Advertisement

Structure Response for Cellulose-Based Hydrogels Via Characterization Techniques

  • Marcelo Jorge Cavalcanti de Sá
  • Gabriel Goetten de Lima
  • Francisco Alipio de Sousa Segundo
  • Michael J. D. Nugent
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)

Abstract

Hydrogels are three-dimensional cross-linked polymeric networks capable of imbibing substantial amounts of water or biological fluids and are widely used in biomedical applications, especially in pharmaceutical industry as drug delivery systems. Although their solvent content can be over 99%, hydrogels still retain the appearance and properties of solid materials, and the structural response can include a smart response to environmental stimuli (pH, temp, ionic strength, electric field, presence of enzyme, etc.) These responses can include shrinkage or swelling. Cellulose-based hydrogels are one of the most commonly used materials and extensively investigated due to the widespread availability of cellulose in nature. Cellulose is the most abundant renewable resource on earth that is intrinsically degradable. Additionally, the presence of hydroxyl groups results in fascinating structures and properties. Also, cellulose-based hydrogels with specific properties can be obtained by combining it with synthetic or natural polymers. This chapter surveys different characterization for cellulose hydrogels and the structure-response relationship. As such we would describe the techniques involved for characterizing cellulose-based hydrogels and their response in terms of their morphology such as polarized optical microscopy (POM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), their stability by thermal properties (often with differential scanning calorimetry, DSC), and structure response such as Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). In addition, we give a focus on measuring the mechanical properties of superabsorbent hydrogels giving examples with cellulose where applicable. Finally, we describe the techniques for analyzing biological techniques and the applications with cellulose.

Keywords

Characterization Cellulose analysis Structure-response Hydrogels Materials 

References

  1. 1.
    Abeer MM, Amin M, Iqbal MC, Martin C (2014) A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects. J Pharm Pharmacol 66:1047–1061PubMedGoogle Scholar
  2. 2.
    Köhnke T, Elder T, Theliander H, Ragauskas AJ (2014) Ice templated and cross-linked xylan/nanocrystalline cellulose hydrogels. Carbohydr Polym 100:24–30CrossRefPubMedGoogle Scholar
  3. 3.
    Juby KA, Dwivedi C, Kumar M, Kota S, Misra HS, Bajaj PN (2012) Silver nanoparticle-loaded PVA/gum acacia hydrogel: synthesis, characterization and antibacterial study. Carbohydr Polym 89:906–913CrossRefPubMedGoogle Scholar
  4. 4.
    Vakili MR, Rahneshin N (2013) Synthesis and characterization of novel stimuli-responsive hydrogels based on starch and L-aspartic acid. Carbohydr Polym 98:1624–1630CrossRefPubMedGoogle Scholar
  5. 5.
    Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84:40–53.  https://doi.org/10.1016/j.carbpol.2010.12.023CrossRefGoogle Scholar
  6. 6.
    Laçin NT (2014) Development of biodegradable antibacterial cellulose based hydrogel membranes for wound healing. Int J Biol Macromol 67:22–27CrossRefPubMedGoogle Scholar
  7. 7.
    Fink H-P, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524CrossRefGoogle Scholar
  8. 8.
    Kakugo A, Gong JP, Osada Y (2007) Bacterial cellulose based hydrogel for articular soft tissues. Cellul Commun 14:50Google Scholar
  9. 9.
    Bodin A, Concaro S, Brittberg M, Gatenholm P (2007) Bacterial cellulose as a potential meniscus implant. J Tissue Eng Regen Med 1:406–408CrossRefPubMedGoogle Scholar
  10. 10.
    Liu J, Li Q, Su Y, Yue Q, Gao B (2014) Characterization and swelling–deswelling properties of wheat straw cellulose based semi-IPNs hydrogel. Carbohydr Polym 107:232–240CrossRefPubMedGoogle Scholar
  11. 11.
    Demitri C, Scalera F, Madaghiele M, Sannino A, Maffezzoli A (2013) Potential of cellulose-based superabsorbent hydrogels as water reservoir in agriculture. Int J Polym Sci 2013:1–6CrossRefGoogle Scholar
  12. 12.
    Kelly JA, Shukaliak AM, Cheung CCY, Shopsowitz KE, Hamad WY, MacLachlan MJ (2013) Responsive photonic hydrogels based on nanocrystalline cellulose. Angew Chemie Int Ed 52:8912–8916CrossRefGoogle Scholar
  13. 13.
    Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chemie Int Ed 50:5438–5466CrossRefGoogle Scholar
  14. 14.
    Tatsumi M, Teramoto Y, Nishio Y (2012) Polymer composites reinforced by locking-in a liquid-crystalline assembly of cellulose nanocrystallites. Biomacromolecules 13:1584–1591CrossRefPubMedGoogle Scholar
  15. 15.
    Demitri C, Raucci MG, Giuri A, De Benedictis VM, Giugliano D, Calcagnile P, Sannino A, Ambrosio L (2016) Cellulose-based porous scaffold for bone tissue engineering applications: assessment of hMSC proliferation and differentiation. J Biomed Mater Res Part A 104:726–733CrossRefGoogle Scholar
  16. 16.
    Li X, Li Q, Xu X, Su Y, Yue Q, Gao B (2016) Characterization, swelling and slow-release properties of a new controlled release fertilizer based on wheat straw cellulose hydrogel. J Taiwan Inst Chem Eng 60:564–572CrossRefGoogle Scholar
  17. 17.
    Kaushik M, Basu K, Benoit C, Cirtiu CM, Vali H, Moores A (2015) Cellulose nanocrystals as chiral inducers: enantioselective catalysis and transmission electron microscopy 3D characterization. J Am Chem Soc 137:6124–6127CrossRefPubMedGoogle Scholar
  18. 18.
    Li W, Wang S, Li Y, Ma C, Huang Z, Wang C, Li J, Chen Z, Liu S (2017) One-step hydrothermal synthesis of fluorescent nanocrystalline cellulose/carbon dot hydrogels. Carbohydr Polym 175:7–17CrossRefPubMedGoogle Scholar
  19. 19.
    Lü S, Liu M, Ni B, Gao C (2010) A novel pH-and thermo-sensitive PVP/CMC semi-IPN hydrogel: swelling, phase behavior, and drug release study. J Polym Sci Part B Polym Phys 48:1749–1756CrossRefGoogle Scholar
  20. 20.
    Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E (2010) Theoretical description of hydrogel swelling: a review. Iran Polym J 19:375–398Google Scholar
  21. 21.
    Lin C-C, Metters AT (2006) Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev 58:1379–1408CrossRefPubMedGoogle Scholar
  22. 22.
    Cipriano BH, Banik SJ, Sharma R, Rumore D, Hwang W, Briber RM, Raghavan SR (2014) Superabsorbent hydrogels that are robust and highly stretchable. Macromolecules 47:4445–4452.  https://doi.org/10.1021/ma500882nCrossRefGoogle Scholar
  23. 23.
    Wang Q, Cai J, Zhang L, Xu M, Cheng H, Han CC, Kuga S, Xiao J, Xiao R (2013) A bioplastic with high strength constructed from a cellulose hydrogel by changing the aggregated structure. J Mater Chem A 1:6678–6686CrossRefGoogle Scholar
  24. 24.
    Dash R, Foston M, Ragauskas AJ (2013) Improving the mechanical and thermal properties of gelatin hydrogels cross-linked by cellulose nanowhiskers. Carbohydr Polym 91:638–645CrossRefPubMedGoogle Scholar
  25. 25.
    Grande CJ, Torres FG, Gomez CM, Bañó MC (2009) Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications. Acta Biomater 5:1605–1615CrossRefPubMedGoogle Scholar
  26. 26.
    Chen YM, Sun L, Yang SA, Shi L, Zheng WJ, Wei Z, Hu C (2017) Self-healing and photoluminescent carboxymethyl cellulose-based hydrogels. Eur Polym J 94:501–510CrossRefGoogle Scholar
  27. 27.
    Anilkumar P, Cao L, Yu J, Tackett KN, Wang P, Meziani MJ, Sun Y (2013) Crosslinked carbon dots as ultra-bright fluorescence probes. Small 9:545–551CrossRefPubMedGoogle Scholar
  28. 28.
    Liang Q, Ma W, Shi Y, Li Z, Yang X (2013) Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications. Carbon N Y 60:421–428CrossRefGoogle Scholar
  29. 29.
    Osada Y, Ping Gong J, Tanaka Y (2004) Polymer Gels. J Macromol Sci Part C Polym Rev 44:87–112.  https://doi.org/10.1081/mc-120027935CrossRefGoogle Scholar
  30. 30.
    Zhao X (2014) Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter 10:672–687.  https://doi.org/10.1039/C3SM52272ECrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Strange DGT, Tonsomboon K, Oyen ML (2014) Mechanical behaviour of electrospun fibre-reinforced hydrogels. J Mater Sci Mater Med 25:681–690.  https://doi.org/10.1007/s10856-013-5123-yCrossRefPubMedGoogle Scholar
  32. 32.
    Canillas M, de Lima GG, Rodríguez MA, Nugent MJD, Devine DM (2015) Bioactive composites fabricated by freezing-thawing method for bone regeneration applications. J Polym Sci Part B Polym Phys 54:761–773.  https://doi.org/10.1002/polb.23974CrossRefGoogle Scholar
  33. 33.
    Ahearne M, Yang Y, Liu K (2008) Mechanical characterisation of hydrogels for tissue engineering applications. Tissue Eng 4:1–16Google Scholar
  34. 34.
    Li L, Kiick KL (2014) Transient dynamic mechanical properties of resilin-based elastomeric hydrogels. Front Chem 2:21.  https://doi.org/10.3389/fchem.2014.00021CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ersumo N, Witherel CE, Spiller KL (2016) Differences in time-dependent mechanical properties between extruded and molded hydrogels. Biofabrication 8:35012.  https://doi.org/10.1088/1758-5090/8/3/035012CrossRefGoogle Scholar
  36. 36.
    Xin H, Brown HR, Naficy S, Spinks GM (2015) Time-dependent mechanical properties of tough ionic-covalent hybrid hydrogels. Polymer 65:253–261.  https://doi.org/10.1016/j.polymer.2015.03.079CrossRefGoogle Scholar
  37. 37.
    Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2:353–373CrossRefPubMedCentralGoogle Scholar
  38. 38.
    White DG, Brown RM Jr (1989) Prospects for the commercialization of the biosynthesis of microbial cellulose. Cellul Wood-Chemistry Technol 573:573–590Google Scholar
  39. 39.
    Lee SE, Park YS (2017) The role of bacterial cellulose in artificial blood vessels. Mol Cell Toxicol 13:257–261.  https://doi.org/10.1007/s13273-017-0028-3CrossRefGoogle Scholar
  40. 40.
    Scherner M, Reutter S, Klemm D, Sterner-kock A, Guschlbauer M, Richter T, Langebartels G, Madershahian N, Wahlers T, Wippermann J (2014) In vivo application of tissue-engineered blood vessels of bacterial cellulose as small arterial substitutes : proof of concept ? J Surg Res 189:340–347.  https://doi.org/10.1016/j.jss.2014.02.011CrossRefPubMedGoogle Scholar
  41. 41.
    Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603.  https://doi.org/10.1016/S0079-6700(01)00021-1CrossRefGoogle Scholar
  42. 42.
    Yang J, Han C-R, Duan J-F, Xu F, Sun R-C (2013) Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly(ethylene glycol) nanocomposite hydrogels. ACS Appl Mater Interfaces 5:3199–3207.  https://doi.org/10.1021/am4001997CrossRefPubMedGoogle Scholar
  43. 43.
    Grishkewich N, Mohammed N, Tang J, Tam KC (2017) Recent advances in the application of cellulose nanocrystals. Curr Opin Colloid Interface Sci 29:32–45.  https://doi.org/10.1016/j.cocis.2017.01.005CrossRefGoogle Scholar
  44. 44.
    Zhang T, Cheng Q, Ye D, Chang C (2017) Tunicate cellulose nanocrystals reinforced nanocomposite hydrogels comprised by hybrid cross-linked networks. Carbohydr Polym 169:139–148.  https://doi.org/10.1016/j.carbpol.2017.04.007CrossRefPubMedGoogle Scholar
  45. 45.
    De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing Nanocellulose. Chem Mater 29:4609–4631.  https://doi.org/10.1021/acs.chemmater.7b00531CrossRefGoogle Scholar
  46. 46.
    Boschetti F, Pennati G, Gervaso F, Peretti GM, Dubini G (2004) Biomechanical properties of human articular cartilage under compressive loads. Biorheology 41:159–166PubMedGoogle Scholar
  47. 47.
    Demitri C, Giuri A, Raucci MG, Giugliano D, Madaghiele M, Sannino A, Ambrosio L (2013) Preparation and characterization of cellulose-based foams via microwave curing. Interface Focus 4:20130053–20130053.  https://doi.org/10.1098/rsfs.2013.0053CrossRefGoogle Scholar
  48. 48.
    Pharr GM, Oliver WC (1992) Measurement of thin film mechanical properties using nanoindentation. MRS Bull 17:28–33.  https://doi.org/10.1557/S0883769400041634CrossRefGoogle Scholar
  49. 49.
    Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19:3–20CrossRefGoogle Scholar
  50. 50.
    Xu H, Pharr GM (2006) An improved relation for the effective elastic compliance of a film/substrate system during indentation by a flat cylindrical punch. Scr Mater 55:315–318CrossRefGoogle Scholar
  51. 51.
    Oyen ML (2014) Mechanical characterisation of hydrogel materials. Int Mater Rev 59:44–59.  https://doi.org/10.1179/1743280413Y.0000000022CrossRefGoogle Scholar
  52. 52.
    Lepienski CM, Foerster CE (2003) Nanomechanical properties by Nanoindentation. Encycl Nanosci Nanotechnol X 6000:669.  https://doi.org/10.4028/www.scientific.net/KEM.334-335.669CrossRefGoogle Scholar
  53. 53.
    Wang Z, Volinsky AA, Gallant ND (2015) Nanoindentation study of polydimethylsiloxane elastic modulus using berkovich and flat punch tips. J Appl Polym Sci 132:1–7.  https://doi.org/10.1002/app.41384CrossRefGoogle Scholar
  54. 54.
    Jin C, Ebenstein DM (2017) Nanoindentation of compliant materials using Berkovich tips and flat tips. J Mater Res 32:435–450.  https://doi.org/10.1557/jmr.2016.483CrossRefGoogle Scholar
  55. 55.
    Kaufman JD, Klapperich CM (2009) Surface detection errors cause overestimation of the modulus in nanoindentation on soft materials. J Mech Behav Biomed Mater 2:312–317.  https://doi.org/10.1016/j.jmbbm.2008.08.004CrossRefPubMedGoogle Scholar
  56. 56.
    Bhamra TS, Tighe BJ (2017) Mechanical properties of contact lenses: the contribution of measurement techniques and clinical feedback to 50 years of materials development. Contact Lens Anterior Eye 40:70–81.  https://doi.org/10.1016/j.clae.2016.11.005CrossRefPubMedGoogle Scholar
  57. 57.
    Johnson KL, Kendall K, Roberts AD (1971) Surface energy and the contact of elastic solids. Proc R Soc A Math Phys Eng Sci 324:301–313.  https://doi.org/10.1098/rspa.1971.0141CrossRefGoogle Scholar
  58. 58.
    Wei J, McFarlin BL, Wagoner Johnson AJ (2016) A multi-indent approach to detect the surface of soft materials during nanoindentation. J Mater Res 31:2672–2685.  https://doi.org/10.1557/jmr.2016.265CrossRefGoogle Scholar
  59. 59.
    Basu P, Saha N, Bandyopadhyay S, Saha P (2017) Rheological performance of bacterial cellulose based nonmineralized and mineralized hydrogel scaffolds. In: AIP conference proceedings. AIP publishing novel trends in rheology VII, Tomas Bata University, Zlín, July 2017, pp 050008-1–050008-7Google Scholar
  60. 60.
    Liu H, Rong L, Wang B, Xie R, Sui X, Xu H, Zhang L, Zhong Y, Mao Z (2017) Facile fabrication of redox/pH dual stimuli responsive cellulose hydrogel. Carbohydr Polym 176:299–306.  https://doi.org/10.1016/j.carbpol.2017.08.085CrossRefPubMedGoogle Scholar
  61. 61.
    Omidian H, Park K (2010) In: Ottenbrite R, Park K, Okano T (eds) Biomedical applications of hydrogels handbook. Springer, New York, pp 1–16Google Scholar
  62. 62.
    Coviello T, Matricardi P, Marianecci C, Alhaique F (2007) Polysaccharide hydrogels for modified release formulations. J Control Release 119:5–24CrossRefPubMedGoogle Scholar
  63. 63.
    Barbucci R, Giardino R, De Cagna M, Golini L, Pasqui D (2010) Inter-penetrating hydrogels (IPHs) as a new class of injectable polysaccharide hydrogels with thixotropic nature and interesting mechanical and biological properties. Soft Matter 6:3524–3532.  https://doi.org/10.1039/C001949fCrossRefGoogle Scholar
  64. 64.
    Okajima K (1989) Role of molecular characteristics on some physiological properties of cellulose derivatives. In: Kennedy JF, Phillips GO, Williams PA (eds) Cellulose: structural and functional aspects. Ellis Horwood, Chichester, pp 439–446Google Scholar
  65. 65.
    Pasqui D, De Cagna M, Barbucci R (2012) Polysaccharide-based hydrogels: the key role of water in affecting mechanical properties. Polymers 4:1517–1534.  https://doi.org/10.3390/polym4031517CrossRefGoogle Scholar
  66. 66.
    Domingues RMA, Silva M, Gershovich P, Betta S, Babo P, Caridade SG, Mano JF, Motta A, Reis RL, Gomes ME (2015) Development of injectable hyaluronic acid/cellulose nanocrystals bionanocomposite hydrogels for tissue engineering applications. Bioconjug Chem 26:1571–1581CrossRefPubMedGoogle Scholar
  67. 67.
    Yang X, Liu G, Peng L, Guo J, Tao L, Yuan J, Chang C, Wei Y, Zhang L (2017) Highly efficient self-healable and dual responsive cellulose-based hydrogels for controlled release and 3D cell culture. Adv Funct Mater 27(40):1703174.  https://doi.org/10.1002/adfm.201703174CrossRefGoogle Scholar
  68. 68.
    Peresin MS, Vesterinen AH, Habibi Y, Johansson LS, Pawlak JJ, Nevzorov AA, Rojas OJ (2014) Crosslinked PVA nanofibers reinforced with cellulose nanocrystals: water interactions and thermomechanical properties. J Appl Polym Sci 131(11):40334–40345.  https://doi.org/10.1002/app.40334CrossRefGoogle Scholar
  69. 69.
    Lavoratti A, Scienza LC, Zattera AJ (2016) Dynamic-mechanical and thermomechanical properties of cellulose nanofiber/polyester resin composites. Carbohydr Polym 136:955–963CrossRefPubMedGoogle Scholar
  70. 70.
    Joshi SC, Liang CM, Lam YC (2008) Effect of solvent state and isothermal conditions on gelation of methylcellulose hydrogels. J Biomater Sci Polym Ed 19:1611–1623CrossRefPubMedGoogle Scholar
  71. 71.
    Patchan M, Graham JL, Xia Z, Maranchi JP, McCally R, Schein O, Elisseeff JH, Trexler MM (2013) Synthesis and properties of regenerated cellulose-based hydrogels with high strength and transparency for potential use as an ocular bandage. Mater Sci Eng C 33:3069–3076CrossRefGoogle Scholar
  72. 72.
    Barros SC, da Silva AA, Costa DB, Costa CM, Lanceros-Méndez S, Maciavello MNT, Ribelles JLG, Sentanin F, Pawlicka A, Silva MM (2015) Thermal–mechanical behaviour of chitosan–cellulose derivative thermoreversible hydrogel films. Cellulose 22:1911–1929CrossRefGoogle Scholar
  73. 73.
    Wang H, Li D, Yano H, Abe K (2014) Preparation of tough cellulose II nanofibers with high thermal stability from wood. Cellulose 21:1505–1515CrossRefGoogle Scholar
  74. 74.
    Espino-Pérez E, Bras J, Ducruet V, Guinault A, Dufresne A, Domenek S (2013) Influence of chemical surface modification of cellulose nanowhiskers on thermal, mechanical, and barrier properties of poly (lactide) based bionanocomposites. Eur Polym J 49:3144–3154CrossRefGoogle Scholar
  75. 75.
    Hossain KMZ, Hasan MS, Boyd D, Rudd CD, Ahmed I, Thielemans W (2014) Effect of cellulose nanowhiskers on surface morphology, mechanical properties, and cell adhesion of melt-drawn polylactic acid fibers. Biomacromolecules 15:1498–1506CrossRefPubMedGoogle Scholar
  76. 76.
    Raucci MG, Alvarez-Perez MA, Demitri C, Giugliano D, De Benedictis V, Sannino A, Ambrosio L (2015) Effect of citric acid crosslinking cellulose-based hydrogels on osteogenic differentiation. J Biomed Mater Res Part A 103:2045–2056CrossRefGoogle Scholar
  77. 77.
    Peng N, Wang Y, Ye Q, Liang L, An Y, Li Q, Chang C (2016) Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity. Carbohydr Polym 137:59–64CrossRefPubMedGoogle Scholar
  78. 78.
    Shi Z, Li Y, Chen X, Han H, Yang G (2014) Double network bacterial cellulose hydrogel to build a biology–device interface. Nanoscale 6:970–977CrossRefPubMedGoogle Scholar
  79. 79.
    Sanchavanakit N, Sangrungraungroj W, Kaomongkolgit R, Banaprasert T, Pavasant P, Phisalaphong M (2006) Growth of human keratinocytes and fibroblasts on bacterial cellulose film. Biotechnol Prog 22:1194–1199CrossRefPubMedGoogle Scholar
  80. 80.
    Malm CJ, Risberg B, Bodin A, Bäckdahl H, Johansson BR, Gatenholm P, Jeppsson A (2012) Small calibre biosynthetic bacterial cellulose blood vessels: 13-months patency in a sheep model. Scand Cardiovasc J 46:57–62CrossRefPubMedGoogle Scholar
  81. 81.
    Huang L, Chen X, Nguyen TX, Tang H, Zhang L, Yang G (2013) Nano-cellulose 3D-networks as controlled-release drug carriers. J Mater Chem B 1:2976–2984CrossRefGoogle Scholar
  82. 82.
    Kowalska-Ludwicka K, Cala J, Grobelski B, Sygut D, Jesionek-Kupnicka D, Kolodziejczyk M, Bielecki S, Pasieka Z (2013) Modified bacterial cellulose tubes for regeneration of damaged peripheral nerves. Arch Med Sci 9:527–534.  https://doi.org/10.5114/aoms.2013.33433CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Cheng J, Park M, Hyun J (2014) Thermoresponsive hybrid hydrogel of oxidized nanocellulose using a polypeptide crosslinker. Cellulose 21:1699–1708CrossRefGoogle Scholar
  84. 84.
    Liu Y, Lu W-L, Wang J-C, Zhang X, Zhang H, Wang X-Q, Zhou T-Y, Zhang Q (2007) Controlled delivery of recombinant hirudin based on thermo-sensitive Pluronic® F127 hydrogel for subcutaneous administration: in vitro and in vivo characterization. J Control Release 117:387–395CrossRefPubMedGoogle Scholar
  85. 85.
    Portal O, Clark WA, Levinson DJ (2009) Microbial cellulose wound dressing in the treatment of nonhealing lower extremity ulcers. Wounds a Compend Clin Res Pract 21:1–3Google Scholar
  86. 86.
    Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12CrossRefPubMedGoogle Scholar
  87. 87.
    Solway DR, Consalter M, Levinson DJ (2010) Microbial cellulose wound dressing in the treatment of skin tears in the frail elderly. Wounds 22:17PubMedGoogle Scholar
  88. 88.
    Solway DR, Clark WA, Levinson DJ (2011) A parallel open-label trial to evaluate microbial cellulose wound dressing in the treatment of diabetic foot ulcers. Int Wound J 8:69–73CrossRefPubMedGoogle Scholar
  89. 88.
    Raghavendra GM, Jayaramudu T, Varaprasad K, Sadiku R, Ray SS, Raju KM (2013) Cellulose–polymer–Ag nanocomposite fibers for antibacterial fabrics/skin scaffolds. Carbohydrate polymers. 93(2):553–560CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Marcelo Jorge Cavalcanti de Sá
    • 1
    • 2
  • Gabriel Goetten de Lima
    • 1
  • Francisco Alipio de Sousa Segundo
    • 2
  • Michael J. D. Nugent
    • 1
  1. 1.Materials Research InstituteAthlone Institute of TechnologyAthloneIreland
  2. 2.Veterinary Hospital, Patos CampusFederal University of Campina GrandeParaibaBrazil

Personalised recommendations