Advertisement

Morphological Characterization of Hydrogels

  • Md. Shirajur Rahman
  • Md. Minhajul Islam
  • Md. Sazedul Islam
  • Asaduz Zaman
  • Tanvir Ahmed
  • Shanta Biswas
  • Sadia Sharmeen
  • Taslim Ur Rashid
  • Mohammed Mizanur Rahman
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)

Abstract

Hydrogels are physically or chemically cross-linked polymer networks that are able to absorb large amounts of water. They can be classified into different categories depending on various parameters including the preparation method, the charge, and the mechanical and structural characteristics. The morphological structures are differed from hydrogel compositions to preparation method, fabrication techniques, type of hydrophobic substitutes, etc. This chapter addresses an overview of the morphological characterization of hydrogels and impact of these properties in various potential applications of hydrogels. In a first part, morphological characterizations of hydrogels directly prepared from native materials are described. In a second part, morphological characterizations of hydrogels prepared from different derivatives of native materials by physical as well as chemical cross-linking strategies are introduced. In a third part, morphological characterizations of composite type hydrogels including blending composites, polyelectrolyte complexes, and interpenetrating polymer networks (IPNs) are discussed. In a final part, morphological characterizations of inorganic nanoparticles incorporated hybrid hydrogels are described.

Keywords

Superabsorbent hydrogels Hydrogel’s morphology Hybrid hydrogel Cellulose 

References

  1. 1.
    Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–121PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Zohuriaan-Mehr MJ, Kabiri K (2008) Superabsorbent polymer materials: a review. Iran Polym J 17:451–477Google Scholar
  3. 3.
    Gulrez SK, Al-Assaf S, Phillips GO (2011) Hydrogels: methods of preparation, characterisation and applications. In: Carpi A (ed) Progress in molecular and environmental bioengineering-from analysis and modeling to technology applications. InTech, Rijeka, pp 117–150Google Scholar
  4. 4.
    Bures NPP, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46PubMedCrossRefGoogle Scholar
  5. 5.
    Rowley JA, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45–53PubMedCrossRefGoogle Scholar
  6. 6.
    Varaprasad K, Raghavendra GM, Jayaramudu T, Yallapu MM, Sadiku R (2017) A mini review on hydrogels classification and recent developments in miscellaneous applications. Mater Sci Eng C 79:958–971CrossRefGoogle Scholar
  7. 7.
    Sharma K, Kaith B, Kumar V, Kalia S, Kumar V, Swart H (2014) Water retention and dye adsorption behavior of Gg-cl-poly (acrylic acid-aniline) based conductive hydrogels. Geoderma 232:45–55CrossRefGoogle Scholar
  8. 8.
    Jayaramudu T, Li Y, Ko H-U, Shishir IR, Kim J (2016) Poly (acrylic acid)-Poly (vinyl alcohol) hydrogels for reconfigurable lens actuators. Int J Pr Eng Man-GT 3:375–379Google Scholar
  9. 9.
    Tsuji H (2005) Poly (lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci 5:569–597PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Ebara M, Kotsuchibashi Y, Narain R, Idota N, Kim Y-J, Hoffman JM, Uto K, Aoyagi T (2014) Smart hydrogels. Smart biomaterial. Springer, Tokyo, pp 9–65Google Scholar
  11. 11.
    Takigami M, Amada H, Nagasawa N, Yagi T, Kasahara T, Takigami S, Tamada M (2007) Preparation and properties of CMC gel. Trans Mater Res Soc Jpn 32:713Google Scholar
  12. 12.
    Aoki H, Al-Assaf S, Katayama T, Phillips GO (2007) Characterization and properties of Acacia senegal (L.) Willd. var. senegal with enhanced properties (Acacia (sen) SUPER GUM™): part 2 – mechanism of the maturation process. Food Hydrocoll 21:329–337CrossRefGoogle Scholar
  13. 13.
    Abaee A, Madadlou A, Saboury AA (2017) The formation of non-heat-treated whey protein cold-set hydrogels via non-toxic chemical cross-linking. Food Hydrocoll 63:43–49CrossRefGoogle Scholar
  14. 14.
    Athawale V, Lele V (1998) Graft copolymerization onto starch. II. Grafting of acrylic acid and preparation of it’s hydrogels. Carbohydr Polym 35:21–27CrossRefGoogle Scholar
  15. 15.
    Said HM, Alla SGA, El-Naggar AWM (2004) Synthesis and characterization of novel gels based on carboxymethyl cellulose/acrylic acid prepared by electron beam irradiation. React Funct Polym 61:397–404CrossRefGoogle Scholar
  16. 16.
    Jayaramudu T, Raghavendra GM, Varaprasad K, Raju KM, Sadiku ER, Kim J (2016) 5-Fluorouracil encapsulated magnetic nanohydrogels for drug-delivery applications. J Appl Polym Sci 133:43921CrossRefGoogle Scholar
  17. 17.
    de Nooy AE, Capitani D, Masci G, Crescenzi V (2000) Ionic polysaccharide hydrogels via the Passerini and Ugi multicomponent condensations: synthesis, behavior and solid-state NMR characterization. Biomacromolecules 1:259–267PubMedCrossRefGoogle Scholar
  18. 18.
    Sperinde JJ, Griffith LG (1997) Synthesis and characterization of enzymatically-cross-linked poly (ethylene glycol) hydrogels. Macromolecules 30:5255–5264CrossRefGoogle Scholar
  19. 19.
    Zhai M, Yoshii F, Kume T, Hashim K (2002) Syntheses of PVA/starch grafted hydrogels by irradiation. Carbohydr Polym 50:295–303CrossRefGoogle Scholar
  20. 20.
    Liu Y, Vrana N, Cahill P, McGuinness G (2009) Physically crosslinked composite hydrogels of PVA with natural macromolecules: structure, mechanical properties, and endothelial cell compatibility. J Biomed Mater Res B 90:492–502CrossRefGoogle Scholar
  21. 21.
    Schulze J, Hendrikx S, Schulz-Siegmund M, Aigner A (2016) Microparticulate poly (vinyl alcohol) hydrogel formulations for embedding and controlled release of polyethylenimine (PEI)-based nanoparticles. Acta Biomater 45:210–222PubMedCrossRefGoogle Scholar
  22. 22.
    Hennink W, De Jong S, Bos G, Veldhuis T, Van Nostrum C (2004) Biodegradable dextran hydrogels crosslinked by stereocomplex formation for the controlled release of pharmaceutical proteins. Int J Pharm 277:99–104PubMedCrossRefGoogle Scholar
  23. 23.
    Erickson IE, Kestle SR, Zellars KH, Dodge GR, Burdick JA, Mauck RL (2012) Improved cartilage repair via in vitro pre-maturation of MSC-seeded hyaluronic acid hydrogels. Biomed Mater 7:024110PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Essawy HA, Ghazy MB, El-Hai FA, Mohamed MF (2016) Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients. Int J Biol Macromol 89:144–151PubMedCrossRefGoogle Scholar
  25. 25.
    Tran TH, Okabe H, Hidaka Y, Hara K (2017) Removal of metal ions from aqueous solutions using carboxymethyl cellulose/sodium styrene sulfonate gels prepared by radiation grafting. Carbohydr Polym 157:335–343PubMedCrossRefGoogle Scholar
  26. 26.
    Varaprasad K, Sadiku R (2015) Development of microbial protective Kolliphor-based nanocomposite hydrogels. J Appl Polym Sci 132:42781CrossRefGoogle Scholar
  27. 27.
    Wei Q, Xu M, Liao C, Wu Q, Liu M, Zhang Y, Wu C, Cheng L, Wang Q (2016) Printable hybrid hydrogel by dual enzymatic polymerization with superactivity. Chem Sci 7:2748–2752PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Subia B, Kundu J, Kundu S (2010) Biomaterial scaffold fabrication techniques for potential tissue engineering applications. In: Eberli D (ed) Tissue engineering. InTech, Vienna, pp 141–157Google Scholar
  29. 29.
    Lohfeld S, Tyndyk M, Cahill S, Flaherty N, Barron V, McHugh P (2010) A method to fabricate small features on scaffolds for tissue engineering via selective laser sintering. J Biomed Sci Eng 3:138–147CrossRefGoogle Scholar
  30. 30.
    Narayan R, Goering P (2011) Laser micro-and nanofabrication of biomaterials. MRS Bull 36:973–982CrossRefGoogle Scholar
  31. 31.
    Zhang H, Luan Q, Huang Q, Tang H, Huang F, Li W, Wan C, Liu C, Xu J, Guo P (2017) A facile and efficient strategy for the fabrication of porous linseed gum/cellulose superabsorbent hydrogels for water conservation. Carbohydr Polym 157:1830–1836PubMedCrossRefGoogle Scholar
  32. 32.
    Rasoulzadeh M, Namazi H (2017) Carboxymethyl cellulose/graphene oxide bio-nanocomposite hydrogel beads as anticancer drug carrier agent. Carbohydr Polym 168:320–326PubMedCrossRefGoogle Scholar
  33. 33.
    Martens PJ, Bryant SJ, Anseth KS (2003) Tailoring the degradation of hydrogels formed from multivinyl poly (ethylene glycol) and poly (vinyl alcohol) macromers for cartilage tissue engineering. Biomacromolecules 4:283–292PubMedCrossRefGoogle Scholar
  34. 34.
    Nayak S, Lee H, Chmielewski J, Lyon LA (2004) Folate-mediated cell targeting and cytotoxicity using thermoresponsive microgels. J Am Chem Soc 126:10258–10259PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Tomatsu I, Hashidzume A, Harada A (2006) Contrast viscosity changes upon photoirradiation for mixtures of poly (acrylic acid)-based α-cyclodextrin and azobenzene polymers. J Am Chem Soc 128:2226–2227PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Ferruti P, Bianchi S, Ranucci E, Chiellini F, Piras AM (2005) Novel agmatine-containing poly (amidoamine) hydrogels as scaffolds for tissue engineering. Biomacromolecules 6:2229–2235PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Nagahama K, Ouchi T, Ohya Y (2008) Temperature-induced hydrogels through self-assembly of cholesterol-substituted star PEG-b-PLLA copolymers: an injectable scaffold for tissue engineering. Adv Funct Mater 18:1220–1231CrossRefGoogle Scholar
  38. 38.
    Gao D, Xu H, Philbert MA, Kopelman R (2007) Ultrafine hydrogel nanoparticles: synthetic approach and therapeutic application in living cells. Angew Chem Int Ed Eng 46:2224–2227CrossRefGoogle Scholar
  39. 39.
    Trombino S, Cassano R, Bloise E, Muzzalupo R, Tavano L, Picci N (2009) Synthesis and antioxidant activity evaluation of a novel cellulose hydrogel containing trans-ferulic acid. Carbohydr Polym 75:184–188CrossRefGoogle Scholar
  40. 40.
    Luo X, Zhang H, Cao Z, Cai N, Xue Y, Yu F (2016) A simple route to develop transparent doxorubicin-loaded nanodiamonds/cellulose nanocomposite membranes as potential wound dressings. Carbohydr Polym 143:231–238PubMedCrossRefGoogle Scholar
  41. 41.
    Shen J, Yan B, Li T, Long Y, Li N, Ye M (2012) Study on graphene-oxide-based polyacrylamide composite hydrogels. Compos Part A Appl Sci Manuf 43:1476–1481CrossRefGoogle Scholar
  42. 42.
    Treesuppharat W, Rojanapanthu P, Siangsanoh C, Manuspiya H, Ummartyotin S (2017) Synthesis and characterization of bacterial cellulose and gelatin-based hydrogel composites for drug-delivery systems. Biotechnol Rep (Amst) 15:84–91PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Chang C, Zhang L, Zhou J, Zhang L, Kennedy JF (2010) Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions. Carbohydr Polym 82:122–127CrossRefGoogle Scholar
  44. 44.
    Abe K, Yano H (2011) Formation of hydrogels from cellulose nanofibers. Carbohydr Polym 85:733–737CrossRefGoogle Scholar
  45. 45.
    Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278PubMedCrossRefGoogle Scholar
  46. 46.
    Weng L, Zhang L, Ruan D, Shi L, Xu J (2004) Thermal gelation of cellulose in a NaOH/thiourea aqueous solution. Langmuir 20:2086–2093PubMedCrossRefGoogle Scholar
  47. 47.
    Deng J, He Q, Wu Z, Yang W (2008) Using glycidyl methacrylate as cross-linking agent to prepare thermosensitive hydrogels by a novel one-step method. J Polym Sci A Polym Chem 46:2193–2201CrossRefGoogle Scholar
  48. 48.
    Fekete T, Borsa J, Takács E, Wojnárovits L (2017) Synthesis and characterization of superabsorbent hydrogels based on hydroxyethylcellulose and acrylic acid. Carbohydr Polym 166:300–308PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Mohamad N, Amin MCIM, Pandey M, Ahmad N, Rajab NF (2014) Bacterial cellulose/acrylic acid hydrogel synthesized via electron beam irradiation: accelerated burn wound healing in an animal model. Carbohydr Polym 114:312–320PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Liu H, Rong L, Wang B, Xie R, Sui X, Xu H, Zhang L, Zhong Y, Mao Z (2017) Facile fabrication of redox/pH dual stimuli responsive cellulose hydrogel. Carbohydr Polym 176:299–306PubMedCrossRefGoogle Scholar
  51. 51.
    Ma C, Li T, Zhao Q, Yang X, Wu J, Luo Y, Xie T (2014) Supramolecular Lego assembly towards three-dimensional multi-responsive hydrogels. Adv Mater 26:5665–5669PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Liu H, Liu J, Qi C, Fang Y, Zhang L, Zhuo R, Jiang X (2016) Thermosensitive injectable in-situ forming carboxymethyl chitin hydrogel for three-dimensional cell culture. Acta Biomater 35:228–237PubMedCrossRefGoogle Scholar
  53. 53.
    Kong BJ, Kim A, Park SN (2016) Properties and in vitro drug release of hyaluronic acid-hydroxyethyl cellulose hydrogels for transdermal delivery of isoliquiritigenin. Carbohydr Polym 147:473–481PubMedCrossRefGoogle Scholar
  54. 54.
    Kirdponpattara S, Khamkeaw A, Sanchavanakit N, Pavasant P, Phisalaphong M (2015) Structural modification and characterization of bacterial cellulose–alginate composite scaffolds for tissue engineering. Carbohydr Polym 132:146–155PubMedCrossRefGoogle Scholar
  55. 55.
    Hong S, Sycks D, Chan HF, Lin S, Lopez GP, Guilak F, Leong KW, Zhao X (2015) 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Adv Mater 27:4035–4040PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Gorgieva S, Kokol V (2011) Synthesis and application of new temperature-responsive hydrogels based on carboxymethyl and hydroxyethyl cellulose derivatives for the functional finishing of cotton knitwear. Carbohydr Polym 85:664–673CrossRefGoogle Scholar
  57. 57.
    Hu J, Zhang G, Liu S (2012) Enzyme-responsive polymeric assemblies, nanoparticles and hydrogels. Chem Soc Rev 41:5933–5949PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Liu H, Yang Q, Zhang L, Zhuo R, Jiang X (2016) Synthesis of carboxymethyl chitin in aqueous solution and its thermo-and pH-sensitive behaviors. Carbohydr Polym 137:600–607PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Wang D, Wagner M, Butt H-J, Wu S (2015) Supramolecular hydrogels constructed by red-light-responsive host–guest interactions for photo-controlled protein release in deep tissue. Soft Matter 11:D7656–D7662CrossRefGoogle Scholar
  60. 60.
    Peng L, Zhang H, Feng A, Huo M, Wang Z, Hu J, Gao W, Yuan J (2015) Electrochemical redox responsive supramolecular self-healing hydrogels based on host–guest interaction. Polym Chem 6:3652–3659CrossRefGoogle Scholar
  61. 61.
    Deng G, Li F, Yu H, Liu F, Liu C, Sun W, Jiang H, Chen Y (2012) Dynamic hydrogels with an environmental adaptive self-healing ability and dual responsive sol–gel transitions. ACS Macro Lett 1:275–279CrossRefGoogle Scholar
  62. 62.
    Han SC, He WD, Li J, Li LY, Sun XL, Zhang BY, Pan TT (2009) Reducible polyethylenimine hydrogels with disulfide crosslinkers prepared by michael addition chemistry as drug delivery carriers: synthesis, properties, and in vitro release. J Polym Sci A Polym Chem 47:4074–4082CrossRefGoogle Scholar
  63. 63.
    Li L, Gu J, Zhang J, Xie Z, Lu Y, Shen L, Dong Q, Wang Y (2015) Injectable and biodegradable pH-responsive hydrogels for localized and sustained treatment of human fibrosarcoma. ACS Appl Mater Interfaces 7:8033–8040PubMedCrossRefGoogle Scholar
  64. 64.
    Zhao J, Zheng K, Nan J, Tang C, Chen Y, Hu Y (2017) Synthesis and characterization of lignosulfonate-graft-poly (acrylic acid)/hydroxyethyl cellulose semi-interpenetrating hydrogels. React Funct Polym 115:28–35CrossRefGoogle Scholar
  65. 65.
    Prado R, Erdocia X, Labidi J (2016) Study of the influence of reutilization ionic liquid on lignin extraction. J Clean Prod 111:125–132CrossRefGoogle Scholar
  66. 66.
    Chen Q, Huang W, Chen P, Peng C, Xie H, Zhao ZK, Sohail M, Bao M (2015) Synthesis of lignin-derived bisphenols catalyzed by lignosulfonic acid in water for polycarbonate synthesis. ChemCatChem 7:1083–1089CrossRefGoogle Scholar
  67. 67.
    Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2:1072–1092CrossRefGoogle Scholar
  68. 68.
    Shi R, Li B (2016) Preparation and characterization of corn starch and lignosulfonate blend film with a high content of lignosulfonate. Bioresources 11:8860–8874Google Scholar
  69. 69.
    Zhou B-w, Ha C-y, Deng L-l, Mo J-q, Sun C-n, Shen M-m (2013) Preparation of surfactant with the aid of ultrasonic treatment via alkylation of sodium lignosulfonate. Acta Polym Sin 2013(11):1363–1368Google Scholar
  70. 70.
    Albertazzi A, Esposito L, Rastelli E, Bierre F, Gómez D, Tebaldi A (2010) Evaluation of performance of modified sodium lignosulfonate additives as reinforcing agent in porcelain stoneware tiles. Bol SECV 49:265–270Google Scholar
  71. 71.
    Selvakumaran S, Muhamad II, Razak SIA (2016) Evaluation of kappa carrageenan as potential carrier for floating drug delivery system: effect of pore forming agents. Carbohydr Polym 135:207–214PubMedCrossRefGoogle Scholar
  72. 72.
    Akhtar MF, Hanif M, Ranjha NM (2016) Methods of synthesis of hydrogels… a review. Saudi Pharm J 24:554–559PubMedCrossRefGoogle Scholar
  73. 73.
    Gao L, Gan H, Meng Z, Gu R, Wu Z, Zhu X, Sun W, Li J, Zheng Y, Sun T (2016) Evaluation of genipin-crosslinked chitosan hydrogels as a potential carrier for silver sulfadiazine nanocrystals. Colloids Surf B: Biointerfaces 148:343–353PubMedCrossRefGoogle Scholar
  74. 74.
    Haq MA, Su Y, Wang D (2017) Mechanical properties of PNIPAM based hydrogels: a review. Mater Sci Eng C 70:842–855CrossRefGoogle Scholar
  75. 75.
    Czaja W, Romanovicz D, Malcolm Brown R (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11:403–411CrossRefGoogle Scholar
  76. 76.
    Kim D-Y, Nishiyama Y, Kuga S (2002) Surface acetylation of bacterial cellulose. Cellulose 9:361–367CrossRefGoogle Scholar
  77. 77.
    Chen H-H, Xu S-Y, Wang Z (2006) Gelation properties of flaxseed gum. J Food Eng 77:295–303CrossRefGoogle Scholar
  78. 78.
    Tang H, Chen H, Duan B, Lu A, Zhang L (2014) Swelling behaviors of superabsorbent chitin/carboxymethylcellulose hydrogels. J Mater Sci 49:2235–2242CrossRefGoogle Scholar
  79. 79.
    Nie K, Pang W, Wang Y, Lu F, Zhu Q (2005) Effects of specific bonding interactions in poly (ɛ-caprolactone)/silica hybrid materials on optical transparency and melting behavior. Mater Lett 59:1325–1328CrossRefGoogle Scholar
  80. 80.
    Yadollahi M, Gholamali I, Namazi H, Aghazadeh M (2015) Synthesis and characterization of antibacterial carboxymethyl cellulose/ZnO nanocomposite hydrogels. Int J Biol Macromol 74:136–141PubMedCrossRefGoogle Scholar
  81. 81.
    Zhou C, Wu Q (2011) A novel polyacrylamide nanocomposite hydrogel reinforced with natural chitosan nanofibers. Colloids Surf B: Biointerfaces 84:155–162PubMedCrossRefGoogle Scholar
  82. 82.
    Liu Z, Robinson JT, Tabakman SM, Yang K, Dai H (2011) Carbon materials for drug delivery & cancer therapy. Mater Today (Kidlington) 14:316–323CrossRefGoogle Scholar
  83. 83.
    Liu J, Cui L, Losic D (2013) Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater 9:9243–9257PubMedCrossRefGoogle Scholar
  84. 84.
    Rui-Hong X, Peng-Gang R, Jian H, Fang R, Lian-Zhen R, Zhen-Feng S (2016) Preparation and properties of graphene oxide-regenerated cellulose/polyvinyl alcohol hydrogel with pH-sensitive behavior. Carbohydr Polym 138:222–228PubMedCrossRefGoogle Scholar
  85. 85.
    Justin R, Chen B (2014) Characterisation and drug release performance of biodegradable chitosan–graphene oxide nanocomposites. Carbohydr Polym 103:70–80PubMedCrossRefGoogle Scholar
  86. 86.
    Chen P, Liu X, Jin R, Nie W, Zhou Y (2017) Dye adsorption and photo-induced recycling of hydroxypropyl cellulose/molybdenum disulfide composite hydrogels. Carbohydr Polym 167:36–43CrossRefPubMedGoogle Scholar
  87. 87.
    Zamarripa–Cerón JL, García-Cruz JC, Martínez–Arellano AC, Castro–Guerrero CF, Martín ÁS, Estefanía M, Morales–Cepeda AB (2016) Heavy metal removal using hydroxypropyl cellulose and polyacrylamide gels, kinetical study. J Appl Polym Sci 133:43285CrossRefGoogle Scholar
  88. 88.
    Zhu Y, Zheng Y, Zong L, Wang F, Wang A (2016) Fabrication of magnetic hydroxypropyl cellulose-g-poly (acrylic acid) porous spheres via Pickering high internal phase emulsion for removal of Cu2+ and Cd2+. Carbohydr Polym 149:242–250PubMedCrossRefGoogle Scholar
  89. 89.
    Yan L, Shuai Q, Gong X, Gu Q, Yu H (2009) Synthesis of microporous cationic hydrogel of hydroxypropyl cellulose (HPC) and its application on anionic dye removal. Clean (Weinh) 37:392–398Google Scholar
  90. 90.
    Faruk O, Bledzki AK, Fink H-P, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596CrossRefGoogle Scholar
  91. 91.
    Okamoto M, John B (2013) Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog Polym Sci 38:1487–1503CrossRefGoogle Scholar
  92. 92.
    Chhowalla M, Shin HS, Eda G, Li L-J, Loh KP, Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5:263–275PubMedCrossRefGoogle Scholar
  93. 93.
    Chen Y, Chen L, Bai H, Li L (2013) Graphene oxide–chitosan composite hydrogels as broad-spectrum adsorbents for water purification. J Mater Chem A 1:1992–2001CrossRefGoogle Scholar
  94. 94.
    Chatterjee S, Lee MW, Woo SH (2010) Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes. Bioresour Technol 101:1800–1806PubMedCrossRefGoogle Scholar
  95. 95.
    Deng C, Zhang P, Vulesevic B, Kuraitis D, Li F, Yang AF, Griffith M, Ruel M, Suuronen EJ (2010) A collagen–chitosan hydrogel for endothelial differentiation and angiogenesis. Tissue Eng Part A 16:3099–3109PubMedCrossRefGoogle Scholar
  96. 96.
    Risbud MV, Bhonde RR (2000) Polyacrylamide-chitosan hydrogels: in vitro biocompatibility and sustained antibiotic release studies. Drug Deliv 7:69–75PubMedCrossRefGoogle Scholar
  97. 97.
    Crompton K, Prankerd R, Paganin D, Scott T, Horne M, Finkelstein D, Gross K, Forsythe J (2005) Morphology and gelation of thermosensitive chitosan hydrogels. Biophys Chem 117:47–53PubMedCrossRefGoogle Scholar
  98. 98.
    Nie J, Lu W, Ma J, Yang L, Wang Z, Qin A, Hu Q (2015) Orientation in multi-layer chitosan hydrogel: morphology, mechanism, and design principle. Sci Rep 5:7635PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Chen C, Wang L, Deng L, Hu R, Dong A (2013) Performance optimization of injectable chitosan hydrogel by combining physical and chemical triple crosslinking structure. J Biomed Mater Res A 101:684–693PubMedCrossRefGoogle Scholar
  100. 100.
    Wu J, Su Z-G, Ma G-H (2006) A thermo-and pH-sensitive hydrogel composed of quaternized chitosan/glycerophosphate. Int J Pharm 315:1–11PubMedCrossRefGoogle Scholar
  101. 101.
    Mirzaei BE, Ramazani SAA, Shafiee M, Danaei M (2013) Studies on glutaraldehyde crosslinked chitosan hydrogel properties for drug delivery systems. Int J Polym Mater 62:605–611CrossRefGoogle Scholar
  102. 102.
    Yang C, Xu L, Zhou Y, Zhang X, Huang X, Wang M, Han Y, Zhai M, Wei S, Li J (2010) A green fabrication approach of gelatin/CM-chitosan hybrid hydrogel for wound healing. Carbohydr Polym 82:1297–1305CrossRefGoogle Scholar
  103. 103.
    Konwar A, Kalita S, Kotoky J, Chowdhury D (2016) Chitosan–iron oxide coated graphene oxide nanocomposite hydrogel: a robust and soft antimicrobial biofilm. ACS Appl Mater Interfaces 8:20625–20634PubMedCrossRefGoogle Scholar
  104. 104.
    Nguyen N-T, Liu J-H (2014) A green method for in situ synthesis of poly (vinyl alcohol)/chitosan hydrogel thin films with entrapped silver nanoparticles. J Taiwan Inst Chem Eng 45:2827–2833CrossRefGoogle Scholar
  105. 105.
    Paterson SM, Casadio YS, Brown DH, Shaw JA, Chirila TV, Baker MV (2013) Laser scanning confocal microscopy versus scanning electron microscopy for characterization of polymer morphology: sample preparation drastically distorts morphologies of poly (2-hydroxyethyl methacrylate)-based hydrogels. J Appl Polym Sci 127:4296–4304CrossRefGoogle Scholar
  106. 106.
    Fergg F, Keil F, Quader H (2001) Investigations of the microscopic structure of poly (vinyl alcohol) hydrogels by confocal laser scanning microscopy. Colloid Polym Sci 279:61–67CrossRefGoogle Scholar
  107. 107.
    Bogue RH (1923) Conditions affecting the hydrolysis of collagen to gelatin. Ind Eng Chem 15:1154–1159CrossRefGoogle Scholar
  108. 108.
    Birbrair A, Zhang T, Files DC, Mannava S, Smith T, Wang Z-M, Messi ML, Mintz A, Delbono O (2014) Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Res Ther 5:122PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Cunniffe GM, O'Brien FJ (2011) Collagen scaffolds for orthopedic regenerative medicine. JOM 63:66CrossRefGoogle Scholar
  110. 110.
    Oliveira SM, Ringshia RA, Legeros RZ, Clark E, Yost MJ, Terracio L, Teixeira CC (2010) An improved collagen scaffold for skeletal regeneration. J Biomed Mater Res A 94:371–379PubMedPubMedCentralGoogle Scholar
  111. 111.
    Hovhannisyan V, Ghazaryan A, Chen Y-F, Chen S-J, Dong C-Y (2010) Photophysical mechanisms of collagen modification by 80 MHz femtosecond laser. Opt Express 18:24037–24047PubMedCrossRefGoogle Scholar
  112. 112.
    Pourjavadi A, Kurdtabar M (2007) Collagen-based highly porous hydrogel without any porogen: synthesis and characteristics. Eur Polym J 43:877–889CrossRefGoogle Scholar
  113. 113.
    Kabiri K, Zohuriaan-Mehr MJ (2004) Porous superabsorbent hydrogel composites: synthesis, morphology and swelling rate. Macromol Mater Eng 289:653–661CrossRefGoogle Scholar
  114. 114.
    Zhang J, Wang A (2007) Study on superabsorbent composites. IX: synthesis, characterization and swelling behaviors of polyacrylamide/clay composites based on various clays. React Funct Polym 67:737–745CrossRefGoogle Scholar
  115. 115.
    Nistor MT, Vasile C, Chiriac AP (2015) Hybrid collagen-based hydrogels with embedded montmorillonite nanoparticles. Mater Sci Eng C 53:212–221CrossRefGoogle Scholar
  116. 116.
    Binning G, Quate C, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:9Google Scholar
  117. 117.
    Silva SS, Luna SM, Gomes ME, Benesch J, Pashkuleva I, Mano JF, Reis RL (2008) Plasma surface modification of chitosan membranes: characterization and preliminary cell response studies. Macromol Biosci 8:568–576PubMedCrossRefGoogle Scholar
  118. 118.
    De Wolf F (2003) Chapter V Collagen and gelatin. In: Progress in biotechnology, Elsevier Science B.V, Amsterdam, vol 23. pp 133–218Google Scholar
  119. 119.
    Thangaraj SP (2015) Synthesis, characterization and antibacterial activity of gelatin-herb nanocomposite. Asian J Biomed Pharm Sci 5:35CrossRefGoogle Scholar
  120. 120.
    Smith C (1921) Osmosis and swelling of gelatin. J Am Chem Soc 43:1350–1366CrossRefGoogle Scholar
  121. 121.
    Chen Z, Shi X, Xu J, Du Y, Yao M, Guo S (2016) Gel properties of SPI modified by enzymatic cross-linking during frozen storage. Food Hydrocoll 56:445–452CrossRefGoogle Scholar
  122. 122.
    Wang T, Zhu X-K, Xue X-T, Wu D-Y (2012) Hydrogel sheets of chitosan, honey and gelatin as burn wound dressings. Carbohydr Polym 88:75–83CrossRefGoogle Scholar
  123. 123.
    Howe AM (2000) Some aspects of colloids in photography. Curr Opin Colloid Interface Sci 5:288–300CrossRefGoogle Scholar
  124. 124.
    Sachlos E, Czernuszka J (2003) Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater 5:39–40Google Scholar
  125. 125.
    Daskalova A, Nathala CS, Bliznakova I, Stoyanova E, Zhelyazkova A, Ganz T, Lueftenegger S, Husinsky W (2014) Controlling the porosity of collagen, gelatin and elastin biomaterials by ultrashort laser pulses. Appl Surf Sci 292:367–377CrossRefGoogle Scholar
  126. 126.
    Krüger J, Kautek W (2004) Ultrashort pulse laser interaction with dielectrics and polymers. In: Lippert TK (ed) Polymers and light. Springer, Berlin/Heidelberg, pp 247–290CrossRefGoogle Scholar
  127. 127.
    Liu J (1982) Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt Lett 7:196–198PubMedCrossRefGoogle Scholar
  128. 128.
    Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84:40–53CrossRefGoogle Scholar
  129. 129.
    Zhu J (2010) Bioactive modification of poly (ethylene glycol) hydrogels for tissue engineering. Biomaterials 31:4639–4656PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Kim J, Singh N, Lyon LA (2006) Label-free biosensing with hydrogel microlenses. Angew Chem Int Ed 45:1446–1449CrossRefGoogle Scholar
  131. 131.
    Kato N, Sakai Y, Shibata S (2003) Wide-range control of deswelling time for thermosensitive poly (N-isopropylacrylamide) gel treated by freeze-drying. Macromolecules 36:961–963CrossRefGoogle Scholar
  132. 132.
    Huang H, Yao J, Li L, Zhu F, Liu Z, Zeng X, Yu X, Huang Z (2016) Reinforced polyaniline/polyvinyl alcohol conducting hydrogel from a freezing–thawing method as self-supported electrode for supercapacitors. J Mater Sci 51:8728–8736CrossRefGoogle Scholar
  133. 133.
    Xu Z, Li J, Zhou H, Jiang X, Yang C, Wang F, Pan Y, Li N, Li X, Shi L (2016) Morphological and swelling behavior of cellulose nanofiber (CNF)/poly (vinyl alcohol)(PVA) hydrogels: poly (ethylene glycol)(PEG) as porogen. RSC Adv 6:43626–43633CrossRefGoogle Scholar
  134. 134.
    Shi Y, Xiong D (2013) Microstructure and friction properties of PVA/PVP hydrogels for articular cartilage repair as function of polymerization degree and polymer concentration. Wear 305:280–285CrossRefGoogle Scholar
  135. 135.
    Shi Y, Xiong D, Liu Y, Wang N, Zhao X (2016) Swelling, mechanical and friction properties of PVA/PVP hydrogels after swelling in osmotic pressure solution. Mater Sci Eng C 65:172–180CrossRefGoogle Scholar
  136. 136.
    Bhowmick S, Koul V (2016) Assessment of PVA/silver nanocomposite hydrogel patch as antimicrobial dressing scaffold: synthesis, characterization and biological evaluation. Mater Sci Eng C 59:109–119CrossRefGoogle Scholar
  137. 137.
    Yu H, Xu X, Chen X, Lu T, Zhang P, Jing X (2007) Preparation and antibacterial effects of PVA-PVP hydrogels containing silver nanoparticles. J Appl Polym Sci 103:125–133CrossRefGoogle Scholar
  138. 138.
    Hu M, Gu X, Hu Y, Deng Y, Wang C (2016) PVA/carbon dot nanocomposite hydrogels for simple introduction of Ag nanoparticles with enhanced antibacterial activity. Macromol Mater Eng 301:1352–1362CrossRefGoogle Scholar
  139. 139.
    Chen J, Shi X, Ren L, Wang Y (2017) Graphene oxide/PVA inorganic/organic interpenetrating hydrogels with excellent mechanical properties and biocompatibility. Carbon 111:18–27CrossRefGoogle Scholar
  140. 140.
    Zhang J-T, Bhat R, Jandt KD (2009) Temperature-sensitive PVA/PNIPAAm semi-IPN hydrogels with enhanced responsive properties. Acta Biomater 5:488–497PubMedCrossRefGoogle Scholar
  141. 141.
    Li W, Kang J, Yuan Y, Xiao F, Yao H, Liu S, Lu J, Wang Y, Wang Z, Ren L (2016) Preparation and characterization of PVA-PEEK/PVA-β-TCP bilayered hydrogels for articular cartilage tissue repair. Compos Sci Technol 128:58–64CrossRefGoogle Scholar
  142. 142.
    Zhuo RX, Li W (2003) Preparation and characterization of macroporous poly (N-isopropylacrylamide) hydrogels for the controlled release of proteins. J Polym Sci A Polym Chem 41:152–159CrossRefGoogle Scholar
  143. 143.
    Comolli N, Neuhuber B, Fischer I, Lowman A (2009) In vitro analysis of PNIPAAm–PEG, a novel, injectable scaffold for spinal cord repair. Acta Biomater 5:1046–1055PubMedCrossRefGoogle Scholar
  144. 144.
    Tan H, Ramirez CM, Miljkovic N, Li H, Rubin JP, Marra KG (2009) Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering. Biomaterials 30:6844–6853PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Li S (2010) Removal of crystal violet from aqueous solution by sorption into semi-interpenetrated networks hydrogels constituted of poly (acrylic acid-acrylamide-methacrylate) and amylose. Bioresour Technol 101:2197–2202PubMedCrossRefGoogle Scholar
  146. 146.
    Jin S, Liu M, Zhang F, Chen S, Niu A (2006) Synthesis and characterization of pH-sensitivity semi-IPN hydrogel based on hydrogen bond between poly (N-vinylpyrrolidone) and poly (acrylic acid). Polymer 47:1526–1532CrossRefGoogle Scholar
  147. 147.
    Quintero SMM, Cremona M, Triques A, d’Almeida A, Braga A (2010) Swelling and morphological properties of poly (vinyl alcohol)(PVA) and poly (acrylic acid)(PAA) hydrogels in solution with high salt concentration. Polymer 51:953–958CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Md. Shirajur Rahman
    • 1
  • Md. Minhajul Islam
    • 1
  • Md. Sazedul Islam
    • 1
  • Asaduz Zaman
    • 1
  • Tanvir Ahmed
    • 1
  • Shanta Biswas
    • 1
  • Sadia Sharmeen
    • 1
  • Taslim Ur Rashid
    • 1
  • Mohammed Mizanur Rahman
    • 1
  1. 1.Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and TechnologyUniversity of DhakaDhakaBangladesh

Personalised recommendations