Advertisement

Cellulose-Based Hydrogel Films for Food Packaging

  • Tabli Ghosh
  • Vimal Katiyar
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)

Abstract

The use of fossil-based plastic in food packaging has increased the plastic-based waste, carbon footprint, and global warming, which has led to the development of alternatives such as hydrogels for biodegradable stringent food packaging industries. Hydrogels consist of biopolymers having three dimensional networks can trap a large quantity of water and formulation of cellulose-based hydrogels have laid high impact for food packaging application with improved biodegradability, biocompatibility, mechanical properties, plasticizing effect, etc. Cellulose hydrogels can be imparted as thin layers onto the polymers to improve its wettability, appearance, degradability, and resistance towards environmental agents. Cellulose-based hydrogels are mainly formulated from cellulose, bacterial cellulose, and its derivatives. Further, use of cellulose and its derivatives with gelatin, low-methoxyl pectin, polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA), polyethylene glycol (PEG), protein, etc., provide a better property for packaging food products. Various bioactive compounds such as silver nanoparticles and other antioxidants, antifungal agents can be embedded onto hydrogel films to improve its properties. Use of cellulose hydrogel as packaging material mainly depends on its hydrophilicity, swelling property, molecular weight, stability, physical, mechanical and chemical properties. Cellulose hydrogels generally consist of various chemistry of hydrogels such as physical cross-linking, chemical cross-linking, interpenetrating hydrogels, which find significant importance in biodegradable food packaging. Dry hydrogels from biopolymers can be used individually or in conjugate with others. However, use of individual polymers for making hydrogel creates problems in hydration which enhance water-polymer interactions than polymer-polymer interactions. In contrast, blending and composites of polymers help in enhancing interactions between polymer-polymer matrices than water-polymer matrices. The tailored properties of blends or composites of hydrogel can be formed through electrostatic interactions between opposite charges, formation of cross-links through covalent bond, formation of physical networks, and interpenetrating polymer networks.

Keywords

Cellulose Cellulose derivatives Hydrogel Biodegradability Food packaging 

References

  1. 1.
    Almasi H, Ghanbarzadeh B, Entezami AA (2010) Physicochemical properties of starch–CMC–nanoclay biodegradable films. Int J Biol Macromol 46:1–5.  https://doi.org/10.1016/j.ijbiomac.2009.10.001CrossRefPubMedGoogle Scholar
  2. 2.
    Alves V, Costa N, Hilliou L, Larotonda F, Gonçalves M, Sereno A, Coelhoso I (2006) Design of biodegradable composite films for food packaging. Desalination 199:331–333.  https://doi.org/10.1016/j.desal.2006.03.078CrossRefGoogle Scholar
  3. 3.
    An J, Zhang M, Wang S, Tang J (2008) Physical, chemical and microbiological changes in stored green asparagus spears as affected by coating of silver nanoparticles-PVP. LWT – Food Sci Technol 41:1100–1107.  https://doi.org/10.1016/j.lwt.2007.06.019CrossRefGoogle Scholar
  4. 4.
    Andrady AL, Neal MA (2009) Applications and societal benefits of plastics. Phil Trans R Soc B Biol Sci 364:1977–1984.  https://doi.org/10.1098/rstb.2008.0304CrossRefGoogle Scholar
  5. 5.
    Babu RP, O’Connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2:8.  https://doi.org/10.1186/2194-0517-2-8CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bergmann M, Flance IJ, Cruz PT, Klam N, Aronson PR, Joshi RA, Blumenthal HT (1962) Thesaurosis due to inhalation of hair spray. N Engl J Med 266:750–755.  https://doi.org/10.1056/NEJM196204122661503CrossRefPubMedGoogle Scholar
  7. 7.
    Bhardwaj U, Dhar P, Kumar A, Katiyar V (2014) Polyhydroxyalkanoates (PHA)-cellulose based Nanobiocomposites for food packaging applications. In: Food additives and packaging. American Chemical Society, Washington, DC, pp 275–314Google Scholar
  8. 8.
    Biswal DR, Singh RP (2004) Characterisation of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydr Polym 57:379–387.  https://doi.org/10.1016/j.carbpol.2004.04.020CrossRefGoogle Scholar
  9. 9.
    Capitani D, Crescenzi V, Segre AL (2001) Water in hydrogels. An NMR study of water/polymer interactions in weakly cross-linked chitosan networks. Macromolecules 34:4136–4144.  https://doi.org/10.1021/ma002109xCrossRefGoogle Scholar
  10. 10.
    Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84:40–53.  https://doi.org/10.1016/j.carbpol.2010.12.023CrossRefGoogle Scholar
  11. 11.
    Cunha AG, Gandini A (2010) Turning polysaccharides into hydrophobic materials: a critical review. Part 2. Hemicelluloses, chitin/chitosan, starch, pectin and alginates. Cellulose 17:1045–1065.  https://doi.org/10.1007/s10570-010-9435-5CrossRefGoogle Scholar
  12. 12.
    Cutter CN (2006) Opportunities for bio-based packaging technologies to improve the quality and safety of fresh and further processed muscle foods. Meat Sci 74:131–142.  https://doi.org/10.1016/j.meatsci.2006.04.023CrossRefPubMedGoogle Scholar
  13. 13.
    Davis G, Song JH (2006) Biodegradable packaging based on raw materials from crops and their impact on waste management. Ind Crop Prod 23:147–161.  https://doi.org/10.1016/j.indcrop.2005.05.004CrossRefGoogle Scholar
  14. 14.
    Dhar P, Bhardwaj U, Kumar A, Katiyar V (2014) Cellulose nanocrystals: a potential Nanofiller for food packaging applications. In: Food additives and packaging. American Chemical Society, Washington, DC, pp 197–239Google Scholar
  15. 15.
    Du X, He J (2008) Facile size-controllable syntheses of highly monodisperse polystyrene nano- and microspheres by polyvinylpyrrolidone-mediated emulsifier-free emulsion polymerization. J Appl Polym Sci 108:1755–1760.  https://doi.org/10.1002/app.27774CrossRefGoogle Scholar
  16. 16.
    Farris S, Schaich KM, Liu L, Piergiovanni L, Yam KL (2009) Development of polyion-complex hydrogels as an alternative approach for the production of bio-based polymers for food packaging applications: a review. Trends Food Sci Technol 20:316–332.  https://doi.org/10.1016/j.tifs.2009.04.003CrossRefGoogle Scholar
  17. 17.
    Farris S, Schaich KM, Liu L, Cooke PH, PiergiovanniL YKL (2011) Gelatin–pectin composite films from polyion-complex hydrogels. Food Hydrocoll 25:61–70.  https://doi.org/10.1016/j.foodhyd.2010.05.006CrossRefGoogle Scholar
  18. 18.
    Fredriksson H, Silverio J, Andersson R, Eliasson AC, Åman P (1998) The influence of amylose and amylopectin characteristics on gelatinization and retrogradation properties of different starches. Carbohydr Polym 35:119–134.  https://doi.org/10.1016/S0144-8617(97)00247-6CrossRefGoogle Scholar
  19. 19.
    Frushour BG, Koenig JL (1975) Raman scattering of collagen, gelatin, and elastin. Biopolymers 14:379–391.  https://doi.org/10.1002/bip.1975.360140211CrossRefPubMedGoogle Scholar
  20. 20.
    Fuse T, Goto F (1971) Studies on utilization of agar. Agric Biol Chem 35:799–804.  https://doi.org/10.1080/00021369.1971.10859998CrossRefGoogle Scholar
  21. 21.
    Gordon RS (1958) The preparation of radioactive polyvinylpyrrolidone for medical use. J Polym Sci 31:191–192.  https://doi.org/10.1002/pol.1958.1203112225CrossRefGoogle Scholar
  22. 22.
    Gregorova A, Saha N, Kitano T, Saha P (2015) Hydrothermal effect and mechanical stress properties of carboxymethylcellulose based hydrogel food packaging. Carbohydr Polym 117:559–568.  https://doi.org/10.1016/j.carbpol.2014.10.009CrossRefPubMedGoogle Scholar
  23. 23.
    Guan YL, Shao L, Yao KD (1996) A study on correlation between water state and swelling kinetics of chitosan-based hydrogels. J Appl Polym Sci 61:2325–2335.  https://doi.org/10.1002/(SICI)1097-4628(19960926)61:13<2325::AID-APP11>3.0.COCrossRefGoogle Scholar
  24. 24.
    Haaf F, Sanner A, Straub F (1985) Polymers of N-vinylpyrrolidone: synthesis, characterization and uses. Polym J 17:143–152.  https://doi.org/10.1295/polymj.17.143CrossRefGoogle Scholar
  25. 25.
    Harvath L, Falk W, Leonard EJ (1980) Rapid quantitation of neutrophil chemotaxis: use of a polyvinylpyrrolidone-free polycarbonate membrane in a multiwell assembly. J Immunol Methods 37:39–45.  https://doi.org/10.1016/0022-1759(80)90179-9CrossRefPubMedGoogle Scholar
  26. 26.
    Hoover R (2001) Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydr Polym 45:253–267.  https://doi.org/10.1016/S0144-8617(00)00260-5CrossRefGoogle Scholar
  27. 27.
    Humbert S, Rossi V, Margni M, Jolliet O, Loerincik Y (2009) Life cycle assessment of two baby food packaging alternatives: glass jars vs. plastic pots. Int J Life Cycle Assess 14:95–106.  https://doi.org/10.1007/s11367-008-0052-6CrossRefGoogle Scholar
  28. 28.
    Incoronato AL, Conte A, Buonocore GG, Del Nobile MA (2011) Agar hydrogel with silver nanoparticles to prolong the shelf life of Fior di latte cheese. J Dairy Sci 94:1697–1704.  https://doi.org/10.3168/jds.2010-3823CrossRefPubMedGoogle Scholar
  29. 29.
    Iwata T (2015) Biodegradable and bio-based polymers: future prospects of eco-friendly plastics. Angew Chem Int Ed 54:3210–3215.  https://doi.org/10.1002/anie.201410770CrossRefGoogle Scholar
  30. 30.
    Jin L, Bai R (2002) Mechanisms of lead adsorption on chitosan/PVA hydrogel beads. Langmuir 18:9765–9770.  https://doi.org/10.1021/la025917lCrossRefGoogle Scholar
  31. 31.
    Kim H-S, Yang H-S, Kim H-J (2005) Biodegradability and mechanical properties of agro-flour–filled polybutylene succinate biocomposites. J Appl Polym Sci 97:1513–1521.  https://doi.org/10.1002/app.21905CrossRefGoogle Scholar
  32. 32.
    Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393.  https://doi.org/10.1002/anie.200460587CrossRefGoogle Scholar
  33. 33.
    Koenig MF, Huang SJ (1995) Biodegradable blends and composites of polycaprolactone and starch derivatives. Polymer 36:1877–1882.  https://doi.org/10.1016/0032-3861(95)90934-TCrossRefGoogle Scholar
  34. 34.
    Kulkarni RK, Moore EG, Hegyeli AF, Leonard F (1971) Biodegradable poly(lactic acid) polymers. J Biomed Mater Res 5:169–181.  https://doi.org/10.1002/jbm.820050305CrossRefPubMedGoogle Scholar
  35. 35.
    Langmaier F, Mokrejs P, Kolomaznik K, Mladek M (2008) Biodegradable packing materials from hydrolysates of collagen waste proteins. Waste Manag 28:549–556.  https://doi.org/10.1016/j.wasman.2007.02.003CrossRefPubMedGoogle Scholar
  36. 36.
    Lithner D, Larsson Å, Dave G (2011) Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci Total Environ 409:3309–3324.  https://doi.org/10.1016/j.scitotenv.2011.04.038CrossRefPubMedGoogle Scholar
  37. 37.
    Maftoonazad N, Badii F (2009) Use of edible films and coatings to extend the shelf life of food products. Recent Pat Food Nutr Agric 1:162–170CrossRefPubMedGoogle Scholar
  38. 38.
    Makino Y, Hirata T (1997) Modified atmosphere packaging of fresh produce with a biodegradable laminate of chitosan-cellulose and polycaprolactone. Postharvest Biol Technol 10:247–254.  https://doi.org/10.1016/S0925-5214(96)01402-0CrossRefGoogle Scholar
  39. 39.
    Mansur HS, Oréfice RL, Mansur AAP (2004) Characterization of poly(vinyl alcohol)/poly(ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy. Polymer 45:7193–7202.  https://doi.org/10.1016/j.polymer.2004.08.036CrossRefGoogle Scholar
  40. 40.
    Mansur HS, Sadahira CM, Souza AN, Mansur AAP (2008) FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater Sci Eng C 28:539–548.  https://doi.org/10.1016/j.msec.2007.10.088CrossRefGoogle Scholar
  41. 41.
    Marcì G, Mele G, Palmisano L, Pulito P, Sannino A (2006) Environmentally sustainable production of cellulose-based superabsorbent hydrogels. Green Chem 8:439–444.  https://doi.org/10.1039/B515247JCrossRefGoogle Scholar
  42. 42.
    Marsh K, Bugusu B (2007) Food packaging – roles, materials, and environmental issues. J Food Sci 72:R39–R55.  https://doi.org/10.1111/j.1750-3841.2007.00301.xCrossRefPubMedGoogle Scholar
  43. 43.
    McPherson AE, Jane J (1999) Comparison of waxy potato with other root and tuber starches. Carbohydr Polym 40:57–70.  https://doi.org/10.1016/S0144-8617(99)00039-9CrossRefGoogle Scholar
  44. 44.
    Miles MJ, Morris VJ, Orford PD, Ring SG (1985) The roles of amylose and amylopectin in the gelation and retrogradation of starch. Carbohydr Res 135:271–281.  https://doi.org/10.1016/S0008-6215(00)90778-XCrossRefGoogle Scholar
  45. 45.
    Mohanty AK, Misra M, Drzal LT (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10:19–26.  https://doi.org/10.1023/A:1021013921916CrossRefGoogle Scholar
  46. 46.
    Morrison WR, Laignelet B (1983) An improved colorimetric procedure for determining apparent and total amylose in cereal and other starches. J Cereal Sci 1:9–20.  https://doi.org/10.1016/S0733-5210(83)80004-6CrossRefGoogle Scholar
  47. 47.
    Mu C, Guo J, Li X, Lin W, Li D (2012) Preparation and properties of dialdehydecarboxymethyl cellulose crosslinked gelatin edible films. Food Hydrocoll 27:22–29.  https://doi.org/10.1016/j.foodhyd.2011.09.005CrossRefGoogle Scholar
  48. 48.
    Muppalla SR, Kanatt SR, Chawla SP, Sharma A (2014) Carboxymethyl cellulose–polyvinyl alcohol films with clove oil for active packaging of ground chicken meat. Food Packag Shelf Life 2:51–58.  https://doi.org/10.1016/j.fpsl.2014.07.002CrossRefGoogle Scholar
  49. 49.
    Myung D, Waters D, Wiseman M, Duhamel PE, Noolandi J, Ta CN, Frank CW (2008) Progress in the development of interpenetrating polymer network hydrogels. Polym Adv Technol 19:647–657.  https://doi.org/10.1002/pat.1134CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Nguyen MK, Lee DS (2010) Injectable biodegradable hydrogels. Macromol Biosci 10:563–579.  https://doi.org/10.1002/mabi.200900402CrossRefPubMedGoogle Scholar
  51. 51.
    Niculescu M, Nistor C, Frébort I, Peč P, Mattiasson B, Csöregi E (2000) Redox hydrogel-based amperometric bienzyme electrodes for fish freshness monitoring. Anal Chem 72:1591–1597.  https://doi.org/10.1021/ac990848CrossRefPubMedGoogle Scholar
  52. 52.
    Ough CS (1960) Gelatin and Polyvinylpyrrolidone compared for fining red wines. Am J Enol Vitic 11:170–173Google Scholar
  53. 53.
    Oun AA, Rhim J-W (2015) Preparation and characterization of sodium carboxymethyl cellulose/cotton linter cellulose nanofibril composite films. Carbohydr Polym 127:101–109.  https://doi.org/10.1016/j.carbpol.2015.03.073CrossRefPubMedGoogle Scholar
  54. 54.
    Page BD, Lacroix GM (1992) Studies into the transfer and migration of phthalate esters from aluminium foil-paper laminates to butter and margarine. Food Addit Contam 9:197–212.  https://doi.org/10.1080/02652039209374064CrossRefPubMedGoogle Scholar
  55. 55.
    Pavlovic S, Brandao PRG (2003) Adsorption of starch, amylose, amylopectin and glucose monomer and their effect on the flotation of hematite and quartz. Miner Eng 16:1117–1122.  https://doi.org/10.1016/j.mineng.2003.06.011CrossRefGoogle Scholar
  56. 56.
    Peelman N, Ragaert P, De Meulenaer B, Adons D, Peeters R, Cardon L, Van Impe V, Devlieghere F (2013) Application of bioplastics for food packaging. Trends Food Sci Technol 32:128–141.  https://doi.org/10.1016/j.tifs.2013.06.003CrossRefGoogle Scholar
  57. 57.
    Pereira VA, de Arruda INQ, Stefani R (2015) Active chitosan/PVA films with anthocyanins from Brassica oleraceae (red cabbage) as time–temperature indicators for application in intelligent food packaging. Food Hydrocoll 43:180–188.  https://doi.org/10.1016/j.foodhyd.2014.05.014CrossRefGoogle Scholar
  58. 58.
    Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82:233–247.  https://doi.org/10.1002/jctb.1667CrossRefGoogle Scholar
  59. 59.
    Poirier Y, Nawrath C, Somerville C (1995) Production of Polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants. Nat Biotechnol 13:142–150.  https://doi.org/10.1038/nbt0295-142CrossRefGoogle Scholar
  60. 60.
    Reese ET, Siu RG, Levinson HS (1950) The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J Bacteriol 59:485PubMedPubMedCentralGoogle Scholar
  61. 61.
    Rhim J-W, Wang L-F (2013) Mechanical and water barrier properties of agar/κ-carrageenan/konjacglucomannan ternary blend biohydrogel films. Carbohydr Polym 96:71–81.  https://doi.org/10.1016/j.carbpol.2013.03.083CrossRefPubMedGoogle Scholar
  62. 62.
    Rhim J-W, Park H-M, Ha C-S (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38:1629–1652.  https://doi.org/10.1016/j.progpolymsci.2013.05.008CrossRefGoogle Scholar
  63. 63.
    Roy N, Saha N, Kitano T, Saha P (2012) Biodegradation of PVP–CMC hydrogel film: a useful food packaging material. Carbohydr Polym 89:346–353.  https://doi.org/10.1016/j.carbpol.2012.03.008CrossRefPubMedGoogle Scholar
  64. 64.
    Shi C, Zhu Y, Ran X, Wang M, Su Y, Cheng T (2006) Therapeutic potential of chitosan and its derivatives in regenerative Medicine1 1This work was supported by “973” programs on severe trauma (NO. 1999054205 and NO. 2005CB522605) from the Ministry of Science and Technology of China. J Surg Res 133:185–192.  https://doi.org/10.1016/j.jss.2005.12.013CrossRefPubMedGoogle Scholar
  65. 65.
    Stadtman ER, Levine RL (2003) Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25:207–218.  https://doi.org/10.1007/s00726-003-0011-2CrossRefPubMedGoogle Scholar
  66. 66.
    Suyatma NE, Copinet A, Tighzert L, Coma V (2004) Mechanical and barrier properties of biodegradable films made from chitosan and poly (lactic acid) blends. J Polym Environ 12:1–6.  https://doi.org/10.1023/B:JOOE.0000003121.12800.4eCrossRefGoogle Scholar
  67. 67.
    Tefera T, Kanampiu F, De Groote H, Hellin J, Mugo S, Kimenju S, Beyene Y, Boddupalli P, Shiferaw B, Banziger M (2011) The metal silo: an effective grain storage technology for reducing post-harvest insect and pathogen losses in maize while improving smallholder farmers’ food security in developing countries. Crop Prot 30:240–245.  https://doi.org/10.1016/j.cropro.2010.11.015CrossRefGoogle Scholar
  68. 68.
    Tesfaye M, Patwa R, Kommadath R, Kotecha P, Katiyar V (2016) Silk nanocrystals stabilized melt extruded poly (lactic acid) nanocomposite films: effect of recycling on thermal degradation kinetics and optimization studies. Thermochim Acta 643:41–52.  https://doi.org/10.1016/j.tca.2016.09.008CrossRefGoogle Scholar
  69. 69.
    Triantafyllou VI, Akrida-Demertzi K, Demertzis PG (2002) Migration studies from recycled paper packaging materials: development of an analytical method for rapid testing. Anal Chim Acta 467:253–260.  https://doi.org/10.1016/S0003-2670(02)00189-7CrossRefGoogle Scholar
  70. 70.
    Triantafyllou VI, Akrida-Demertzi K, Demertzis PG (2007) A study on the migration of organic pollutants from recycled paperboard packaging materials to solid food matrices. Food Chem 101:1759–1768.  https://doi.org/10.1016/j.foodchem.2006.02.023CrossRefGoogle Scholar
  71. 71.
    Vroman I, Tighzert L (2009) Biodegradable polymers. Materials 2:307–344.  https://doi.org/10.3390/ma2020307CrossRefPubMedCentralGoogle Scholar
  72. 72.
    Wang T, Turhan M, Gunasekaran S (2004) Selected properties of pH-sensitive, biodegradable chitosan–poly(vinyl alcohol) hydrogel. Polym Int 53:911–918.  https://doi.org/10.1002/pi.1461CrossRefGoogle Scholar
  73. 73.
    Weber CJ, Haugaard V, Festersen R, Bertelsen G (2002) Production and applications of biobased packaging materials for the food industry. Food Addit Contam 19:172–177.  https://doi.org/10.1080/02652030110087483CrossRefPubMedGoogle Scholar
  74. 74.
    Yen M-T, Yang J-H, Mau J-L (2009) Physicochemical characterization of chitin and chitosan from crab shells. Carbohydr Polym 75:15–21.  https://doi.org/10.1016/j.carbpol.2008.06.006CrossRefGoogle Scholar
  75. 75.
    Yoshida H, Hatakeyama T, Hatakeyama H (1993) Characterization of water in polysaccharide hydrogels by DSC. J Therm Anal Calorim 40:483–489.  https://doi.org/10.1007/BF02546617CrossRefGoogle Scholar
  76. 76.
    Zhang Y, Tao L, Li S, Wei Y (2011) Synthesis of multiresponsive and dynamic chitosan-based hydrogels for controlled release of bioactive molecules. Biomacromolecules 12:2894–2901.  https://doi.org/10.1021/bm200423fCrossRefPubMedGoogle Scholar
  77. 77.
    Zhao C, Cheng H, Jiang P, Yao Y, Han J (2014) Preparation of lutein-loaded particles for improving solubility and stability by Polyvinylpyrrolidone (PVP) as an emulsion-stabilizer. Food Chem 156:123–128.  https://doi.org/10.1016/j.foodchem.2014.01.086CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringIndian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations