Thermal Behavior of Bacterial Cellulose Based Hydrogels with Other Composites and Related Instrumental Analysis

  • Norhayati Pa’e
  • Mohd Harfiz Salehudin
  • Nor Diana Hassan
  • Aishah Mohd Marsin
  • Ida Idayu MuhamadEmail author
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)


Hydrogel is a network of polymer chains that are hydrophilic and able to absorb and release large amount of water in a reversible manner. At present, synthetic and natural hydrogels have been extensively studied due to their responsive properties toward specific environmental stimuli such as pH, temperature, and ionic strength. This includes hydrogel from natural cellulose obtained by bacterial fermentation. The capability of hydrogel for transmitting and resulting in a useful response is termed as the smartness ability of the material. Studies on thermal behavior and performance allow fabrication of hydrogels that exhibit smart properties such as with temperature sensitivity or ideally dual (pH/temperature) sensitivity. The designed hydrogel can be characterized thermally using instrumental analyses, for example, the Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA), Thermomechanical Analysis (TMA), and Thermogravimetric Analysis (TGA). These allow evaluation on the glass transition temperature, melting temperature, degree of crystallinity, and mechanical properties of the fabricated hydrogels. Furthermore, understanding thermal behavior of the hydrogels can help to elucidate the effect of the preparation technique and treatment on properties of the hydrogels. This gives advantages on producing hydrogel with required properties for defined application. In this work, thermal characterization of bacterial cellulose-based hydrogels and its composites using related instrumental analyses were discussed.


Cellulose-based hydrogel Smart hydrogel Bacterial cellulose Thermal behavior Thermal analysis 



The authors would like to thank the Ministry of Science, Technology and Innovation (MOSTI), Malaysia, the Ministry of Higher Education (MOHE), Research Management Centre, UTM for Research Grant (4F726), and all technician staff at Bioprocess and Polymer Engineering Department, Faculty of Chemical and Energy Engineering, UTM.


  1. 1.
    Peppas NA (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50(1):27–46CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Shetye SP, Godbole A, Bhilegaokar S, Gajar P (2015) Hydrogels: introduction preparation, characterization and applications. Int J Res Methodol 1(1):47–71Google Scholar
  3. 3.
    Hezaveh H, Muhamad II (2012) Effect of natural cross-linker on swelling and structural stability of kappa-carrageenan/hydroxyethyl cellulose pH-sensitive hydrogels. Korean J Chem Eng 29(11):1647–1655CrossRefGoogle Scholar
  4. 4.
    Eichhorn SJ, Young RJ, Davies GR (2005) Modeling crystal and molecular deformation in regenerated cellulose fibers. Biomacromolecules 6:507–513CrossRefPubMedGoogle Scholar
  5. 5.
    Schurz J (1999) “Trend in polymer science” a bright future for cellulose. Prog Polym Sci 24:481–483CrossRefGoogle Scholar
  6. 6.
    Klemm D, Heublein B, Fink H, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393CrossRefGoogle Scholar
  7. 7.
    Muhamad I, Salehudin M, Salleh E (2015) Cellulose nanofiber for eco-friendly polymer nanocomposites. In: Thakur VK, Thakur MK (eds) Eco-friendly polymer nanocomposites, vol 75. Springer New Delhi Heidelberg, New York Dordrecht, London, pp 323–365Google Scholar
  8. 8.
    Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979CrossRefGoogle Scholar
  9. 9.
    Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84:40–53CrossRefGoogle Scholar
  10. 10.
    Treesuppharat W, Rojanapanthu P, Siangsanoh C, Manuspiyc H, Ummartyotin S (2017) Synthesis and characterization of bacterial cellulose and gelatin-based hydrogel composites for drug-delivery systems. Biotechnol Rep 15:84–91CrossRefGoogle Scholar
  11. 11.
    Barros SC, Silva AA, Costa DB, Costa CM, Lanceros-Me’ndez S, MNT M (2015) Thermal–mechanical behaviour of chitosan–cellulose derivative thermoreversible hydrogel films. Cellulose 22:1911–1929CrossRefGoogle Scholar
  12. 12.
    Ma J, Li X, Bao Y (2015) Advances in cellulose-based superabsorbent hydrogels. RSC Adv 5:59745–59757CrossRefGoogle Scholar
  13. 13.
    Vinatier C, Gauthier O, Fatimi A, Merceron C, Masson M, Moreau A (2009) An injectable cellulose-based hydrogel for the transfer of autologous nasal chondrocytes in articular cartilage defects. Biotechnol Bioeng 102:1259–1267CrossRefPubMedGoogle Scholar
  14. 14.
    Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46:92–100CrossRefGoogle Scholar
  15. 15.
    Ye SH, Watanabe J, Iwasaki Y, Ishihara K (2003) Antifouling blood purification membrane composed of cellulose acetate and phospholipid polymer. Biomaterials 24:4143–4152CrossRefPubMedGoogle Scholar
  16. 16.
    Sannino A, Pappada S, Giotta L, Maffezzoli A (2007) Spin coating cellulose derivatives on quartz crystal microbalance plates to obtain hydrogel-based fast sensors and actuators. J Appl Polym Sci 106:3040–3050CrossRefGoogle Scholar
  17. 17.
    Ibrahim SM, El Salmawi KM, Zahran AH (2007) Synthesis of crosslinked superabsorbent carboxymethyl cellulose/acrylamide hydrogels through electron-beam irradiation. J Appl Polym Sci 104:2003–2008CrossRefGoogle Scholar
  18. 18.
    Zhou D, Zhang L, Guo S (2005) Mechanism of lead biosorption on cellulose/chitin beads. Water Res 39:3755–3762CrossRefPubMedGoogle Scholar
  19. 19.
    Xiong X, Zhang L, Wang Y (2005) Polymer fractionation using chromatographic column packed with novel regenerated cellulose beads modified with silane. J Chromatogr A 1063:71–77CrossRefPubMedGoogle Scholar
  20. 20.
    Ashori A, Sheykhnazari S, Tabarsa T, Shakeri A, Golalipour M (2012) Bacterial cellulose/silica nanocomposites: preparation and characterization. Carbohydr Polym 90:413–418CrossRefPubMedGoogle Scholar
  21. 21.
    Jonas R, Farah LF (1997) Production and application of microbial cellulose. Polym Degrad Stab 59:101–106CrossRefGoogle Scholar
  22. 22.
    Schramm M, Hestrin S (1954) Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. Microbiology 11:123–129Google Scholar
  23. 23.
    Zahan KA, Pa’e N, Muhamad II (2014) Process parameter for fermentation in rotary discs reactor for optimum microbial cellulose production using response surface methodology. Bioresources 9(2):1858–1872CrossRefGoogle Scholar
  24. 24.
    Hsieh JT, Wang MJ, Lai JT, Liu HS (2016) A novel static cultivation of bacterial cellulose production by intermittent feeding strategy. J Taiwan Inst Chem Eng 63:46–51CrossRefGoogle Scholar
  25. 25.
    Tsuchida T, Yoshaniga F (1997) Production of bacterial cellulose by agitation culture system. Pure Appl Chem 69(1):2253–2458Google Scholar
  26. 26.
    Lee RL, Paul JW, Willem HZ, Isak SP (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577CrossRefGoogle Scholar
  27. 27.
    Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose a masterpiece of nature’s art. J Mater Sci 35:261–270CrossRefGoogle Scholar
  28. 28.
    Pa’e N (2009) Rotary discs reactor for enhanced production microbial cellulose. Master engineering thesis. Universiti Teknologi Malaysia, Skudai, pp 54–56Google Scholar
  29. 29.
    Hwang JW, Yang YK, Hwang JK, Pyun RY, Kim YS (1999) Effects of pH and dissolved oxygen on cellulose production by Acetobacter xylinum BRC5 in agitated culture. J Biosci Bioeng 88(2):183–188CrossRefPubMedGoogle Scholar
  30. 30.
    Toru S, Kazunori T, Masaya K, Tetsuya M, Takaaki N, Shingeru M, Kenji K (2005) Cellulose production from glucose using a glucose dehydrogenase gene (GDH)-deficient mutant of Gluconacetobacter xylinus and its use for bioconversion of sweet potato pulp. J Biosci Bioeng 99(4):415–422CrossRefGoogle Scholar
  31. 31.
    Coban EPL, Biyik H (2011) Evaluation of different pH and temperatures for bacterial cellulose production in HS (Hestrin-Scharmm) medium and beet molasses medium. Afr J Microbiol Res 9:1037–1045Google Scholar
  32. 32.
    Sumate T, Pramote T, Waravut K, Pattarasinee B, Angkana P (2005) Effect of dissolved oxygen on cellulose production by Acetobacter sp. J Sci Res Chula Univ 30(2):179–186Google Scholar
  33. 33.
    Krystynowicz A, Koziołkiewicz M, Wiktorowska JA, Bielecki S, Klemenska E, Masny A, Płucienniczak A (2005) Molecular basis of cellulose biosynthesis disappearance in submerged culture of Acetobacter xylinum. Acta Biochim Pol 52(3):691–698PubMedGoogle Scholar
  34. 34.
    Krystynowicz A, Czaja W, Wiktorowska JA, Gonçalves-Miśkiewicz M, Turkiewicz M, Bielecki S (2002) Factors affecting the yield and properties of bacterial cellulose. J Ind Microbiol Biotechnol 29(4):189–195CrossRefPubMedGoogle Scholar
  35. 35.
    Chawla PR, Bajaj IB, Survase SA, Singhal RS (2008) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47(2):107–124Google Scholar
  36. 36.
    Hidayah WNAWMY (2013) Palm oil mill effluent (Pome) as fermentation medium for bacterial cellulose production using static fermentation method. B. Eng dissertation, University Teknologi Malaysia, Skudai, Malaysia, pp 25–28Google Scholar
  37. 37.
    Junaidi Z, Muhammad AN (2012) Optimization of bacterial cellulose production from pineapple waste: effect of temperature, pH and concentration. In: Proceeding of 5th engineering conference, Kuching, Sarawak, Malaysia, 10–12th July 2012, pp 1–7Google Scholar
  38. 38.
    Firdaus J, Vinod K, Garima R, Saxena RX (2012) Production of microbial cellulose by a bacterium isolated from fruit. Appl Biochem Biotechnol 167(5):1157–1171CrossRefGoogle Scholar
  39. 39.
    Zeng X, Darcy PS, Wankei W (2011) Statistical optimization of culture conditions for bacterial cellulose production by Acetobacter xylinum BPR 2001 from maple syrup. Carbohydr Polym 85:506–513CrossRefGoogle Scholar
  40. 40.
    Norhayati P, Khairul AZ, Ida IM (2011) Production of biopolymer from Acetobacter xylinum using different fermentation methods. Int J Eng Technol IJET-IJENS 11(5):74–79Google Scholar
  41. 41.
    Kongruang S (2008) Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products. J Appl Biochem Biotechnol 148:245–256CrossRefGoogle Scholar
  42. 42.
    Barbara SS, Sebastian P, Dariusz D (2008) Characteristics of bacterial cellulose obtained from Acetobacter xylinum culture for application in papermarking. Fibres Text East Eur 16(4):108–111Google Scholar
  43. 43.
    Gao X, Shi Z, Lau A, Liu C, Yang G, Silberschmidt VV (2016) Effect of microstructure on anomalous strain-rate-dependent behavior of bacterial cellulose hydrogel. Mater Sci Eng C 62:130–136CrossRefGoogle Scholar
  44. 44.
    Brown RM Jr (1991) Advances in cellulose biosynthesis. In: Chum HL (ed) Polymers from biobased materials. Doyes Data Corp, Park Ridge, pp 122–127Google Scholar
  45. 45.
    Mohite BV, Salunke BK, Patil SV (2013) Enhanced production of bacterial cellulose by using Gluconacetobacter hansenii NCIM 2529 strain under shaking conditions. Appl Biochem Biotechnol 169(5):1497–1511CrossRefPubMedGoogle Scholar
  46. 46.
    White DG, Brown RM Jr (1989) Prospects for the commercialization of the biosynthesis of microbial cellulose. In: Schuerech C (ed) Cellulose and wood-chemistry and technology. Wiley, New York, pp 573–590Google Scholar
  47. 47.
    Amin MCM, Abadi AG, Ahmad N, Katas H, Jamal JA (2012) Bacterial cellulose film coating as drug delivery system: physicochemical, thermal and drug release properties. Sains Malays 41(5):561–568Google Scholar
  48. 48.
    Li X, Wan W, Panchal CJ (2013) Transparent bacterial cellulose nanocomposite hydrogels. US Patent 20130011385 A1Google Scholar
  49. 49.
    Li H, Niu R, Yang J, Nie J, Yang D (2011) Photocrosslinkable tissue adhesive based on dextran. Carbohydr Polym 86(4):1578–1585CrossRefGoogle Scholar
  50. 50.
    Zhong CY (2011) Method for manufacturing air-filtering bacterial cellulose face mask. CN Patent 200910149665.8Google Scholar
  51. 51.
    Ma X, Wang RM, Guan FM, Wang TF (2010) Artificial dura mater made from bacterial cellulose and polyvinyl alcohol. CN Patent 200710015537.5Google Scholar
  52. 52.
    Wan WK, Millon L (2005) Poly(vinyl alcohol)-bacterial cellulose nanocomposite. US Patent 20050037082 A1Google Scholar
  53. 53.
    Tammarate P (1999) Method for the modification and utilization of bacterial cellulose. US Patent 5962676Google Scholar
  54. 54.
    Johnson DC, Neogi AN (1990) Nonwoven fabric-like product using a bacterial cellulose binder and method for its preparation. US Patent 4919753 AGoogle Scholar
  55. 55.
    Torres-Lugo M, Peppas NA (1999) Molecular design and in vitro studies of novel pH-sensitive hydrogels for the oral delivery of calcitonin. Macromolecules 32(20):6646–6651CrossRefGoogle Scholar
  56. 56.
    Hoffman AS (1987) Application of thermally reversible polymers and hydrogels in therapeutics and diagnostics. J Control Release 6(1):297–305CrossRefGoogle Scholar
  57. 57.
    Rosso F, Marino G, Giordano A, Barbarisi M, Parmeggiani D, Barbarisi A (2005) Smart materials as scaffolds for tissue engineering. J Cell Physiol 203(3):465–470CrossRefPubMedGoogle Scholar
  58. 58.
    Liu F, Tao GL, Zhuo RX (1993) Synthesis of thermal phase-separating reactive polymers and their applications in immobilized enzymes. Polym J 25(6):561–567CrossRefGoogle Scholar
  59. 59.
    Hezaveh H, Muhamad II (2012) Effect of natural cross-linker on swelling and structural stability of kappa-carrageenan/hydroxyethyl cellulose pH-sensitive hydrogels. Korean J Chem Eng 29(11):1647–1655CrossRefGoogle Scholar
  60. 60.
    Albu MG, Vuluga Z, Panaitescu DM, Vuluga DM, Căşărică A, Ghiurea M (2014) Morphology and thermal stability of bacterial cellulose/collagen composites. Cent Eur J Chem 12(9):968–975CrossRefGoogle Scholar
  61. 61.
    Barud HS, Ribeiro CA, Crespi MS, Martines MAU, Dexpert-Ghys J, Marques RFC, Messaddeq Y, Ribeiro SJL (2007) Thermal characterization of bacterial cellulose–phosphate composite membranes. J Therm Anal Calorim 87(3):815–818CrossRefGoogle Scholar
  62. 62.
    Abidin AZ, Graha HPR (2014) Thermal characterization of bacterial cellulose/polyvinyl alcohol nanocomposite. Adv Mater Res 1123:303–307CrossRefGoogle Scholar
  63. 63.
    Oliveira RL, Vieira JG, Barud HS, Assunção RSM, Filho GR, Ribeiroa SJL, Messadeqq Y (2015) Synthesis and characterization of methylcellulose produced from bacterial cellulose under heterogeneous condition. J Braz Chem Soc 26(9):1861–1870Google Scholar
  64. 64.
    Mohite BV, Patil SV (2014) Physical, structural,mechanical and thermal characterization of bacterial cellulose by G. hansenii NCIM 2529. Carbohydr Polym 106:132–141CrossRefPubMedGoogle Scholar
  65. 65.
    Nainggolan H, Gea S, Bilotti E, Peijs T, Hutagalung SD (2013) Mechanical and thermal properties of bacterial-cellulose-fibre-reinforced Mater-Bi® bionanocomposite. Beilstein J Nanotechnol 4:325–329CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Barud HS, AMdA J, de Assunção RMN, Meireles CS, Cerqueira DA, Filho GR, Messaddeq Y, Ribeiro SJL (2007) Thermal characterization of cellulose acetate produced from homogeneous acetylation of bacterial cellulose. Thermochim Acta 471(1):61–69Google Scholar
  67. 67.
    Auta R, Adamus G, Kwiecien M, Radecka I, Hooley P (2017) Production and characterization of bacterial cellulose before and after enzymatic hydrolysis. Afr J Biotechnol 16(10):470–482Google Scholar
  68. 68.
    Numata Y, Sakata T, Furukawa H, Tajima K (2015) Bacterial cellulose gels with high mechanical strength. Mater Sci Eng 47:57–56CrossRefGoogle Scholar
  69. 69.
    Ummartyotin S, Juntaro J, Sain M, Manuspiya H (2012) Development of transparent bacterial cellulose nanocomposite film as substrate for flexible organic light emitting diode (OLED) display. Ind Crop Prod 35:92–97CrossRefGoogle Scholar
  70. 70.
    Mulijani S, Erizal, Irawadi TT, Katresna TC (2014) Composite copolymer acrylamide/bacterial cellulose hydrogel: synthesis and characterization by the application of gamma irradiation. Adv Mater Res 974:91–96CrossRefGoogle Scholar
  71. 71.
    Lee K, Blaker JJ, Bismarck A (2009) Surface functionalisation of bacterial cellulose as the route to produce green polylactide nanocomposites with improved properties. Compos Sci Technol 69(15):2724–2733CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Norhayati Pa’e
    • 1
  • Mohd Harfiz Salehudin
    • 1
  • Nor Diana Hassan
    • 1
  • Aishah Mohd Marsin
    • 1
  • Ida Idayu Muhamad
    • 1
    Email author
  1. 1.Department of Bioprocess & Polymer Engineering, Faculty of Chemical and Energy EngineeringUniversiti Teknologi MalaysiaJohor BahruMalaysia

Personalised recommendations