Advertisement

Antimicrobial Food Pads Containing Bacterial Cellulose and Polysaccharides

  • Marta Stroescu
  • Gabriela Isopencu
  • Cristina Busuioc
  • Anicuta Stoica-Guzun
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)

Abstract

Antimicrobial food packaging is one of the major innovations in the field of packaging technology. To extend food shelf life and to contribute to the consumer’s health are the main challenges of the new technology. Absorbent pads are widely used in food industry in order to preserve sensorial characteristics of packaged fresh or refrigerated food products, such as meat or poultry and also fruit and vegetables which could generate exudates during storage time. Cellulose and cellulose-derived materials are already used as components in food pads architecture. To tailor an antimicrobial food pad using natural antimicrobial agents is also a challenge which could be achieved. The aim of this chapter is to give an overview of antimicrobial packaging, underlying especially the role of natural antimicrobial agents and biopolymers. Examples are focused on cellulose and its derivative uses. In the second part of this chapter, we propose new composite hydrogels composed of bacterial cellulose and other polysaccharides as xanthan and carboxymethylcellulose, hydrogels which could act as superabsorbent of moisture and fluids exuded from packaged fresh food products. As antimicrobial substances we have tested potassium sorbate and thyme essential oil. The samples impregnated with thyme essential oil were tested against four microbial strains: Escherichia coli, Bacillus subtilis, Candida utilis (Torula), and Penicillium hirsutum.

Keywords

Antimicrobial Food pad Bacterial cellulose Carboxymethylcellulose Xanthan Moisture absorber 

Notes

Acknowledgments

A. Stoica-Guzun gratefully acknowledges the financial support of the European Commission through the European Regional Development Fund and of the Romanian state budget, under the grant agreement 155/25.11.2016 (Project POC P-37-449, acronym ASPiRE).

References

  1. 1.
    Lee KT (2010) Quality and safety aspects of meat products as affected by various physical manipulations of packaging materials. Meat Sci 86:138–150PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Biji KB, Ravishankar CN, Mohan CO, Srinivasa Gopal TK (2015) Smart packaging systems for food applications: a review. J Food Sci Technol 52(10):6125–6135PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Han JH, Floros JD (1998) Simulating diffusion model and determining diffusivity of potassium sorbate through plastic to develop antimicrobial packaging films. J Food Process Preserv 22:107–122CrossRefGoogle Scholar
  4. 4.
    Jipa IM, Stoica A, Stroescu M, Dobre LM, Dobre T, Jinga S, Tardei C (2012) Potassium sorbate release from poly(vinyl alcohol)-bacterial cellulose films. Chem Pap 66(2):38–143CrossRefGoogle Scholar
  5. 5.
    Flores S, Conte A, Campos C, Gerschenson L, Del Nobile M (2007) Mass transport properties of tapioca-based active edible films. J Food Eng 8:580–586CrossRefGoogle Scholar
  6. 6.
    Silveira MFA, Soares NFF, Geraldine RM, Andrade NJ, Botrel DA, Gonçalves MPJ (2007) Active film incorporated with sorbic acid on pastry dough conservation. Food Control 18:1063–1067CrossRefGoogle Scholar
  7. 7.
    Lambert RJ, Stratford M (1999) Weak-acid preservatives: modelling microbial inhibition and response. J Appl Microbiol 86:157–164PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Eklund T (1985) Inhibition of microbial growth at different pH levels by benzoic acid and esters of p-hydroxybenzoic acid. Int J Food Microbiol 2:159–167CrossRefGoogle Scholar
  9. 9.
    Vojdani F, Torres JA (1990) Potassium sorbate permeability of methylcellulose and hydroxypropyl methylcellulose coatings: effect of fatty acids. J Food Sci 55(3):841–846CrossRefGoogle Scholar
  10. 10.
    Redl A, Gontard N, Guilbert S (1996) Determination of sorbic acid diffusivity in edible wheat gluten and lipid based films. J Food Sci 61(1):116–120CrossRefGoogle Scholar
  11. 11.
    Guilbert S, Gontard N, Gorris LGM (1996) Prolongation of the shelf-life of perishable food products using biodegradable films and coatings. LTW-Food Sci Technol 29:10–17Google Scholar
  12. 12.
    Cagri A, Ustunol Z, Ryser ET (2001) Antimicrobial, mechanical, and moisture barrier properties of low pH whey protein-based edible films containing p-aminobenzoic or sorbic acids. J Food Sci 66(6):865–870CrossRefGoogle Scholar
  13. 13.
    Eswaranandam S, Hettiarachchy NS, Johnson MG (2004) Antimicrobial activity of citric, lactic, malic, or tartaric acids and nisin-incorporated soy protein film against Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella gaminara. J Food Sci 69(3):FMS79–FMS84Google Scholar
  14. 14.
    Hauser C, Wunderlich J (2011) Antimicrobial packaging films with a sorbic acid based coating. Procedia – Food Sci 1:197–202CrossRefGoogle Scholar
  15. 15.
    Wang H, He J, Sun H (2016) Diffusion analysis and modeling of potassium sorbate in gelatin based antimicrobial film. J Mater Sci Chem Eng 4:1–7Google Scholar
  16. 16.
    de Azeredo HMC (2013) Antimicrobial nanostructures in food packaging. Trends Food Sci Technol 30:56–69CrossRefGoogle Scholar
  17. 17.
    Martins N, Barros L, Henriques M, Silva S, Ferreira ICFR (2015) Activity of phenolic compounds from plant origin against Candida species. Ind Crop Prod 74:648–670CrossRefGoogle Scholar
  18. 18.
    Reis Giada LM (2013) Chapter 4: food phenolic compounds: main classes, sources and their antioxidant power. In: Morales-González JA (ed) Oxidative stress and chronic degenerative diseases – a role for antioxidants. In Tech. ISBN 978-953-51-1123-8, under CC BY 3.0 licence, Open access, pp 87–112Google Scholar
  19. 19.
    Martins S, Mussatto SI, Martínez-Avila G, Montañez-Saenz J, Aguilar CN, Teixeira JA (2011) Bioactive phenolic compounds: production and extraction by solid-state fermentation. A review. Biotechnol Adv 29:365–373PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Cushnie TPT, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26:343–356PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods–a review. Int J Food Microbiol 94:223–253PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Dorman HJD, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88:308–316PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Tiwari BK, Valdramidis VP, O’Donnell CP, Muthukumarappan K, Bourke P, Cullen PJ (2009) Application of natural antimicrobials for food preservation. J Agric Food Chem 57(14): 5987–6000PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Gaare M, Hussain SA, Mishra SK, Ram C (2014) Chapter 2: natural antimicrobials for preservation of food. In: Mishra BK (ed) Dairy and food processing industry (recent trends) Part1. Astral International Ltd, New Delhi, pp 204–230Google Scholar
  25. 25.
    Dutta PK, Tripathi S, Mehrotra GK, Dutta J (2009) Perspectives for chitosan based antimicrobial films in food applications. Food Chem 114:1173–1182CrossRefGoogle Scholar
  26. 26.
    No HK, Park NY, Lee SH, Meyers SP (2002) Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int J Food Microbiol 74:65–72PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Zheng L-Y, Zhu J-F (2003) Study on antimicrobial activity of chitosan with different molecular weights. Carbohydr Polym 54:527–530CrossRefGoogle Scholar
  28. 28.
    Foster LJR, Butt J (2011) Chitosan films are NOT antimicrobial. Biotechnol Lett 33:417–421PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Tripathi S, Mehrotra GK, Dutta PK (2008) Chitosan based antimicrobial films for food packaging applications. e-Polymers 093:1–7Google Scholar
  30. 30.
    Zhai M, Zhao L, Yoshii F, Kume T (2004) Study on antibacterial starch/chitosan blend film formed under the action of irradiation. Carbohydr Polym 57(1):83–88CrossRefGoogle Scholar
  31. 31.
    Ojagh SM, Rezaei M, Razavi SH, Hosseini SMH (2010) Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chem 120:193–198CrossRefGoogle Scholar
  32. 32.
    Ouattara B, Simard RE, Piette G, Bégin A, Holley RA (2000) Inhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with chitosan. Int J Food Microbiol 62:139–148CrossRefGoogle Scholar
  33. 33.
    Pranoto Y, Rakshit SK, Salokhe VM (2005) Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin. LTW–Food Sci Technol 38:859–865Google Scholar
  34. 34.
    Yang S-C, Lin C-H, Sung CT, Fang J-Y (2014) Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Front Microbiol 5:241.  https://doi.org/10.3389/fmicb.2014.00241CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Bemena LD, Mohamed LA, Fernandes AM, Lee BH (2014) Applications of bacteriocins in food, livestock health and medicine. Int J Curr Microbiol Appl Sci 3(12):924–949Google Scholar
  36. 36.
    Gharsallaoui A, Oulahal N, Joly C, Degraeve P (2016) Nisin as a food preservative: part 1: physicochemical properties, antimicrobial activity, and main uses. Crit Rev Food Sci Nutr 56(8):1262–1274PubMedCrossRefGoogle Scholar
  37. 37.
    Gharsallaoui A, Joly C, Oulahal N, Degraeve P (2016) Nisin as a food preservative: part 2: antimicrobial polymer materials containing Nisin. Crit Rev Food Sci Nutr 56(8):1275–1289PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Mauriello G, De Luca E, La Storia A, Villani F, Ercolini D (2005) Antimicrobial activity of a nisin-activated plastic film for food packaging. Lett Appl Microbiol 41:464–469PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Hong SI, Rhim JW (2008) Antimicrobial activity of organically modified nano-clays. J Nanosci Nanotechnol 8(11):5818–5824PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Maryan AS, Montazer M (2015) Natural and organo-montmorillonite as antibacterial nanoclays for cotton garment. J Ind Eng Chem 22:164–170CrossRefGoogle Scholar
  41. 41.
    Rhim JW, Hong SI, Park HM, Ng PKW (2006) Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem 54:5814–5822PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Monte-Serrano M, Fernandez-Saiz P, Ortí-Lucas RM, Hernando B (2015) Effective antimicrobial coatings containing silver-based nanoclays and zinc pyrithione. J Microbiol Biochem Technol 7:398–403CrossRefGoogle Scholar
  43. 43.
    Puthussery H, Prasad R, Gorazda K, Roy I (2015) Production, chemistry and properties of biopolymers in food science. In: Cirillo G, Gianfranco U, Iemma SF (eds) Functional polymers in food science: from technology to biology. 1, Food packaging. Scrivener Publishing, Beverly,MA, Wiley, p 96. ISBN 978-1-118-59489-6Google Scholar
  44. 44.
    Fabra MJ, Lopez-Rubio A, Lagaron JM (2014) Biopolymers for food packaging applications. In: De Aguilar de Armas MR, Román JS (eds) Smart polymers and their applications. Woodhead Publishing, Elsevier, pp 476–509CrossRefGoogle Scholar
  45. 45.
    Cacicedo ML, Castro MC, Servetas I, Bosnea L, Boura K, Tsafrakidou P, Dima A, Terpou A, Koutinas A, Castro GR (2016) Progress in bacterial cellulose matrices for biotechnological applications. Bioresour Technol 213:172–180PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Froschauer C, Hummel M, Iakovlev M, Roselli A, Schottenberger H, Sixta H (2013) Separation of hemicellulose and cellulose from wood pulp by means of ionic liquid/cosolvent systems. Biomacromolecules 14(6):1741–1750PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRefGoogle Scholar
  48. 48.
    Rajwade JM, Paknikar KM, Kumbhar JV (2015) Applications of bacterial cellulose and its composites in biomedicine. Appl Microbiol Biotechnol 99:2491–2511PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Abeer MM, Mohd Amin MCI, Martin C (2014) A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects. J Pharm Pharmacol 66:1047–1061PubMedPubMedCentralGoogle Scholar
  50. 50.
    Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47:107–124Google Scholar
  51. 51.
    Ullah H, Wahid F, Santos HA, Khan T (2016) Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. Carbohydr Polym 150:330–352PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Ullah H, Santos HA, Khan T (2016) Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose 23(4):2291–2314CrossRefGoogle Scholar
  53. 53.
    Shi Z, Zhang Y, Phillips GO, Yang G (2014) Utilization of bacterial cellulose in food. Food Hydrocoll 35:539–545CrossRefGoogle Scholar
  54. 54.
    Sulaeva I, Henniges U, Rosenau T, Potthast A (2015) Bacterial cellulose as a material for wound treatment: properties and modifications. A review. Biotechnol Adv 33:1547–1571PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Santos SM, Carbajo JM, Gómez N, Quintana E, Ladero M, Sánchez A, Chinga-Carrasco G, Villar JC (2016) Use of bacterial cellulose in degraded paper restoration. Part I: application on model papers. J Mater Sci 51:1541–1552CrossRefGoogle Scholar
  56. 56.
    Santos SM, Carbajo JM, Quintana E, Ibarra D, Gomez N, Ladero M, Eugenio ME, Villar JC (2015) Characterization of purified bacterial cellulose focused on its use on paper restoration. Carbohydr Polym 116:173–181PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Tomé LC, Brandão L, Mendes AM, Silvestre AJ, Neto CP, Gandini A, Freire CS, Marrucho IM (2010) Preparation and characterization of bacterial cellulose membranes with tailored surface and barrier properties. Cellulose 17:1203–1211CrossRefGoogle Scholar
  58. 58.
    Stoica-Guzun A, Stroescu M, Jinga S, Jipa I, Dobre T, Dobre L (2012) Ultrasound influence upon calcium carbonate precipitation on bacterial cellulose membranes. Ultrason Sonochem 19(4):909–915PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Stroescu M, Stoica-Guzun A, Jinga SI, Dobre T, Jipa IM, Dobre LM (2012) Influence of sodium dodecyl sulfate and cetyl trimethylammonium bromide upon calcium carbonate precipitation on bacterial cellulose. Korean J Chem Eng 29(9):1216–1223CrossRefGoogle Scholar
  60. 60.
    Nguyen VT, Gidley MJ, Dykes GA (2008) Potential of a nisin-containing bacterial cellulose film to inhibit Listeria monocytogenes on processed meats. Food Microbiol 25:471–478PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Padrão J, Gonçalves S, Silva JP, Sencadas V, Lanceros-Méndez S, Pinheiro AC, Vicente AA, Rodrigues LR, Dourado F (2016) Bacterial cellulose-lactoferrin as an antimicrobial edible packaging. Food Hydrocoll 58:126–140CrossRefGoogle Scholar
  62. 62.
    Dobre L-M, Stoica-Guzun A, Stroescu M, Jipa I, Dobre T, Ferdes M, Ciumpiliac S (2012) Modelling of sorbic acid diffusion through bacterial cellulose-based antimicrobial films. Chem Pap 66:144–151CrossRefGoogle Scholar
  63. 63.
    Jipa IM, Dobre L, Stroescu M, Stoica-Guzun A, Jinga S, Dobre T (2012) Preparation and characterization of bacterial cellulose-poly(vinyl alcohol) films with antimicrobial properties. Mater Lett 66(1):125–127CrossRefGoogle Scholar
  64. 64.
    Jipa IM, Stoica-Guzun A, Stroescu M (2012) Controlled release of sorbic acid from bacterial cellulose based mono and multilayer antimicrobial films. LTW–Food Sci Technol 47:400–406Google Scholar
  65. 65.
    Barud HS, Barrios C, Regiani T, Marques RFC, Verelst M, Dexpert-Ghys J, Messaddeq Y, Ribeiro SJL (2008) Self-supported silver nanoparticles containing bacterial cellulose membranes. Mater Sci Eng C 28:515–518CrossRefGoogle Scholar
  66. 66.
    Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51CrossRefGoogle Scholar
  67. 67.
    Shao W, Liu H, Liu X, Sun H, Wang S, Zhang R (2015) pH-responsive release behavior and anti-bacterial activity of bacterial cellulose-silver nanocomposites. Int J Biol Macromol 76:209–217PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Dobre L-M, Stoica A, Stroescu M, Jinga S, Jipa I, Dobre T (2010) Characterization of composite materials based on biocellulose membranes impregnated with silver particles as antimicrobial agent. UPB Sci Bull Ser B 72(4):55–64Google Scholar
  69. 69.
    Nieto MB (2009) Chapter 3: structure and function of polysaccharide gum-based edible films and coatings. In: Embuscado ME, Huber KC (eds) Edible films and coatings for food applications. Springer, New York, pp 77–78Google Scholar
  70. 70.
    Jiménez A, Fabra MJ, Talens P, Chiralt A (2015) Polysaccharides as valuable materials in food packaging. In: Cirillo G, Spizzirri UG, Iemma F (eds) Functional polymers in food science; from technology to biology. Wiley, Hoboken, p 214Google Scholar
  71. 71.
    Ghanbarzadeh B, Almasi H, Entezami AA (2010) Physical properties of edible modified starch/carboxymethyl cellulose films. Innov Food Sci Emerg Technol 11:697–702CrossRefGoogle Scholar
  72. 72.
    Roy N, Saha N, Kitano T, Saha P (2012) Biodegradation of PVP-CMC hydrogel film: a useful food packaging material. Carbohydr Polym 89:346–353PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Palaniraj A, Jayaraman V (2011) Production, recovery and applications of xanthan gum by Xanthomonas campestris. J Food Eng 106:1–12CrossRefGoogle Scholar
  74. 74.
    Bejenariu B, Popa M, Dulong V, Picton L, Le Cerf D (2009) Trisodium trimetaphosphate crosslinked xanthan networks: synthesis, swelling, loading and releasing behavior. Polym Bull 62:525–538CrossRefGoogle Scholar
  75. 75.
    Tao Y, Zhang R, Xu W, Bai Z, Zhou Y, Zhao S, Xu Y, Yu D (2016) Rheological behavior and microstructure of release-controlled hydrogels based on xanthan gum crosslinked with sodium trimetaphosphate. Food Hydrocoll 52:923–933CrossRefGoogle Scholar
  76. 76.
    Garcia-Hernandez A, Lobato-Calleros C, Vernon-Carter EJ, Sosa-Hernandez E, Alvarez-Ramirez J (2017) Effects of clay concentration on the morphology and rheological properties of xanthan gum-based hydrogels reinforced with montmorillonite particles. J Appl Polym Sci 134:44517.  https://doi.org/10.1002/APP.44517CrossRefGoogle Scholar
  77. 77.
    Argin-Soysal S, Kofinas P, Lo YM (2009) Effect of complexation conditions on xanthan-chitosan polyelectrolyte complex gels. Food Hydrocoll 23:202–209CrossRefGoogle Scholar
  78. 78.
    de Morais LM, Carneiro LC, Bianchini D, Dias AR, Zavareze ER, Prentice C, Moreira AS (2017) Structural, thermal, physical, mechanical, and barrier properties of chitosan films with the addition of xanthan gum. J Food Sci 82(3):698–705CrossRefGoogle Scholar
  79. 79.
    Bueno VB, Bentini R, Catalani LH, Petri DFS (2013) Synthesis and swelling behavior of xanthan-based hydrogels. Carbohydr Polym 92:1091–1099PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Bueno VB, Petri DFS (2014) Xanthan hydrogel films: molecular conformation, charge density and protein carriers. Carbohydr Polym 101:897–904PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Gils PS, Ray D, Sahoo PK (2009) Characteristics of xanthan gum-based biodegradable superporous hydrogel. Int J Biol Macromol 45:364–371PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Jindal R, Kaith BS, Mittal H (2011) Rapid synthesis of acrylamide onto xanthan gum based hydrogels under microwave radiations for enhanced thermal and chemical modifications. Polym Renew Resour 2(3):105–116Google Scholar
  83. 83.
    Srivastava A, Mishra DK, Tripathy J, Behari K (2009) One pot synthesis of xanthan gum-g-N-vinyl-2-pyrrolidone and study of their metal ion sorption behavior and water swelling property. J Appl Polym Sci 111:2872–2880CrossRefGoogle Scholar
  84. 84.
    Bhattacharya SS, Mazahir F, Banerjee S, Verma A, Ghosh A (2013) Preparation and in vitro evaluation of xanthan gum facilitated superabsorbent polymeric microspheres. Carbohydr Polym 98:64–72PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Feng E, Ma G, Wu Y, Wang H, Lei Z (2014) Preparation and properties of organic–inorganic composite superabsorbent based on xanthan gum and loess. Carbohydr Polym 111:463–468PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Hemvichian K, Chanthawong A, Suwanmala P (2014) Synthesis and characterization of superabsorbent polymer prepared by radiation-induced graft copolymerization of acrylamide onto carboxymethylcellulose for controlled release of agrochemicals. Radiat Phys Chem 103:167–171CrossRefGoogle Scholar
  87. 87.
    Bao Y, Ma J, Lib N (2011) Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydr Polym 84:76–82CrossRefGoogle Scholar
  88. 88.
    Ni B, Liu M, Lü S (2009) Multifunctional slow-release urea fertilizer from ethylcellulose and superabsorbent coated formulations. Chem Eng J 155:892–898CrossRefGoogle Scholar
  89. 89.
    Schexnailder P, Schmidt G (2009) Nanocomposite polymer hydrogels. Colloid Polym Sci 287:1–11CrossRefGoogle Scholar
  90. 90.
    Wu L, Liu M, Liang R (2008) Preparation and properties of a double-coated slow-release NPK compound fertilizer with superabsorbent and water-retention. Bioresour Technol 99:547–554PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Ge H, Wang S (2014) Thermal preparation of chitosan–acrylic acid superabsorbent: optimization, characteristic and water absorbency. Carbohydr Polym 113:296–303PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Ma J, Li X, Bao Y (2015) Advances in cellulose-based superabsorbent hydrogels. RSC Adv 5:59745–59757CrossRefGoogle Scholar
  93. 93.
    Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46:92–100CrossRefGoogle Scholar
  94. 94.
    Bidgoli H, Zamani A, Taherzadeh MJ (2010) Effect of carboxymethylation conditions on water binding capacity of chitosan-based superabsorbents. Carbohydr Res 345:2683–2689PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Chen P, Zhang W, Luo W, Fang Y (2004) Synthesis of superabsorbent polymers by irradiation and their applications in agriculture. J Appl Polym Sci 93:1748–1755CrossRefGoogle Scholar
  96. 96.
    Hennink WE, van Nostrum CF (2002) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 54:13–36PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23CrossRefGoogle Scholar
  98. 98.
    Sarkar N (1979) Thermal gelation properties of methyl and hydroxypropyl methylcellulose. J Appl Polym Sci 24(4):1073–1087CrossRefGoogle Scholar
  99. 99.
    Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2:353–373CrossRefPubMedCentralGoogle Scholar
  100. 100.
    Li L (2002) Thermal gelation of methylcellulose in water: scaling and thermoreversibility. Macromolecules 35:5990–5998CrossRefGoogle Scholar
  101. 101.
    Yoo YJ, Um IC (2013) Examination of thermo-gelation behavior of HPMC and HEMC aqueous solutions using rheology. Korea-Aust Rheol J 25(2):67–75CrossRefGoogle Scholar
  102. 102.
    Silva SMC, Pinto FV, Antunes FE, Miguel MG, Sousa JJS, Pais AACC (2008) Aggregation and gelation in hydroxypropylmethyl cellulose aqueous solutions. J Colloid Interf Sci 327:333–340CrossRefGoogle Scholar
  103. 103.
    Petrov P, Petrova E, Stamenova R, Tsvetanov CB, Riess G (2006) Cryogels of cellulose derivatives prepared via UV irradiation of moderately frozen systems. Polymer 47:6481–6484CrossRefGoogle Scholar
  104. 104.
    Stoyneva V, Momekova D, Kostova B, Petrov P (2014) Stimuli sensitive super- macroporous cryogels based on photo-crosslinked 2-hydroxyethylcellulose and chitosan. Carbohydr Polym 99:825–830PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Setoyama M, Yamamoto K, Kadokawa J-i (2014) Preparation of cellulose/xanthan gum composite films and hydrogels using ionic liquid. J Polym Environ 22(3):298–303CrossRefGoogle Scholar
  106. 106.
    Chang C, Lue A, Zhang L (2008) Effects of crosslinking methods on structure and properties of cellulose/PVA hydrogels. Macromol Chem Phys 209:1266–1273CrossRefGoogle Scholar
  107. 107.
    Chen H, Fan M (2008) Novel thermally sensitive pH-dependent chitosan/carboxymethyl cellulose hydrogels. J Bioact Compat Polym 23:38–48CrossRefGoogle Scholar
  108. 108.
    Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84:40–53CrossRefGoogle Scholar
  109. 109.
    Chang C, Duan B, Zhang L (2009) Fabrication and characterization of novel macroporous cellulose–alginate hydrogels. Polymer 50:5467–5473CrossRefGoogle Scholar
  110. 110.
    Xiao M, Hu J, Zhang L (2014) Synthesis and swelling behavior of biodegradable cellulose-based hydrogels. Adv Mater Res 1033–1034:352–356CrossRefGoogle Scholar
  111. 111.
    Peng N, Wang Y, Ye Q, Liang L, An Y, Li Q, Chang C (2016) Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity. Carbohydr Polym 137:59–64PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Tang H, Chen H, Duan B, Lu A, Zhang L (2014) Swelling behaviors of superabsorbent chitin/carboxymethylcellulose hydrogels. J Mater Sci 49:2235–2242CrossRefGoogle Scholar
  113. 113.
    Sannino A, Esposito A, De Rosa A, Cozzolino A, Ambrosio L, Nicolais L (2003) Biomedical application of a superabsorbent hydrogel for body water elimination in the treatment of edemas. J Biomed Mater Res A 67:1016–1023PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Sannino A, Madaghiele M, Lionetto MG, Schettino T, Maffezzoli A (2006) A cellulose-based hydrogel as a potential bulking agent for hypocaloric diets: an in vitro biocompatibility study on rat intestine. J Appl Polym Sci 102:1524–1530CrossRefGoogle Scholar
  115. 115.
    Demitri C, Scalera F, Madaghiele M, Sannino A, Maffezzoli A (2013) Potential of cellulose-based superabsorbent hydrogels as water reservoir in agriculture. Int J Polym Sci 2013:435073, 6 pagesCrossRefGoogle Scholar
  116. 116.
    Coma V, Sebti I, Pardon P, Pichavant FH, Deschamps A (2003) Film properties from crosslinking of cellulosic derivatives with a polyfunctional carboxylic acid. Carbohydr Polym 51:265–271CrossRefGoogle Scholar
  117. 117.
    Demitri C, Del Sole R, Scalera F, Sannino A, Vasapollo G, Maffezzoli A, Ambrosio L, Nicolais L (2008) Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. J Appl Polym Sci 110:2453–2460CrossRefGoogle Scholar
  118. 118.
    Hashem M, Sharaf S, Abd El-Hady MM, Hebeish A (2013) Synthesis and characterization of novel carboxymethylcellulose hydrogels and carboxymethylcellulolse-hydrogel-ZnO-nanocomposites. Carbohydr Polym 95:421–427PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Ibrahim SM, Salmawi KME (2013) Preparation and properties of carboxymethyl cellulose (CMC)/sodium alginate (SA) blends induced by gamma irradiation. J Polym Environ 21:520–527CrossRefGoogle Scholar
  120. 120.
    El-Naggar AA (2016) Radiation synthesis of superabsorbent hydrogels based on carboxymethylcellulose/sodium alginate for absorbent of heavy metal ions from waste water. J Thermoplast Compos Mat 29(1):16–27CrossRefGoogle Scholar
  121. 121.
    Raafat AI, Eid M, El-Arnaouty MB (2012) Radiation synthesis of superabsorbent CMC based hydrogels for agriculture applications. Nucl Inst Methods Phys Res B 283:71–76CrossRefGoogle Scholar
  122. 122.
    Fekete T, Borsa J, Takács E, Wojnárovits L (2017) Synthesis of carboxymethylcellulose/starch superabsorbent hydrogels by gamma-irradiation. Chem Cent J 11:46.  https://doi.org/10.1186/s13065-017-0273-5CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Fekete T, Borsa J, Takács E, Wojnárovits L (2017) Synthesis and characterization of superabsorbent hydrogels based on hydroxyethylcellulose and acrylic acid. Carbohydr Polym 166:300–308PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Bao Y, Ma J, Sun Y (2012) Swelling behaviors of organic/inorganic composites based on various cellulose derivatives and inorganic particles. Carbohydr Polym 88(2):589–595CrossRefGoogle Scholar
  125. 125.
    Gao J, Yang Q, Ran F, Ma G, Lei Z (2016) Preparation and properties of novel eco-friendly superabsorbent composites based on raw wheat bran and clays. Appl Clay Sci 132–133:739–747CrossRefGoogle Scholar
  126. 126.
    Mukerabigw JF, Le S, Fan L, Wang H, Luo S, Ma X, Qin J, Huang X, Cao Y (2016) Eco-friendly nano-hybrid superabsorbent composite from hydroxyethyl cellulose and diatomite. RSC Adv 6:31607–31618CrossRefGoogle Scholar
  127. 127.
    Wang Z, Ning A, Xie P, Gao G, Xie L, Li X, Song A (2017) Synthesis and swelling behaviors of carboxymethyl cellulose-based superabsorbent resin hybridized with graphene oxide. Carbohydr Polym 157:48–56PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Dragan ES (2014) Design and applications of interpenetrating polymer network hydrogels. Rev Chem Eng J 243:572–590CrossRefGoogle Scholar
  129. 129.
    Ozdemir M, Floros JD (2004) Active food packaging technologies. Crit Rev Food Sci Nutr 44(3):185–193PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Ahmed I, Lin H, Zou L, Brody AL, Li Z, Qazi IM, Pavase TR, Lv L (2017) A comprehensive review on the application of active packaging technologies to muscle foods. Food Control 82:163–178CrossRefGoogle Scholar
  131. 131.
    Otoni CG, Espitia PJP, Avena-Bustillos RJ, McHugh TH (2016) Trends in antimicrobial food packaging systems: emitting sachets and absorbent pads. Food Res Int 83:60–73CrossRefGoogle Scholar
  132. 132.
    Fernández A, Soriano E, López-Carballo G, Picouet P, Lloret E, Gavara R, Hernández-Muñoz P (2009) Preservation of aseptic conditions in absorbent pads by using silver nanotechnology. Food Res Int 42:1105–1112CrossRefGoogle Scholar
  133. 133.
    Llorens A, Lloret E, Picouet PA, Trbojevich R, Fernandez A (2012) Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends Food Sci Technol 24:19–29CrossRefGoogle Scholar
  134. 134.
    Llorens A, Lloret E, Picouet PA, Fernandez A (2012) Study of the antifungal potential of novel cellulose/copper composites as absorbent materials for fruit juices. Int J Food Microbiol 158:113–119PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Sánchez-González L, Vargas M, González-Martínez C, Chiralt A, Cháfer M (2011) Use of essential oils in bioactive edible coatings. Food Eng Rev 3:1–16CrossRefGoogle Scholar
  136. 136.
    Sung S-Y, Sin LT, Tee T-T, Bee S-T, Rahmat AR (2014) Effects of Allium sativum essence oil as antimicrobial agent for food packaging plastic film. Innov Food Sci Emerg Technol 26:406–414CrossRefGoogle Scholar
  137. 137.
    Gutierrez J, Barry-Ryan C, Bourke P (2008) The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients. Int J Food Microbiol 124:91–97PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Gouvêa DM, Mendonça RCS, Lopez MES, Batalha LS (2016) Absorbent food pads containing bacteriophages for potential antimicrobial use in refrigerated food products. LWT–Food Sci Technol 67:159–166CrossRefGoogle Scholar
  139. 139.
    Rosca C, Popa MI, Lisa G, Chitanu GC (2005) Interaction of chitosan with natural or synthetic anionic polyelectrolytes. 1. The chitosan–carboxymethylcellulose complex. Carbohydr Polym 62:35–41CrossRefGoogle Scholar
  140. 140.
    Abdel-Galil A, Ali HE, Atta A, Balboul MR (2014) Influence of nanostructured TiO2 additives on some physical characteristics of carboxymethyl cellulose (CMC). J Rad Res Appl Sci 7:36–43Google Scholar
  141. 141.
    Mudoi P, Bharali P, Konwar BK (2013) Study on the effect of pH, temperature and aeration on the cellular growth and xanthan production by Xanthomonas campestris using waste residual molasses. J Bioprocess Biotech 3:135Google Scholar
  142. 142.
    Ortega-Toro R, Jiménez A, Talens P, Chiral A (2014) Properties of starch–hydroxypropyl methylcellulose based films obtained by compression molding. Carbohydr Polym 109: 155–165PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Reda SY (2011) Evaluation of antioxidants stability by thermal analysis and its protective effect in heated edible vegetable oil. Food Sci Technol (Campinas), Ciênc Technol Aliment 31(2):475–480CrossRefGoogle Scholar
  144. 144.
    Ciesielski W, Tomasik P (2008) Metal complexes of xanthan gum. EJPAU 11(2):25Google Scholar
  145. 145.
    Aswathy RG, Sivakumar B, Brahatheeswaran D, Raveendran S, Ukai T, Fukuda T, Yoshida Y, Maekawa T, Sakthikumar DN (2102) Multifunctional biocompatible fluorescent carboxymethyl cellulose nanoparticles. J Biomater Nanobiotechnol 3:254–261CrossRefGoogle Scholar
  146. 146.
    Pavaloiu RD, Stoica-Guzun A, Stroescu M, Jinga SI, Dobre T (2014) Composite films of poly(vinyl alcohol)–chitosan–bacterial cellulose for drug controlled release. Int J Biol Macromol 68:117–124PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Marta Stroescu
    • 1
  • Gabriela Isopencu
    • 1
  • Cristina Busuioc
    • 1
  • Anicuta Stoica-Guzun
    • 1
  1. 1.Faculty of Applied Chemistry and Materials ScienceUniversity Politehnica of BucharestBucharestRomania

Personalised recommendations