgar PJ (1987) Importance of drug type, tablet shape and added diluents on drug release kinetics from hydroxypropyl methylcellulose matrix tablets. Int J Pharm 40:223–234CrossRefGoogle Scholar
  67. 67.
    Palmer D, Levina M, Nokhodchi A, Douroumis D, Farrell T, Rajabi-Siahboomi A (2011) The influence of sodium carboxymethylcellulose on drug release from polyethylene oxide extended release matrices. AAPS PharmSciTech 12(3):862–871PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Peppas NA (1997) Hydrogels and drug delivery. Curr Opin Colloid Interface Sci 2:531–537CrossRefGoogle Scholar
  69. 69.
    Vashist A, Ahmad S (2013) Hydrogels: smart materials for drug delivery. OJC 29:861–870Google Scholar
  70. 70.
    Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2:353–373PubMedCentralCrossRefGoogle Scholar
  71. 71.
    El-Hag Ali A, Abd El-Rehim H, Kamal H, Hegazy D (2008) Synthesis of carboxymethyl cellulose based drug carrier hydrogel using ionizing radiation for possible use as specific delivery system. J Macromol Sci Pure Appl Chem 45:628–634CrossRefGoogle Scholar
  72. 72.
    Camponeschi F, Atrei A, Rocchigiani G, Mencuccini L, Uva M, Barbucci R (2015) New formulations of polysaccharide-based hydrogels for drug release and tissue engineering. Gels 1:3–23CrossRefGoogle Scholar
  73. 73.
    Vinatier C, Magne D, Moreau A, Gauthier O, Malard O, Vignes-Colombeix C, Daculsi G, Weiss P, Guicheux J (2007) Engineering cartilage with human nasal chondrocytes and a silanized hydroxypropyl methylcellulose hydrogel. J Biomed Mater Res A 80:66–74PubMedCrossRefGoogle Scholar
  74. 74.
    Trojani C, Weiss P, Michiels JF, Vinatier C, Guicheux J, Daculsi G, Gaudray P, Carle GF, Rochet N (2005) Three-dimensional culture and differentiation of human osteogenic cells in an injectable hydroxypropylmethylcellulose hydrogel. Biomaterials 26:5509–5517PubMedCrossRefGoogle Scholar
  75. 75.
    Zaki NM, Awad GA, Mortada ND, Abd ElHady SS (2007) Enhanced bioavailability of metoclopramide HCl by intranasal administration of mucoadhesive in situ gel with modulated rheological and mucociliary transport properties. Eur J Pharm Sci 32:296–307PubMedCrossRefGoogle Scholar
  76. 76.
    Wang X, Chi N, Tang X (2008) Preparation of estradiol chitosan nanoparticles for improving nasal absorption and brain targeting. Eur J Pharm Biopharm 70:735–740PubMedCrossRefGoogle Scholar
  77. 77.
    Kirange RH, Chaudhari RB (2017) Utilizing mucoadhesive polymers for nasal drug delivery system. IJPSR 8(3):1012–1022Google Scholar
  78. 78.
    Ugwoke MI, Kaufmann G, Verbeke N, Kinget R (2000) Intranasal bioavailability of apomorphine from carboxymethylcellulose-based drug delivery systems. Int J Pharm 202:125–131CrossRefGoogle Scholar
  79. 79.
    Ikeda K, Murata K, Kobayashi M, Noda K (1992) Enhancement of bioavailability of dopamine via nasal route in beagle dogs. Chem Pharm Bull 40:2155–2158PubMedCrossRefGoogle Scholar
  80. 80.
    Kapoor D, Vyas RB, Lad C, Patel M, Lal B (2015) Site specific drug delivery through nasal route using bioadhesive polymers. JDDT 5:1–9Google Scholar
  81. 81.
    Ugwoke MI, Sam E, Van Den Mooter G, Verbeke N, Kinget R (1999) Bioavailability of apomorphine following intranasal administration of mucoadhesive drug delivery systems in rabbits. Eur J Pharm Sci 9:213–219PubMedCrossRefGoogle Scholar
  82. 82.
    Quadir M, Zia H, Needham TE (1999) Toxicological implications of nasal formulations. Drug Deliv 6:227–242CrossRefGoogle Scholar
  83. 83.
    Chaturvedi M, Kumar M, Pathak K (2011) A review on mucoadhesive polymer used in nasal drug delivery system. J Adv Pharm Tech Res 2(4):215–222CrossRefGoogle Scholar
  84. 84.
    Paulsson M (2001) Controlled release gel formulation for mucosal drug delivery. ACTA Univ Upsaliensin Uppasla 7:9–21Google Scholar
  85. 85.
    Malik NS, Ahmad M, Minhas MU (2017) Cross-linked β-cyclodextrin and carboxymethylcellulose hydrogels for controlled drug delivery of acyclovir. PLoS One 12(2):1–17CrossRefGoogle Scholar
  86. 86.
    Amoli DM, Kamyar P (2017) Magnetic nanoparticles grafted pH-responsive poly (methacrylic acid-co-acrylic acid)-grafted polyvinylpyrrolidone as a nano-carrier for oral controlled delivery of atorvastatin. Nanomed Res J 2(1):18–27Google Scholar
  87. 87.
    Delavary BM, van der Veer WM, van Egmond M, Niessen FB, Beelen RHJ (2011) Macrophages in skin injury and repair. Immunobiology 216:753–762CrossRefGoogle Scholar
  88. 88.
    Heilmann S, Küchler S, Wischke C, Lendlein A, Stein C, Schäfer-Korting M (2013) A thermosensitive morphine-containing hydrogel for the treatment of large-scale skin wounds. Int J Pharm 444:96–102PubMedCrossRefGoogle Scholar
  89. 89.
    Yang X, Zhu Z, Liu Q, Chen X, Ma M (2008) Effects of PVA, agar contents, and irradiation doses on properties of PVA/ws-chitosan/glycerol hydrogels made by gama-irradiation followed by freeze-thawing. Radiat Phys Chem 77:954–960CrossRefGoogle Scholar
  90. 90.
    Boateng SJ, Matthews HK, Stevens NEH, Eccleston MG (2008) Wound healing dressing and drug delivery system: a review. J Pharm Sci 97(8):2892–2923PubMedCrossRefGoogle Scholar
  91. 91.
    Lloyd LL, Kennedy JF, Methacanon P, Paterson M, Knill CJ (1998) Carbohydrate polymers as wound management aids. Carbohydr Polym 37:315–322CrossRefGoogle Scholar
  92. 92.
    Wang J, Wei J (2017) Interpenetrating network hydrogels with high strength and transparency for potential use as external dressings. Mater Sci Eng C Mater Biol Appl 80:460–467PubMedCrossRefGoogle Scholar
  93. 93.
    Ogawa A, Nakayama S, Uehara M, Mori Y, Takahashi M, Aiba T, Kurosaki Y (2014) Pharmaceutical properties of a low-substituted hydroxypropyl cellulose (L-HPC) hydrogel as a novel external dressing. Int J Pharm 477:546–552PubMedCrossRefGoogle Scholar
  94. 94.
    Amrosio L (2011) Superabsorbent cellulose-based hydrogels for biomedical applications. In: Rimmer S (ed) Biomedical hydrogels/biochemistry, manufacture and medical applications. Woodhead Publ Ltd, pp 25–46Google Scholar
  95. 95.
    Czaja W, Krystynowicz A, Bielecki S, Brown RM Jr. (2006) Microbial cellulose-the natural power to heal wounds. Biomaterials 27:145–151PubMedCrossRefGoogle Scholar
  96. 96.
    Gonzalez JS, Ludueña LN, Ponce A, Alvarez VA (2014) Poly(vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings. Mater Sci Eng C Mater Biol Appl 34:54–61PubMedCrossRefGoogle Scholar
  97. 97.
    Zubik K, Singhsa P, Wang Y, Manuspiya H, Narain R (2017) Thermo-responsive poly(N-isopropylacrylamide)-cellulose nanocrystals hybrid hydrogels for wound dressing. Polymers 9(4):119–136CrossRefGoogle Scholar
  98. 98.
    Bajpai SK, Pathak V, Soni B (2015) Minocycline-loaded cellulose nano whiskers/poly(sodium acrylate) composite hydrogel films as wound dressing. Int J Biol Macromol 79:76–85PubMedCrossRefGoogle Scholar
  99. 99.
    Wei B, Yang G, Hong F (2011) Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydr Polym 84:533–538CrossRefGoogle Scholar
  100. 100.
    Czaja WK, Young DJ, Kawecki M, Brown RM (2006) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12CrossRefGoogle Scholar
  101. 101.
    Murosaki T, Gong JP (2010) Double network hydrogels as tough, durable tissue substitutes. In: Ottenbrite RM, Park K, Okano T (eds) Biomedical applications of hydrogels handbook. Springer, New York, pp 285–302CrossRefGoogle Scholar
  102. 102.
    Laçin NT (2014) Development of biodegradable antibacterial cellulose based hydrogel membranes for wound healing. Int J Biol Macromol 67:22–27PubMedCrossRefGoogle Scholar
  103. 103.
    Mohamad N, Mohd Amin MCI, Pandey M, Ahmad N, Rajab NF (2014) Bacterial cellulose/acrylic acid hydrogel synthesized via electron beam irradiation: accelerated burn wound healing in an animal model. Carbohydr Polym 114:312–320PubMedCrossRefGoogle Scholar
  104. 104.
    Moraes PRF de S, Saska S, Barud H, Lima LR de, Martins V da CA, Plepis AM de G, Ribeiro SJL, Gaspar AMM (2016) Bacterial cellulose/collagen hydrogel for wound healing. Mat Res 19:106–116CrossRefGoogle Scholar
  105. 105.
    Serafica G, Mormino R, Oster AG, Lentz EK, Koehler PK (2008) Microbial cellulose wound dressing for treating chronic wound. US Patent 7,390,499 B2Google Scholar
  106. 106.
    Petersen N, Gatenholm P (2011) Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol 91:1277–1286PubMedCrossRefGoogle Scholar
  107. 107.
    Fontana JD, De Souza AM, Fontana CK, Torriani IL, Moreschi JC, Gallotti BJ, De Souza SJ, Narcisco GP, Bichara JA, Farah LFX (1990) Acetobacter cellulose pellicle as a temporary skin substitute. Appl Biochem Biotechnol 24–25:253–264PubMedCrossRefGoogle Scholar
  108. 108.
    Nayak S, Kundu SC (2014) Sericin-carboxymethyl cellulose porous matrices as cellular wound dressing material. J Biomed Mater Res A 102:1928–1940PubMedCrossRefGoogle Scholar
  109. 109.
    Choi DS, Kim S, Lim YM, Gwon HJ, Park JS, Nho YC, Kwon J (2012) Hydrogel incorporated with chestnut honey accelerates wound healing and promotes early HO-1 protein expression in diabetic (db/db) mice. J Tissue Eng Regen Med 9:36–42CrossRefGoogle Scholar
  110. 110.
    Rakhshaei R, Namazi H (2017) A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel. Mater Sci Eng C Mater Biol Appl 73:456–464PubMedCrossRefGoogle Scholar
  111. 111.
    Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267CrossRefGoogle Scholar
  112. 112.
    ConvaTec. Accessed 10 Sept 2017
  113. 113.
    Castellano JJ, Shafii SM, Ko F, Donate G, Wright TE, Mannari RJ, Payne WG, Smith DJ, Robson MC (2007) Comparative evaluation of silver-containing antimicrobial dressings and drugs. Int Wound J 4(2):114–122PubMedCrossRefGoogle Scholar
  114. 114.
    Smith & Nephew. Accessed 10 Sept 2017
  115. 115.
    Coloplast. Accessed 10 Sept 2017
  116. 116.
    Moura LIF, Dias AMA, Carvalho E, De Sousa HC (2013) Recent advances on the development of wound dressings for diabetic foot ulcer treatment – a review. Acta Biomater 9:7093–7114PubMedCrossRefGoogle Scholar
  117. 117.
    Wobma H, Vunjak-Novakovic G (2016) Tissue engineering and regenerative medicine 2015: a year in review. Tissue Eng Part B Rev 22:101–113PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Akter F (2016) Tissue engineering made easy. Mica Haley, pp 1–2Google Scholar
  119. 119.
    Mano JF, Silva GA, Azevedo HS, Malafaya PB, Sousa RA, Silva SS, Boesel LF, Oliveria JM, Santos TC, Marques AP, Neves NM, Reis RL (2007) Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 4(17):999–1030PubMedCentralCrossRefGoogle Scholar
  120. 120.
    Brien FJO (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14:88–95CrossRefGoogle Scholar
  121. 121.
    Zhu J, Marchand RE (2011) Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices 8:607–626PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40:363–408PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Meyer U, Wiesman HP (2006) Bone and cartilage engineering. Springer, New York, pp 7–8Google Scholar
  124. 124.
    Kaliva M, Chatzinikolaidou M, Vamvakaki M (2017) Applications of smart multifunctional tissue engineering scaffolds. In: Wang Q (ed) Smart materials for tissue engineering. Royal Society of Chemistry UK, pp 1–38Google Scholar
  125. 125.
    Fricaina JC, Granjac PL, Barbosa MA, de Jéso B, Barthe N, Baquey C (2002) Cellulose phosphates as biomaterials. In vivo biocompatibility studies. Biomaterials 23:971–980CrossRefGoogle Scholar
  126. 126.
    Sukul M, Min Y, Lee S, Lee B (2015) Osteogenic potential of simvastatin loaded gelatin-nanofibrillar cellulose-β tricalcium phosphate hydrogel scaffold in critical-sized rat calvarial defect. Eur Polym J 73:308–323CrossRefGoogle Scholar
  127. 127.
    Fellah BH, Weiss P, Gauthier O, Rouillon T, Pilet P, Daculsi G, Layrolle P (2006) Bone repair using a new injectable self-crosslinkable bone substitute. J Orthop Res 24:628–635PubMedCrossRefGoogle Scholar
  128. 128.
    Sohier J, Corre P, Weiss P, Layrolle P (2010) Hydrogel/calcium phosphate composites require specific properties for three-dimensional culture of human bone mesenchymal cells. Acta Biomater 6:2932–2939PubMedCrossRefGoogle Scholar
  129. 129.
    Struillou X, Boutigny H, Badran Z, Fellah BH, Gauthier O, Sourice S, Pilet P, Rouillon T, Layrolle P, Weiss P, Soueidan A (2011) Treatment of periodontal defects in dogs using an injectable composite hydrogel/biphasic calcium phosphate. J Mater Sci Mater Med 22:1707–1717PubMedCrossRefGoogle Scholar
  130. 130.
    Favi PM, Benson RS, Neilsen NR, Hammonds RL, Bates CC, Stephens CP, Dhar MS (2013) Cell proliferation, viability, and in vitro differentiation of equine mesenchymal stem cells seeded on bacterial cellulose hydrogel scaffolds. Mater Sci Eng C Mater Bio Appl 33:1935–1944CrossRefGoogle Scholar
  131. 131.
    Pasqui D, Torricelli P, De Cagna M, Fini M, Barbucci R (2013) Carboxymethyl cellulose-hydroxyapatite hybrid hydrogel as a composite material for bone tissue engineering applications. J Biomed Mater Res A 102(5):1568–1579PubMedCrossRefGoogle Scholar
  132. 132.
    Chun YY, Wang JK, Tan NS, Chan PP, Tan TT, Choong C (2016) A periosteum-inspired 3D hydrogel-bioceramic composite for enhanced bone regeneration. Macromol Biosci 16:276–287PubMedCrossRefGoogle Scholar
  133. 133.
    Park M, Lee D, Shin S, Hyun J (2015) Effect of negatively charged cellulose nanofibers on the dispersion of hydroxyapatite nanoparticles for scaffolds in bone tissue engineering. Colloids Surf B Biointerfaces 130:222–228PubMedCrossRefGoogle Scholar
  134. 134.
    Ahmadi R, Burns AJ, De Bruijn JD (2010) Chitosan-based hydrogels do not induce angiogenesis. J Tissue Eng Regen Med 4:309–315PubMedCrossRefGoogle Scholar
  135. 135.
    Fan M, Yan J, Tan H, Ben D, He Q, Huang Z, Hu X (2014) Nanostructured gel scaffolds for osteogenesis through biological assembly of biopolymers via specific nucleobase pairing. Macromol Biosci 14:1521–1527PubMedCrossRefGoogle Scholar
  136. 136.
    Kessler MW, Grande DA (2008) Tissue engineering and cartilage. Organogenesis 4(1):28–32PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Park S, Lih E, Park K, Joung YK, Han DK (2017) Biopolymer-based functional composites for medical applications. Prog Polym Sci 68:77–105CrossRefGoogle Scholar
  138. 138.
    Balakrishnan B, Joshi N, Banerjee R (2013) Borate aided Schiff’s base formation yields in situ gelling hydrogels for cartilage regeneration. J Mater Chem B 1:5564–5577CrossRefGoogle Scholar
  139. 139.
    Milcovich G, Antunes FE, Farra R, Grassi G, Grassi M, Asaro F (2017) Modulating carbohydrate-based hydrogels as viscoelastic lubricant substitute for articular cartilages. Int J Biol Macromol 102:796–804PubMedCrossRefGoogle Scholar
  140. 140.
    Yin N, Stilwell MD, Santos TM, Wang H, Weibel DB (2015) Agarose particle-templated porous bacterial cellulose and its application in cartilage growth in vitro. Acta Biomater 12:129–138PubMedCrossRefGoogle Scholar
  141. 141.
    Ávila HM, Schwarz S, Feldmann EM, Mantas A, von Bomhard A, Gatenholm P, Rotter N (2014) Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration. Appl Microbiol Biotechnol 98:7423–7435CrossRefGoogle Scholar
  142. 142.
    Rehmani SS, Bhora FY (2016) Current state of 3D printing in tissue engineering. J 3D Print Med 1(2):10–13Google Scholar
  143. 143.
    Markstedt K, Mantas A, Tournier I, Martínez Ávila H, Hägg D, Gatenholm P (2015) 3D bioprinting human chondrocytes with nanocellulose−alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16:1489–1496PubMedCrossRefGoogle Scholar
  144. 144.
    Rederstorff E, Rethore G, Weiss P, Sourice S, Beck-Cormier S, Mathieu E, Maillasson M, Jacques Y, Colliec-Jouault S, Fellah BH, Guicheux J, Vinatier C (2018) Enriching a cellulose hydrogel with a biologically active marine exopolysaccharide for cell-based cartilage engineering. J Tissue Eng Regen Med 11:1152–1164CrossRefGoogle Scholar
  145. 145.
    Reza AT, Nicoll SB (2010) Characterization of novel photocrosslinked carboxymethylcellulose hydrogels for encapsulation of nucleus pulposus cells. Acta Biomater 6:179–186PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Castro C, Zuluaga R, Rojas OJ, Filpponen I, Orelma H, Londoño M, Betancourt S, Gañán P (2015) Highly percolated poly(vinyl alcohol) and bacterial nanocellulose synthesized in situ by physical- crosslinking: exploiting polymer synergies for biomedical nanocomposites. RSC Adv 5:90742–90749CrossRefGoogle Scholar
  147. 147.
    Patchan M, Graham JL, Xia Z, Maranchi JP, McCally R, Schein O, Elisseeff JH, Trexler MM (2013) Synthesis and properties of regenerated cellulose-based hydrogels with high strength and transparency for potential use as an ocular bandage. Mater Sci Eng C 33:3069–3076CrossRefGoogle Scholar
  148. 148.
    Wang J, Gao C, Zhang Y, Wan Y (2010) Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial. Mater Sci Eng C 30:214–218CrossRefGoogle Scholar
  149. 149.
    Recouvreux DOS, Rambo CR, Berti FV, Carminatti CA, Antônio RV, Porto LM (2011) Novel three-dimensional cocoon-like hydrogels for soft tissue regeneration. Mater Sci Eng C 31:151–157CrossRefGoogle Scholar
  150. 150.
    Xu D, Fan L, Gao L, Xiong Y, Wang Y, Ye Q, Yu A, Dai H, Yin Y, Cai J, Zhang L (2016) Micro-nanostructured polyaniline assembled in cellulose matrix via interfacial polymerization for applications in nerve regeneration. ACS Appl Mater Interfaces 8:17090–17097PubMedCrossRefGoogle Scholar
  151. 151.
    Gold GT, Varma DM, Harbottle D, Gupta MS, Stalling SS, Taub PJ, Nicoll SB (2014) Injectable redox-polymerized methylcellulose hydrogels as potential soft tissue filler materials. J Biomed Mater Res A 102(12):4536–4544PubMedGoogle Scholar
  152. 152.
    Tang J, Bao L, Li X, Hong FF (2015) Potential of PVA-doped bacterial nano-cellulose tubular composites for artificial blood vessels. J Mater Chem B 3:8537–8547CrossRefGoogle Scholar
  153. 153.
    Yano S, Mori M, Teramoto N, Iisaka M, Suzuki N, Noto M, Kaimoto Y, Kakimoto M, Yamada M, Shiratsuchi E, Shimasaki T, Shibata M (2015) Preparation of photocrosslinked fish elastin polypeptide/microfibrillated cellulose composite gels with elastic properties for biomaterial applications. Mar Drugs 13(1):338–353PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    He M, Zhao Y, Duan J, Wang Z, Chen Y, Zhang L (2014) Fast contact of solid−liquid interface created high strength multi-layered cellulose hydrogels with controllable size. ACS Appl Mater Interfaces 6(3):1872–1878PubMedCrossRefGoogle Scholar
  155. 155.
    Millon LE, Wan WK (2006) The polyvinyl alcohol–bacterial cellulose system as a new nanocomposite for biomedical applications. J Biomed Mater Res B Appl Biomater 79(2):245–253PubMedCrossRefGoogle Scholar
  156. 156.
    Hoo SP, Loh L, Yue Z, Fu J, Tan TTY, Choong C, Chan PPY (2013) Preparation of a soft and interconnected macroporous hydroxypropyl cellulose methacrylate scaffold for adipose tissue engineering. J Mater Chem B 1:3107–3117CrossRefGoogle Scholar
  157. 157.
    Weng H, Zhou J, Tang L, Hu Z (2017) Tissue responses to thermally-responsive hydrogel nanoparticles. J Biomater Sci Polym Ed 15:1167–1180CrossRefGoogle Scholar
  158. 158.
    Sannino A, Esposito A, De Rosa A, Cozzolino A, Ambrosio L, Nicolais L (2003) Biomedical application of a superabsorbent hydrogel for body water elimination in the treatment of edemas. J Biomed Mater Res A 67:1016–1024PubMedCrossRefGoogle Scholar
  159. 159.
    Sannino A, Pappada` S, Madaghiele M, Maffezzoli A, Ambrosio L, Nicolais L (2005) Crosslinking of cellulose derivatives and hyaluronic acid with water-soluble carbodiimide. Polymer 46:11206–11212CrossRefGoogle Scholar
  160. 160.
    Jin R, Dijkstra PJ (2010) Hydrogels for tissue engineering applications. In: Ottenbrite RM, Park K, Okano T (eds) Biomedical applications of hydrogels handbook. Springer, New York, pp 203–225CrossRefGoogle Scholar
  161. 161.
    Luo K, Yang Y, Shao Z (2016) Physically crosslinked biocompatible silk-fibroin-based hydrogels with high mechanical performance. Adv Funct Mater 26:872–880CrossRefGoogle Scholar
  162. 162.
    Li L, Lin Z, Yang X, Wan Z, Cui S (2009) A novel cellulose hydrogel prepared from its ionic liquid solution. Chin Sci Bull 54:1622–1625CrossRefGoogle Scholar
  163. 163.
    Aizad S, Yahaya BH, Zubairi SI (2015) Carboxy-methyl-cellulose (CMC) hydrogel-filled 3-D scaffold: preliminary study through a 3-D antiproliferative activity of Centella asiatica extract. In: AIP conference proceedings, vol 1678(1), Selangor 15–16 Apr 2015Google Scholar
  164. 164.
    Bayramoglu G, Kayaman-Apohan N, Akcakaya H, Kahraman MV, Kuruca SE, Gunur A (2010) Preparation of collagen modified photopolymers: a new type of biodegradable gel for cell growth. J Mater Sci Mater Med 21:761–775PubMedCrossRefGoogle Scholar
  165. 165.
    Zhu L, Qiu J, Sakai E, Zang L, Yu Y, Ito K, Liu P, Kang F (2017) Design of a rubbery carboxymethyl cellulose/polyacrylic acid hydrogel via visible-light-triggered polymerization. Macromol Mater Eng 302:1–9Google Scholar
  166. 166.
    Ren LZ, Ren PG, Zhang XL, Sun ZF, Zhang Y (2014) Preparation and mechanical properties of regenerated cellulose/poly(vinyl-alcohol) physical composite hydrogel. Compos Interfaces 21:853–867CrossRefGoogle Scholar
  167. 167.
    Peng Z, Chen F (2011) Hydroxyethyl cellulose-based hydrogels with various pore sizes prepared by freeze-drying. J Macromol Sci B 50:340–349CrossRefGoogle Scholar
  168. 168.
    Guan Y, Chen J, Qi X, Chen G, Peng F, Sun R (2015) Fabrication of biopolymer hydrogel containing Ag nanoparticles for antibacterial property. Ind Eng Chem Res 54:7393–7400CrossRefGoogle Scholar
  169. 169.
    Chen J, Park H, Park K (1998) Synthesis of superporous hydrogels: hydrogels with fast swelling and superabsorbent properties. J Biomed Mater Res 44:53–62CrossRefGoogle Scholar
  170. 170.
    Peng N, Wang Y, Ye Q, Liang L, An Y, Li Q, Chang C (2016) Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity. Carbohydr Polym 137:59–64PubMedCrossRefGoogle Scholar
  171. 171.
    Guan Y, Zhang Y (2016) Nanostructured hydrogels for diabetic management. In: Zhao Y, Shen Y (eds) Biomedical nanomaterials. Wiley-VCH Verlag, pp 387–412CrossRefGoogle Scholar
  172. 172.
    Zhao L, Wang L, Zhang Y, Xiao S, Bi F, Zhao J, Gai G, Ding J (2017) Glucose oxidase-based glucose-sensitive drug delivery for diabetes treatment. Polymers 9(7):255–276CrossRefGoogle Scholar
  173. 173.
    Ravaine V, Ancla C, Catargi B (2008) Chemically controlled closed-loop insulin delivery. J Control Release 132:2–11PubMedCrossRefGoogle Scholar
  174. 174.
    Risbud MV, Bhonde RR (2001) Islet immunoisolation: experience with biopolymers. J Biomater Sci Polym Ed 12:1243–1252PubMedCrossRefGoogle Scholar
  175. 175.
    Champaneria MC (2016) A complete history of breast reconstruction. In: Shiffman MA (ed) Breast reconstruction. Springer, New York, pp 3–39CrossRefGoogle Scholar
  176. 176.
    Maxwell GP, Gabriel A (2013) Breast augmentation. In: Neligan PC, Grotting JC (eds) Plastic surgery breast, vol 5, 3rd ed. Elsevier Saunders, pp 13–38Google Scholar
  177. 177.
    Baumann L, Blyumin M, Saghari S (2009) Dermal fillers. In: Baumann L, Saghari S, Weisberg E (eds) Cosmetic dermatology principles and practice. McGraw-Hill Co, pp 191–211Google Scholar
  178. 178.
    Leonardis M, Palange A, Dornelles RF, Hund F (2010) Use of cross-linked carboxymethyl cellulose for soft-tissue augmentation: preliminary clinical studies. Clin Interv Aging 5:317–322PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Wang Z, Fan X, He M, Chen Z, Wang Y, Ye Q, Zhang H, Zhang L (2014) Construction of cellulose-phosphor hybrid hydrogels and their application for bioimaging. J Mater Chem B 2:7559–7566CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Serdar Sezer
    • 1
    • 3
    Email author
  • İsa Şahin
    • 2
  • Kevser Öztürk
    • 2
  • Vildan Şanko
    • 2
  • Zeynep Koçer
    • 2
  • Ümran Aydemir Sezer
    • 1
    • 3
  1. 1.Faculty of Medicine, Department of Pharmacology Medicine, Medical Device and Dermocosmetic Research and Application LaboratorySüleyman Demirel UniversityIspartaTurkey
  2. 2.Institute of Chemical TechnologyTUBITAK Marmara Research CenterGebzeTurkey
  3. 3.YETEM, Innovative Technologies Research and Application CenterSuleyman Demirel UniversityIspartaTurkey

Personalised recommendations