Cellulosic Hydrogels: A Greener Solution of Sustainability

  • Md. Ibrahim H. MondalEmail author
  • Md. Obaidul Haque
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)


Hydrogels are insoluble three-dimensional cross-linked polymeric network that swells in presence of water and other fluids. They can hold plenty of water compared to its own mass. The absence of dissolution attraction toward water is due to hydrophilic nature of the polymeric chain. Hydrophilicity arises because of holding hydrophilic functional groups in the chain. Highest portion of the world production of hydrogels is petrochemical based which is neither renewable nor biocompatible. In spite of some drawbacks like nondegradability, synthetic hydrogels are superior to natural one in water absorbency, diversification in chemicals, and longer service life. Taking into consideration sustainability factor, scientists are interested in preparation of hydrogels from renewable cellulosic sources. As cellulose possesses intrinsic nature of degradability, biocompatibility, and nontoxicity, also available in nature, and some cellulose derivatives show smart behavior, cellulose-based hydrogels can be an alternative to synthetic petrochemical-derived hydrogels. Numerous research articles concerning the synthesis and utilization of hydrogels in different fields have been published, and still restless labor is giving for the betterment of the product quality. It is a crying need to make available and adequate information on synthesis and characterization of cellulosic hydrogels for individual researchers. For this the specific aim of this paper is to accumulate some crucial information which will cover synthesis, detailed classification, characterization, and technological feasibility of application about hydrogels of renewable source. As of consequence, the research on hydrogel concerning current environmental issues will reach to its target of making the greener solution of sustainability. In addition, recent trend of hydrogel research is also discussed in this review.


Cellulose Cellulosic hydrogel Cellulose derivatives Hydrophilic Renewable Biocompatible Sustainability 


  1. 1.
    Buchholz FL, Graham AT (1998) Modern superabsorbent polymer technology. Wiley-VCH, New York, Chpaters 1–7Google Scholar
  2. 2.
    Richter A, Howitz S, Kuckling D, Arndt KF (2004) Influence of volume phase transition phenomena on the behavior of hydrogel-based valves. Sens Actuators B 99(2–3):451–458CrossRefGoogle Scholar
  3. 3.
    Mao L, Hu Y, Piao Y, Chen X, Xian W, Piao D (2005) Structure and character of artificial muscle model constructed from fibrous hydrogel. Curr Appl Phys 5(5):426–428CrossRefGoogle Scholar
  4. 4.
    Haque MO, Mondal MIH (2016) Synthesis and characterization of cellulose-based eco-friendly hydrogels. J Sci Eng 44:45–53Google Scholar
  5. 5.
    Tanaka T (1981) Gels. Sci Am 244(1):124–138CrossRefPubMedGoogle Scholar
  6. 6.
    Pourjavadi A, Zohuriaan-Mehr MJ, Mahdavinia GR (2004) Modified chitosan. III. Uperabsorbency, salt and pH-sensitivity of smart ampholytic hydrogels from chitosan-g-PAN. Polym Adv Technol 15:173–180CrossRefGoogle Scholar
  7. 7.
    Qu X, Wirsén A, Albertsson AC (2000) Novel pH-sensitive chitosan hydrogels: swelling behavior and states of water. Polymer 41(12):4589–4598CrossRefGoogle Scholar
  8. 8.
    Yang SY, Huang CY (2008) Plasma treatment for enhancing mechanical and thermal properties of biodegradable PVA/starch blends. J Appl Polym Sci 109(4):2452–2459CrossRefGoogle Scholar
  9. 9.
    Lenzi F, Sannino A, Borriello A, Porro F, Capitani D, Mensitieri G (2003) Probing the degree of crosslinking of a cellulose based superabsorbing hydrogel through traditional and NMR techniques. Polymer 44(5):1577–1588CrossRefGoogle Scholar
  10. 10.
    Hua S, Wang A (2009) Synthesis, characterization and swelling behaviors of sodium alginate-g-poly(acrylic acid)/sodium humate superabsorbent. Carbohydr Polym 75(1):79–84CrossRefGoogle Scholar
  11. 11.
    Pourjavadi A, Ghasemzadeh H (2007) Carrageenan-g-poly(acrylamide)/poly (vinylsulfonic acid, sodium salt) as a novel semi-IPN hydrogel: synthesis, characterization, and swelling behavior. Polym Eng Sci 47(9):1388–1395CrossRefGoogle Scholar
  12. 12.
    Gong Y, Wang C, Lai RC, Su K, Zhang F, Wang DA (2009) An improved injectable polysaccharide hydrogel: modified gellan gum for long-term cartilage regeneration in vitro. J Mater Chem 19(14):1968–1977CrossRefGoogle Scholar
  13. 13.
    Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185(4706):117–118CrossRefGoogle Scholar
  14. 14.
    Xiao S, Wang F, Yang Y, Chang Z, Wu Y (2014) An environmentally friendly and economic membrane based on cellulose as a gel polymer electrolyte for lithium ion batteries. RSC Adv 4(4):76–81CrossRefGoogle Scholar
  15. 15.
    Li MX, Wang XW, Yang YQ, Chang Z, Wu YP, Holze R (2015) A dense cellulose-based membrane as a renewable host for gel polymer electrolyte of lithium ion batteries. J Membr Sci 476:112–118CrossRefGoogle Scholar
  16. 16.
    Colò F, Bella F, Nair JR, Destro M, Gerbaldi C (2015) Cellulose-based novel hybrid polymer electrolytes for green and efficient Na-ion batteries. Electrochim Acta 174:185CrossRefGoogle Scholar
  17. 17.
    Bella F, Gerbaldi C, Barolo C, Grätzel M (2015) Aqueous dye-sensitized solar cells. Chem Soc Rev 44:3431–3473CrossRefPubMedGoogle Scholar
  18. 18.
    Yuan S, Tang Q, He B (2014) Three-dimensional hydrogel frameworks for high-temperature proton exchange membrane fuel cells. J Mater Sci 49:5481–5491CrossRefGoogle Scholar
  19. 19.
    Dayal U, Mehta SK, Choudhari MS, Jain R (1999) Synthesis of acrylic superabsorbents. J Macromol Sci Rev Macromol Chem Phys C39:507–525CrossRefGoogle Scholar
  20. 20.
    Buchholz FL, Peppas NA (1994) Superabsorbent polymers science and technology, ACS symposium series, vol 573. American Chemical society, Washington, DC, Chapters 2, 7, 8, 9Google Scholar
  21. 21.
    Ahmed EM (2015) Hydrogel: preparation, characterization and applications. J Adv Res 6(2):105–121CrossRefPubMedGoogle Scholar
  22. 22.
    Zohuriaan-Mehr MJ, Kabiri K (2008) Superabsorbent polymer materials: a review. Iran Polym J 17(6):451–477Google Scholar
  23. 23.
    Chen CC, Li DG, Yano H, Abe K (2014) Individual cotton cellulose nanofibers: pretreatment and fibrillation technique. Cellulose 21:3339–3346CrossRefGoogle Scholar
  24. 24.
    Li L, Thangamathesvaran PM, Yue CY, Tam KC, Hu X, Lam YC (2001) Gel network structure of methylcellulose in water. Langmuir 17:8062–8068CrossRefGoogle Scholar
  25. 25.
    Kono H, Fujita S (2012) Biodegradable superabsorbent hydrogels derived from cellulose by esterification crosslinking with 1,2,3,4-butanetetracarboxilic dianhydride. Carbohydr Polym 87(4):2582–2588CrossRefGoogle Scholar
  26. 26.
    Kono H, Zakimi M (2013) Preparation, water absorbency and enzyme degradability of novel chitin-cellulose/chitin-based superabsorbent hydrogels. J Appl Polym Sci 128:572–581CrossRefGoogle Scholar
  27. 27.
    Ninan N, Muthiah M, Park IK, Elain A, Thomas S, Grohens Y (2013) Pectin/carboxymethyl cellulose/microfibrillated cellulose composite scaffolds for tissue engineering. Carbohydr Polym 98:877–885CrossRefPubMedGoogle Scholar
  28. 28.
    Rathna GVN, Damodaran S (2002) Effect of nonprotein polymers on water-uptake properties of fish protein- based hydrogel. J Appl Polym Sci 85:45–51CrossRefGoogle Scholar
  29. 29.
    Damodaran S (2004) Protein-polysaccharide hybrid hydrogels. US Patents 6,821,331 B2Google Scholar
  30. 30.
    Pourjavadi A, Sadeghi M, Mahmodi Hashemi M, Hosseinzadeh H (2006) Synthesis and absorbency of gelatin-graft-poly(sodium acrylate-co-acrylamide) superabsorbent hydrogel with salt- and pH-responsiveness properties. e-Polymers 57:1–15Google Scholar
  31. 31.
    Feng H, Li JA, Wang LJ (2010) Preparation of biodegradable flax shive cellulose-based superabsorbent polymer under microwave irradiation. Bioresources 5(3):1484–1495Google Scholar
  32. 32.
    Kabiri K, Omidian H, Zohuriaan-Mehr MJ, Doroudiani S (2011) Superabsorbent hydrogel composites and nanocomposites: a review. Polym Compos 32(2):277–289CrossRefGoogle Scholar
  33. 33.
    Tomsic B, Simoncic B, Orel B, Vilcnik A, Spreizer H (2007) Biodegradability of cellulose fabric modified by imidazolidinone. Carbohydr Polym 69(3):478–488CrossRefGoogle Scholar
  34. 34.
    Miyamoto T, Takahashi S, Ito H, Inagaki H, Nioshiki Y (1989) Tissue biocompatibility of cellulose and its derivatives. J Biomed Mater Res 23(1):125–133CrossRefPubMedGoogle Scholar
  35. 35.
    Entcheva E, Bien H, Yin L, Chung CY, Farrell M, Kostov Y (2004) Functional cardiac cell constructs on cellulose-based scaffolding. Biomaterials 25(26):5753–5762CrossRefPubMedGoogle Scholar
  36. 36.
    Moran-Mirabal JM (2013) Advanced-microscopy techniques for the characterization of cellulose structure and cellulose-cellulase interactions, Chapter 1. In: Cellulose – fundamental aspects. Ven De Ven TGM, InTech. ISBN 978-953-51-1183-2Google Scholar
  37. 37.
    Titus A, Pereira GN (2009) Ch-Cellulose decomposer. EcoFriendly coffee text book. Accessed 27 Jan 2018
  38. 38.
    Bergenstrahle M, Wohlert J, Larsson PT, Mazeau K, Berglund LA (2008) Dynamics of cellulose-water interfaces: NMR spin-lattice relaxation times calculated from atomistic computer simulations. J Phys Chem B 112(9):2590–2595CrossRefPubMedGoogle Scholar
  39. 39.
    Heiner P, Teleman O (1997) Interface between monoclinic crystalline cellulose and water: breakdown of the odd/even duplicity. Langmuir 13(3):511–518CrossRefGoogle Scholar
  40. 40.
    Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, IthacaGoogle Scholar
  41. 41.
    Chen H, Fan M (2008) Novel thermally sensitive pH-dependent chitosan/carboxymethyl cellulose hydrogels. J Bioact Compat Polym 23(1):38–48CrossRefGoogle Scholar
  42. 42.
    Chang C, Lue A, Zhang L (2008) Effects of crosslinking methods on structure and properties of cellulose/PVA hydrogels. Macromol Chem Phys 209(12):1266–1273CrossRefGoogle Scholar
  43. 43.
    Te Nijenhuis K (2007) On the nature of crosslinks in thermoreversible gels. Polym Bull 58(1):27–42CrossRefGoogle Scholar
  44. 44.
    Ogushi Y, Sakai S, Kawakami K (2007) Synthesis of enzymatically-gellable carboxymethyl cellulose for biomedical applications. J Biosci Bioeng 104(1):30–33CrossRefPubMedGoogle Scholar
  45. 45.
    Wach RA, Mitomo H, Nagasawa N, Yoshii F (2003) Radiation crosslinking of methylcellulose and hydroxyethylcellulose in concentrated aqueous solutions. Nucl Instrum Methods Phys Res Sect B 211(4):533–544CrossRefGoogle Scholar
  46. 46.
    Pekel N, Yoshii F, Kume T, Guven O (2004) Radiation crosslinking of biodegradable hydroxypropylmethyl cellulose. Carbohydr Polym 55(2):139–147CrossRefGoogle Scholar
  47. 47.
    Liu P, Peng J, Li J, Wu J (2005) Radiation crosslinking of CMC-Na at low dose and its application as substitute for hydrogels. Radiat Phys Chem 72(5):635–638CrossRefGoogle Scholar
  48. 48.
    Kim BS, Mun SP (2009) Effect of Ce4+ pretreatment on swelling properties of cellulosic superabsorbents. Polym Adv Technol 20(12):899–906CrossRefGoogle Scholar
  49. 49.
    Ichikawa T, Nakajima T (1996) Superabsorptive polymers (from natural polysaccharides and polypeptides). In: Salamone JC (ed) Polymeric materials encyclopedia. CRC, Boca Raton, pp 8051–8059Google Scholar
  50. 50.
    Kulicke W-M, Nottelmann H (1989) Structure and swelling of some synthetic, semisynthetic, and biopolymer hydrogels. Adv Chem Ser 223:15–44CrossRefGoogle Scholar
  51. 51.
    Sannino A, Esposito A, De Rosa A, Cozzolino A, Ambrosio L, Nicolais L (2003) Biomedical application of a superabsorbent hydrogel for body water elimination in the treatment of edemas. J Biomed Mater Res 67A:1016–1024CrossRefGoogle Scholar
  52. 52.
    Demitri C, Del Sole R, Scalera F, Sannino A, Vasapollo G, Maffezzoli A, Ambrosio L, Nicolais L (2008) Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. J Appl Polym Sci 110(4):2453–2460CrossRefGoogle Scholar
  53. 53.
    Kabiri K, Faraji-Dana S, Zohuriaan-Mehr MJ (2005) Novel sulfobetaine-sulfonic acid-contained superswelling hydrogels. Polym Adv Technol 16:659–666CrossRefGoogle Scholar
  54. 54.
    Zohuriaan-Mehr MJ, Motazedi Z, Kabiri K, Ershad-Langroudi A, Allahdadi I (2006) Gum Arabic acrylic superabsorbing hydrogel hybrids: studies on swelling rate and environmental responsiveness. J Appl Polym Sci 102:5667–5674CrossRefGoogle Scholar
  55. 55.
    Pourjavadi A, Mahdavinia GR, Zohuriaan-Mehr MJ (2003) Modified chitosan. II. H-Chito-PAN, a novel pH-responsive superbasorbent hydrogel. J Appl Polym Sci 90:3115–3121CrossRefGoogle Scholar
  56. 56.
    Omidian H, Zohuriaan-Mehr MJ, Kabiri K, Shah K (2004) Polymer chemistry attractiveness: synthesis and swelling studies of gluttonous hydrogels in the advanced academic laboratory. J Polym Mater 21:281–292Google Scholar
  57. 57.
    Technical Brochure of Superabsorbent Polymer Research Lab. Nippon Shokubai Co. Accessed 15 Aug 2016
  58. 58.
    Ramazani-Harandi MJ, Zohuriaan-Mehr MJ, Yousefi AA, Ershad-Langroudi A, Kabiri K (2009) Effects of structural variables on AUL and rheological behavior of SAP gels. J Appl Polym Sci 113:3676–3686CrossRefGoogle Scholar
  59. 59.
    Zohuriaan-Mehr MJ (2006) Super-absorbents (in Persian). Iran Polymer Society, Tehran, pp 2–4Google Scholar
  60. 60.
    Fanta GF, Doane WM (1990) In: Glass JE, Swift G (eds) Agricultural and synthetic polymers: biodegradability and utilization. American Chemical Society, Washington, DC, pp 288–303CrossRefGoogle Scholar
  61. 61.
    Zohuriaan-Mehr MJ, Motazedi Z, Kabiri K, Ershad-Langroudi A, Allahdadi I (2006) Gum arabicacrylic superabsorbing hydrogel hybrids: studies on swelling rate and environmental responsiveness. J Appl Polym Sci 102:5667–5674CrossRefGoogle Scholar
  62. 62.
    Ramazani-Harandi MJ, Zohuriaan-Mehr MJ, Ershad-Langroudi A, Yousefi AA, Kabiri K (2006) Rheological determination of the swollen gel strength of the superabsorbent polymer hydrogels. Polym Test 25:470–474CrossRefGoogle Scholar
  63. 63.
    Jamshidi A, Ahmad Khan Beigi F, Kabiri K, Zohuriaan-Mehr MJ (2005) Optimized HPLC determination of residual monomer in hygienic SAP hydrogels. Polym Test 24:825–828CrossRefGoogle Scholar
  64. 64.
    Brown L (1979) High-performance liquid chromatographic determination of acrylic acid monomer in natural and polluted aqueous environments and polyacrylates. Analyst 104:1165–1170CrossRefGoogle Scholar
  65. 65.
    Zohuriaan-Mehr MJ, Pourjavadi A (2003) Superabsorbent hydrogels from starch-g-PAN: effect of some reaction variables on swelling behavior. J Polym Mater 20:113–120Google Scholar
  66. 66.
    Noonan C, Quigley S, Curley MAQ (2006) Skin integrity in hospitalized infants and children: a prevalence survey. J Pediatr Nurs 21(6):445–453CrossRefPubMedGoogle Scholar
  67. 67.
    Akin F, Spraker M, Aly R, Leyden J, Raynor W, Landin W (2001) Effects of breathable disposable diapers: reduced prevalence of Candida and common diaper dermatitis. Pediatr Dermatol 18(4):282–290CrossRefPubMedGoogle Scholar
  68. 68.
    Holaday B, Waugh G, Moukaddem VE, West J, Harshman S (1995) Diaper type and fecal contamination in child day care. J Pediatr Health Care 9(2):67–74CrossRefPubMedGoogle Scholar
  69. 69.
    Adalat S, Wall D, Goodyear H (2007) Diaper dermatitis-frequency and contributory factors in hospital attending children. Pediatr Dermatol 24(5):483–488CrossRefPubMedGoogle Scholar
  70. 70.
    Harper BG, Bashaw RN, Atkins BL (1972) Absorbent product containing a hydrocolloidal composition. U.S. Patent 3669103Google Scholar
  71. 71.
    Harmon C (1972) Absorbent product containing a hydrocolloidal composition. US Patent 3670731CrossRefGoogle Scholar
  72. 72.
    Davis JA, Leyden JJ, Grove GL, Raynor WJ (1989) Comparison of disposable diapers with fluff absorbent and fluff plus absorbent polymers: effects on skin hydration, skin pH, and diaper dermatitis. Pediatr Dermatol 6(2):102–108CrossRefPubMedGoogle Scholar
  73. 73.
    Bartlett BL (1994) Disposable diaper recycling process. US Patent 5292075Google Scholar
  74. 74.
    Marcì G, Mele G, Palmisano L, Pulito P, Sannino A (2006) Environmentally sustainable production of cellulose-based superabsorbent hydrogels. Green Chem 8(5):439–444CrossRefGoogle Scholar
  75. 75.
    Sannino A, Pappadà S, Madaghiele M, Maffezzoli A, Ambrosio L, Nicolais L (2005) Crosslinking of cellulose derivatives and hyaluronic acid with water-soluble carbodiimide. Polymer 46(25):11206–11212CrossRefGoogle Scholar
  76. 76.
    Ito T, Yeo Y, Highley CB, Bellas E, Benitez CA, Kohane DS (2007) The prevention of peritoneal adhesions by in situ cross-linking hydrogels of hyaluronic acid and cellulose derivatives. Biomaterials 28(6):975–983CrossRefPubMedGoogle Scholar
  77. 77.
    Sarvas M, Pavlenda P, Takacova E (2007) Effect of hydrogel application on survival and growth of pine seedlings in reclamations. J For Sci 53(5):204–209Google Scholar
  78. 78.
    Sannino A, Esposito A, Nicolais L, Del Nobile MA, Giovane A, Balestrieri C, Esposito R, Agresti M (2000) Cellulose-based hydrogels as body water retainers. J Mater Sci Mater Med 11(4):247–253CrossRefPubMedGoogle Scholar
  79. 79.
    Sannino A, Mensitieri G, Nicolais L (2004) Water and synthetic urine sorption capacity of cellulosebased hydrogels under a compressive stress field. J Appl Polym Sci 91(6):3791–3796CrossRefGoogle Scholar
  80. 80.
    Sannino A, Esposito A, De Rosa A, Cozzolino A, Ambrosio L, Nicolais L (2003) Biomedical application of a superabsorbent hydrogel for body water elimination in the treatment of edemas. J Biomed Mater Res A 67(3):1016–1024CrossRefPubMedGoogle Scholar
  81. 81.
    Esposito A, Sannino A, Cozzolino A, Quintiliano SN, Lamberti M, Ambrosio L, Nicolais L (2005) Response of intestinal cells and macrophages to an orally administered cellulose-PEG based polymer as a potential treatment for intractable edemas. Biomaterials 26(19):4101–4110CrossRefPubMedGoogle Scholar
  82. 82.
    Schachter M, Purcell H, Daly C, Sheppard M (2002) Management of overweight and obesity in patients with cardiovascular disease. Br J Cardiol 9(1):42–46Google Scholar
  83. 83.
    Sowers JR (2003) Obesity as a cardiovascular risk factor. Am J Med 115(8A):37S–41SCrossRefPubMedGoogle Scholar
  84. 84.
    James PT (2004) Obesity: the worldwide epidemic. Clin Dermatol 22(4):276–280CrossRefPubMedGoogle Scholar
  85. 85.
    Pittler MH, Ernst E (2004) Dietary supplements for body-weight reduction: a systematic review. Am J Clin Nutr 79(4):529–536CrossRefPubMedGoogle Scholar
  86. 86.
    Saper RB, Eisenberg DM, Phillips RS (2004) Common dietary supplements for weight loss. Am Fam Physician 70(9):1731–1738PubMedGoogle Scholar
  87. 87.
    Sannino A, Madaghiele M, Lionetto MG, Schettino T, Maffezzoli A (2006) A cellulose-based hydrogel as a potential bulking agent for hypocaloric diets: an in vitro biocompatibility study on rat intestine. J Appl Polym Sci 102(2):1524–1530CrossRefGoogle Scholar
  88. 88.
    Baumgartner S, Kristl J, Peppas NA (2002) Network structure of cellulose ethers used in pharmaceutical applications during swelling and at equilibrium. Pharm Res 19(8):1084–1090CrossRefPubMedGoogle Scholar
  89. 89.
    Lin CC, Metters AT (2006) Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev 5(12–13):1379–1408CrossRefGoogle Scholar
  90. 90.
    Andrade JD (1976) Hydrogels for medical and related applications, ACS symposium series, vol 31. American Chemical Society, Washington, DC, pp 1–36. Chapter 1CrossRefGoogle Scholar
  91. 91.
    El-Hag Ali A, Abd El-Rehim H, Kamal H, Hegazy D (2008) Synthesis of carboxymethyl cellulose based drug carrier hydrogel using ionizing radiation for possible use as specific delivery system. J Macromol Sci Pure Appl Chem 45(8):628–634CrossRefGoogle Scholar
  92. 92.
    Trojani C, Weiss P, Michiels JF, Vinatier C, Guicheux J, Daculsi G, Gaudray P, Carle GF, Rochet N (2005) Three-dimensional culture and differentiation of human osteogenic cells in an injectable hydroxypropylmethylcellulose hydrogel. Biomaterials 26(27):5509–5517CrossRefPubMedGoogle Scholar
  93. 93.
    Nguyen KT, West JL (2002) Photo polymerizable hydrogels for tissue engineering applications. Biomaterials 23(22):4307–4314CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Seliktar D (2005) Extracellular stimulation in tissue engineering. Ann N Y Acad Sci 1047(1):386–394CrossRefPubMedGoogle Scholar
  95. 95.
    Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26(4):419–431CrossRefGoogle Scholar
  96. 96.
    Muller FA, Muller L, Hoffman I, Greil P, Wenzel MM, Staudenmaier R (2006) Cellulose-based scaffold materials for cartilage tissue engineering. Biomaterials 27(21):3955–3963CrossRefPubMedGoogle Scholar
  97. 97.
    Backdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27(9):2141–2149CrossRefPubMedGoogle Scholar
  98. 98.
    Fellah BH, Weiss P, Gauthier O, Rouillon T, Pilet P, Daculsi G, Layrolle P (2006) Bone repairusing a new injectable self-crosslinkable bone substitute. J Orthop Res 24(4):628–635CrossRefPubMedGoogle Scholar
  99. 99.
    Tomihata K, Ikada Y (1997) Crosslinking of hyaluronic acid with water-soluble carbodiimide. J Biomed Mater Res 37(2):243–251CrossRefPubMedGoogle Scholar
  100. 100.
    Stachowiak AN, Bershteyn A, Tzatzalos E, Irvine DJ (2005) Bioactive hydrogels with an ordered cellular structure combine interconnected macroporosity and robust mechanical properties. Adv Mater 17(4):399–403CrossRefGoogle Scholar
  101. 101.
    Lee WK, Ichi T, Ooya T, Yamamoto T, Katoh M, Yui N (2003) Novel poly(ethylene glycol) scaffolds crosslinked by hydrolyzable polyrotaxane for cartilage tissue engineering. J Biomed Mater Res A 67(4):1087–1092CrossRefPubMedGoogle Scholar
  102. 102.
    Ford MC, Bertram JP, Hynes SR, Michaud M, Li Q, Young M, Segal SS, Madri JA, Lavik EB (2006) A macroporous hydrogel for the coculture of neural progenitor and endothelial cells to form functional vascular networks in vivo. Proc Natl Acad Sci USA 103(8):2512–2517CrossRefPubMedGoogle Scholar
  103. 103.
    Bryant SJ, Cuy JL, Hauch KD, Ratner BD (2007) Photo-patterning of porous hydrogels for tissue engineering. Biomaterials 28(19):2978–2986CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21:3307–3329CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Polymer and Textile Research Laboratory, Department of Applied Chemistry and Chemical EngineeringUniversity of RajshahiRajshahiBangladesh

Personalised recommendations