Advertisement

Surface Functionalization of Nanocellulose-Based Hydrogels

  • Joanna Lewandowska-Łańcucka
  • Anna Karewicz
  • Karol Wolski
  • Szczepan Zapotoczny
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)

Abstract

Nanocellulose is the nanostructured product or extract from the native cellulose found in plants, animals, and bacteria. Three main types of nanocellulose may be identified as cellulose nanocrystals (CNCs), nanofibrillated cellulose (NFC), and bacterial nanocellulose (BNC). Due to the very high surface-to-volume ratio, nanocellulose tends to form hydrogels with exceptionally high water content (>90 wt%). Surface modifications of those nanostructured materials can, e.g., improve their compatibility with different matrices, enable control of water absorption, and release and bring desired chemical functionality expanding utilization of such hydrogel in (bio)nanotechnology-related applications. Various objects including small molecules of biomedical relevance, nano- or microparticles serving as drug carriers, protective/semipermeable coatings, or polymer brushes can be attached onto the surfaces of nanocellulose-based materials in order to prepare various functional nanocomposites. Such composite materials have been successfully applied in, e.g., wound healing and regenerative medicine. Chemical approaches for surface functionalization of nanocellulose-based hydrogels are systematically described in this chapter, together with properties of such formed hydrogel materials and examples of their applications.

Keywords

Nanocellulose Nanofibrillar cellulose Cellulose nanocrystals 

Notes

Acknowledgment

The authors thank the National Center for Research and Development (Poland) in the grant INNOTECH-K3/IN3/37/228114/NCBR/14 for financial support.

References

  1. 1.
    Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chemie Int Ed 50:5438–5466CrossRefGoogle Scholar
  2. 2.
    Trache D, Hussin MH, Haafiz MKM, Thakur VK (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9:1763–1786PubMedCrossRefGoogle Scholar
  3. 3.
    Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chemie Int Ed 44:3358–3393CrossRefGoogle Scholar
  4. 4.
    George J, Sabapathi SN (2015) Cellulose nanocrystals : synthesis, functional properties, and applications. Nanotechnol Sci Appl 8:45–54PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Smyth M, García A, Rader C, Foster EJ, Bras J (2017) Extraction and process analysis of high aspect ratio cellulose nanocrystals from corn (Zea mays) agricultural residue. Ind Crop Prod 108:257–266CrossRefGoogle Scholar
  6. 6.
    Sacui IA, Nieuwendaal RC, Burnett DJ, Stranick SJ, Jorfi M, Weder C, Foster EJ, Olsson RT, Gilman JW (2014) Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl Mater Interfaces 6:6127–6138PubMedCrossRefGoogle Scholar
  7. 7.
    Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Mohamed MA, Salleh WNW, Jaafar J, Asri SEAM, Ismail AF (2015) Physicochemical properties of “green” nanocrystalline cellulose isolated from recycled newspaper. RSC Adv 5:29842–29849CrossRefGoogle Scholar
  9. 9.
    Bettaieb F, Khiari R, Dufresne A, Mhenni MF, Belgacem MN (2015) Mechanical and thermal properties of Posidonia oceanica cellulose nanocrystal reinforced polymer. Carbohydr Polym 123:99–104PubMedCrossRefGoogle Scholar
  10. 10.
    Chen L, Zhu JY, Baez C, Kitin P, Elder T (2016) Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem 18:3835–3843CrossRefGoogle Scholar
  11. 11.
    Satyamurthy P, Jain P, Balasubramanya RH, Vigneshwaran N (2011) Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis. Carbohydr Polym 83:122–129CrossRefGoogle Scholar
  12. 12.
    Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13:679–687CrossRefGoogle Scholar
  13. 13.
    Spoljaric S, Genovese A, Shanks RA (2009) Polypropylene-microcrystalline cellulose composites with enhanced compatibility and properties. Compos Part A Appl Sci Manuf 40:791–799CrossRefGoogle Scholar
  14. 14.
    Padalkar S, Capadona JR, Rowan SJ, Weder C, Won YH, Stanciu LA, Moon RJ (2010) Natural biopolymers: novel templates for the synthesis of nanostructures. Langmuir 26:8497–8502PubMedCrossRefGoogle Scholar
  15. 15.
    Salajkova M, Berglund LA, Zhou Q (2012) Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts. J Mater Chem 22:19798CrossRefGoogle Scholar
  16. 16.
    Espino-Pérez E, Bras J, Almeida G, Relkin P, Belgacem N, Plessis C, Domenek S (2016) Cellulose nanocrystal surface functionalization for the controlled sorption of water and organic vapours. Cellulose 23:2955–2970CrossRefGoogle Scholar
  17. 17.
    Biyani MV, Foster EJ, Weder C (2013) Light-healable supramolecular nanocomposites based on modified cellulose nanocrystals. ACS Macro Lett 2:236–240CrossRefGoogle Scholar
  18. 18.
    Yin Y, Tian X, Jiang X, Wang H, Gao W (2016) Modification of cellulose nanocrystal via SI-ATRP of styrene and the mechanism of its reinforcement of polymethylmethacrylate. Carbohydr Polym 142:206–212PubMedCrossRefGoogle Scholar
  19. 19.
    Chadila A, Farouk MM (2011) Rapid homogeneous esterification of cellulose extracted from Posidonia induced by microwave irradiation. J Appl Polym Sci 119:3372–3381CrossRefGoogle Scholar
  20. 20.
    Lin N, Dufresne A (2013) Supramolecular hydrogels from in situ host-guest inclusion between chemically modified cellulose nanocrystals and cyclodextrin. Biomacromolecules 14:871–880PubMedCrossRefGoogle Scholar
  21. 21.
    Eyley S, Thielemans W (2014) Surface modification of cellulose nanocrystals. Nanoscale 6:7764–7779PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Bendahou A, Hajlane A, Dufresne A, Boufi S, Kaddami H (2015) Esterification and amidation for grafting long aliphatic chains on to cellulose nanocrystals: a comparative study. Res Chem Intermed 41:4293–4310CrossRefGoogle Scholar
  23. 23.
    Sadeghifar H, Filpponen I, Clarke SP, Brougham DF, Argyropoulos DS (2011) Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface. J Mater Sci 46:7344–7355CrossRefGoogle Scholar
  24. 24.
    Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Gill U, Sutherland T, Himbert S, Zhu Y, Rheinstädter MC, Cranston ED, Moran-Mirabal JM (2017) Beyond buckling: humidity-independent measurement of the mechanical properties of green nanobiocomposite films. Nanoscale 9:7781–7790PubMedCrossRefGoogle Scholar
  26. 26.
    Zhou Q, Brumer H, Teeri TT (2009) Self-organization of cellulose nanocrystals adsorbed with xyloglucan oligosaccharide-poly(ethylene glycol)-polystyrene triblock copolymer. Macromolecules 42:5430–5432CrossRefGoogle Scholar
  27. 27.
    Nagalakshmaiah M, Pignon F, El Kissi N, Dufresne A (2016) Surface adsorption of triblock copolymer (PEO–PPO–PEO) on cellulose nanocrystals and their melt extrusion with polyethylene. RSC Adv 6:66224–66232CrossRefGoogle Scholar
  28. 28.
    Atifi S, Su S, Hamad WY (2014) Mechanically tunable nanocomposite hydrogels based on functionalized cellulose nanocrystals. Nord Pulp Pap Res J 29:95–104CrossRefGoogle Scholar
  29. 29.
    Wang H, He J, Zhang M, Tam KC, Ni P (2015) A new pathway towards polymer modified cellulose nanocrystals via a “grafting onto” process for drug delivery. Polym Chem 6:4206–4209CrossRefGoogle Scholar
  30. 30.
    Azzam F, Siqueira E, Fort S, Hassaini R, Pignon F, Travelet C, Putaux JL, Jean B (2016) Tunable aggregation and gelation of Thermoresponsive suspensions of polymer-grafted cellulose nanocrystals. Biomacromolecules 17:2112–2119PubMedCrossRefGoogle Scholar
  31. 31.
    Kloser E, Gray DG (2010) Surface grafting of cellulose nanocrystals with poly(ethylene oxide) in aqueous media. Langmuir 26:13450–13456PubMedCrossRefGoogle Scholar
  32. 32.
    Zoppe JO, Cavusoglu Ataman NC, Mocny P, Wang J, Moraes J, Klok H-A (2017) Surface-initiated controlled radical polymerization: state-of-the-art, opportunities, and challenges in surface and Interface engineering with polymer brushes. Chem Rev 117:1105–1318PubMedCrossRefGoogle Scholar
  33. 33.
    Barbey R, Lavanant L, Paripovic D, Schuwer N, Sugnaux C, Tugulu S, Klok H-A (2009) Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem Rev 109:5437–5527PubMedCrossRefGoogle Scholar
  34. 34.
    Roeder RD, Garcia-Valdez O, Whitney RA, Champagne P, Cunningham MF (2016) Graft modification of cellulose nanocrystals via nitroxide-mediated polymerisation. Polym Chem 7:6383–6390CrossRefGoogle Scholar
  35. 35.
    Boujemaoui A, Mazières S, Malmström E, Destarac M, Carlmark A (2016) SI-RAFT/MADIX polymerization of vinyl acetate on cellulose nanocrystals for nanocomposite applications. Polym (UK) 99:240–249CrossRefGoogle Scholar
  36. 36.
    Lizundia E, Fortunati E, Dominici F, Vilas JL, León LM, Armentano I, Torre L, Kenny JM (2016) PLLA-grafted cellulose nanocrystals: role of the CNC content and grafting on the PLA bionanocomposite film properties. Carbohydr Polym 142:105–113PubMedCrossRefGoogle Scholar
  37. 37.
    Lahiji RR, Xu X, Reifenberger R, Raman A, Rudie A, Moon RJ (2010) Atomic force microscopy characterization of cellulose nanocrystals. Langmuir 26:4480–4488PubMedCrossRefGoogle Scholar
  38. 38.
    De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing Nanocellulose. Chem Mater 29:4609–4631CrossRefGoogle Scholar
  39. 39.
    Ureña-Benavides EE, Ao G, Davis VA, Kitchens CL (2011) Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions. Macromolecules 44:8990–8998CrossRefGoogle Scholar
  40. 40.
    Chau M, Sriskandha SE, Pichugin D, Thérien-Aubin H, Nykypanchuk D, Chauve G, Méthot M, Bouchard J, Gang O, Kumacheva E (2015) Ion-mediated gelation of aqueous suspensions of cellulose nanocrystals. Biomacromolecules 16:2455–2462PubMedCrossRefGoogle Scholar
  41. 41.
    Way AE, Hsu L, Shanmuganathan K, Weder C, Rowan SJ (2012) PH-responsive cellulose nanocrystal gels and nanocomposites. ACS Macro Lett 1:1001–1006CrossRefGoogle Scholar
  42. 42.
    Bajpai SK, Pathak V, Soni B, Mohan YM (2014) CNWs loaded poly(SA) hydrogels: effect of high concentration of CNWs on water uptake and mechanical properties. Carbohydr Polym 106:351–358PubMedCrossRefGoogle Scholar
  43. 43.
    Osorio-Madrazo A, Eder M, Rueggeberg M, Pandey JK, Harrington MJ, Nishiyama Y, Putaux JL, Rochas C, Burgert I (2012) Reorientation of cellulose nanowhiskers in agarose hydrogels under tensile loading. Biomacromolecules 13:850–856PubMedCrossRefGoogle Scholar
  44. 44.
    Yang J, Han C, Xu F, Sun R (2014) Simple approach to reinforce hydrogels with cellulose nanocrystals. Nanoscale 6:5934–5943PubMedCrossRefGoogle Scholar
  45. 45.
    De France KJ, Chan KJW, Cranston ED, Hoare T (2016) Enhanced mechanical properties in cellulose nanocrystal-poly(oligoethylene glycol methacrylate) injectable nanocomposite hydrogels through control of physical and chemical cross-linking. Biomacromolecules 17:649–660PubMedCrossRefGoogle Scholar
  46. 46.
    Yang J, Zhao JJ, Xu F, Sun RC (2013) Revealing strong nanocomposite hydrogels reinforced by cellulose nanocrystals: insight into morphologies and interactions. ACS Appl Mater Interfaces 5:12960–12967PubMedCrossRefGoogle Scholar
  47. 47.
    Wang S, Sun J, Jia Y, Yang L, Wang N, Xianyu Y, Chen W, Li X, Cha R, Jiang X (2016) Nanocrystalline cellulose-assisted generation of silver nanoparticles for nonenzymatic glucose detection and antibacterial agent. Biomacromolecules 17:2472–2478PubMedCrossRefGoogle Scholar
  48. 48.
    He X, Male KB, Nesterenko PN, Brabazon D, Paull B, Luong JHT (2013) Adsorption and desorption of methylene blue on porous carbon monoliths and nanocrystalline cellulose. ACS Appl Mater Interfaces 5:8796–8804PubMedCrossRefGoogle Scholar
  49. 49.
    Kalashnikova I, Bizot H, Bertoncini P, Cathala B, Capron I (2013) Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions. Soft Matter 9:952–959CrossRefGoogle Scholar
  50. 50.
    Xu X, Zhou J, Jiang L, Lubineau G, Ng T, Ooi BS, Liao H-Y, Shen C, Chen L, Zhu JY (2016) Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics. Nanoscale 8:12294–12306PubMedCrossRefGoogle Scholar
  51. 51.
    Tang L, Li T, Zhuang S, Lu Q, Li P, Huang B (2016) Synthesis of pH-sensitive fluorescein grafted cellulose nanocrystals with an amino acid spacer. ACS Sustain Chem Eng 4: 4842–4849CrossRefGoogle Scholar
  52. 52.
    Mohanta V, Madras G, Patil S (2014) Layer-by-layer assembled thin films and microcapsules of nanocrystalline cellulose for hydrophobic drug delivery. ACS Appl Mater Interfaces 6:20093–20101PubMedCrossRefGoogle Scholar
  53. 53.
    Schyrr B, Pasche S, Voirin G, Weder C, Simon YC, Foster EJ (2014) Biosensors based on porous cellulose nanocrystal-poly(vinyl alcohol) scaffolds. ACS Appl Mater Interfaces 6:12674–12683PubMedCrossRefGoogle Scholar
  54. 54.
    Bolloli M, Antonelli C, Molméret Y, Alloin F, Iojoiu C, Sanchez JY (2016) Nanocomposite poly(vynilidene fluoride)/nanocrystalline cellulose porous membranes as separators for lithium-ion batteries. Electrochim Acta 214:38–48CrossRefGoogle Scholar
  55. 55.
    Yu H, Yan C, Yao J (2014) Fully biodegradable food packaging materials based on functionalized cellulose nanocrystals/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites. RSC Adv 4:59792–59802CrossRefGoogle Scholar
  56. 56.
    Xiong R, Hu K, Grant AM, Ma R, Xu W, Lu C, Zhang X, Tsukruk VV (2016) Ultrarobust transparent cellulose nanocrystal-graphene membranes with high electrical conductivity. Adv Mater 28:1501–1509PubMedCrossRefGoogle Scholar
  57. 57.
    Grishkewich N, Mohammed N, Tang J, Tam KC (2017) Recent advances in the application of cellulose nanocrystals. Curr Opin Colloid Interface Sci 29:32–45CrossRefGoogle Scholar
  58. 58.
    Wang K, Nune KC, Misra RDK (2016) The functional response of alginate-gelatin-nanocrystalline cellulose injectable hydrogels toward delivery of cells and bioactive molecules. Acta Biomater 36:143–151PubMedCrossRefGoogle Scholar
  59. 59.
    Lin N, Gèze A, Wouessidjewe D, Huang J, Dufresne A (2016) Biocompatible double-membrane hydrogels from cationic cellulose nanocrystals and anionic alginate as complexing drugs Codelivery. ACS Appl Mater Interfaces 8:6880–6889PubMedCrossRefGoogle Scholar
  60. 60.
    Zubik K, Singhsa P, Wang Y, Manuspiya H, Narain R (2017) Thermo-responsive poly(N-isopropylacrylamide)-cellulose nanocrystals hybrid hydrogels for wound dressing. Polymers 9:119CrossRefGoogle Scholar
  61. 61.
    Kelly JA, Shukaliak AM, Cheung CCY, Shopsowitz KE, Hamad WY, MacLachlan MJ (2013) Responsive photonic hydrogels based on nanocrystalline cellulose. Angew Chem Int Ed 52:8912–8916CrossRefGoogle Scholar
  62. 62.
    McKee JR, Appel EA, Seitsonen J, Kontturi E, Scherman OA, Ikkala O (2014) Healable, stable and stiff hydrogels: combining conflicting properties using dynamic and selective three-component recognition with reinforcing cellulose nanorods. Adv Funct Mater 24:2706–2713CrossRefGoogle Scholar
  63. 63.
    Boufi S, Gonzalez I, Delgado-Aguilar M, Tarres Q, Angels Pelach M, Mutje P (2016) Nanofibrillated cellulose as an additive in papermaking process: a review. Carbohydr Polym 154:151–166PubMedCrossRefGoogle Scholar
  64. 64.
    Zhao Y, Moser C, Lindström ME, Henriksson G, Li J (2017) Cellulose nanofibers from softwood, hardwood, and tunicate: preparation–structure–film performance interrelation. ACS Appl Mater Interfaces 9(15):13508–13519PubMedCrossRefGoogle Scholar
  65. 65.
    Abdul Khalil HPS, Davoudpour Y, Nazrul Islam M, Mustapha A, Sudesh K, Dungani R, Jawaid M (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665PubMedCrossRefGoogle Scholar
  66. 66.
    Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169PubMedCrossRefGoogle Scholar
  67. 67.
    Chauhan VS, Chakrabarti SK (2012) Use of nanotechnology for high performance cellulosic and papermaking products. Cellulose Technol 46(5–6):389–400Google Scholar
  68. 68.
    Szczęsna-Antczak M, Kazimierczak J, Antczak T (2012) Nanotechnology-methods of manufacturing cellulose nanofibers. Fiber Text East Eur 20(91):8–12Google Scholar
  69. 69.
    Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercially potential. J Polym Sci 37:815–827Google Scholar
  70. 70.
    Davoudpour Y, Hossain S, Khall HPSA, Haafiz MM, Ishak ZM, Hsan A, Sarker ZI (2015) Optimization of high pressure homogenization parameters for the isolation of cellulosic nanofibers using response surface methodology. Ind Crop Prod 74:381–387CrossRefGoogle Scholar
  71. 71.
    Ferrer A, Filpponen I, Rodriguez A, Laine J, Rojas OJ (2012) Valorization of residual empty palm fruit bunch fibers (EPFBF) by microfluidization: production of nanofibrillated cellulose and EPFBF nanopaper. Bioresour Technol 125:249–255PubMedCrossRefGoogle Scholar
  72. 72.
    Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227CrossRefGoogle Scholar
  73. 73.
    Frone AN, Panaitescu DM, Donescu D, Spataru CI, Radovici C, Trusca R, Somoghi R (2011) Preparation and characterization of PVA composites with cellulose nanofibers obtained by ultrasonication. Bioresources 6(1):487–512Google Scholar
  74. 74.
    Uetani K, Yano H (2010) Nanofibrillation of wood pulp using a high-speed blender. Biomacromolecules 12:348–353PubMedCrossRefGoogle Scholar
  75. 75.
    Abraham E, Deepa B, Pothan L, John M, Narine S, Thomas S, Anandjiwala R (2013) Physicomechanical properties of nanocomposites based on cellulose nanofibre and natural rubber latex. Cellulose 20:417–427CrossRefGoogle Scholar
  76. 76.
    Cherian BM, Leao AL, de Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81:720–725CrossRefGoogle Scholar
  77. 77.
    Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84:975–983CrossRefGoogle Scholar
  78. 78.
    Leitner J, Hinterstoisser B, Wastyn M, Keckes J, Gindl W (2007) Sugar beet cellulose nanofibril-reinforced composites. Cellulose 14:419–425CrossRefGoogle Scholar
  79. 79.
    Elanhikkal S, Gopalakrishnapanicker U (2010) Cellulose microfibres produced from banana plant wastes: isolation and characterization. Carbohydr Polym 80:852–859CrossRefGoogle Scholar
  80. 80.
    Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433–442CrossRefGoogle Scholar
  81. 81.
    Chen W, Yu H, Lu Y (2011) Preparation of millimeter-long cellulose I nanofibers with diameters of 30–80 nm from bamboo fibers. Carbohydr Polym 86:453–461CrossRefGoogle Scholar
  82. 82.
    Thiripura Sundari M, Rameh A (2012) Isolation and characterization of cellulose nanofibers from the aquatic weed water hyacinth – Eichhornia crassipes. Carbohydr Polym 87:1701–1705CrossRefGoogle Scholar
  83. 83.
    Naderi A, Lindstrom T, Sundstrom J (2015) Repeated homogenization, a route for decreasing the energy consumption in the manufacturing process of carboxymethylated nanofibrillatd cellulose. Cellulose 22:1147–1157CrossRefGoogle Scholar
  84. 84.
    Chaker A, Mutje P, Rei Vilar M, Boufi S (2014) Agriculture crop residue as a source for the production of nanofibrillated cellulose with low energy demand. Cellulose 21:4247–4259CrossRefGoogle Scholar
  85. 85.
    Saito T, Nishiyama Y, Putaux JL, Vignon M, Sogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691PubMedCrossRefGoogle Scholar
  86. 86.
    Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite material: a review. Cellulose 17:459–494CrossRefGoogle Scholar
  87. 87.
    Buzała K, Przybysz P, Rosicka-Kaczmarek J, Kalinowska H (2015) Comparison of digestibility of wood pulps produced by the sulphate and TMP methods and woodchips of various botanical origins and sizes. Cellulose 22(4):2737–2747CrossRefGoogle Scholar
  88. 88.
    Limateinen H, Visanko M, Sirvio J, Hormi J, Niinimaki JD (2013) Sulfonated cellulose nanofibers obtained from wood pulp through regioselective oxidative bisulphite pre-treatment. Cellulose 20(2):741–749CrossRefGoogle Scholar
  89. 89.
    Chaker A, Boufi S (2015) Cationic nanofibrillar cellulose with high antibacterial properties. Carbohydr Polym 131:224–232PubMedCrossRefGoogle Scholar
  90. 90.
    Kalia S, Boufi S, Celli A, Kango S (2014) Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym Sci 292:5–31CrossRefGoogle Scholar
  91. 91.
    Lu J, Askeland P, Drzal LT (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49:1285–1296CrossRefGoogle Scholar
  92. 92.
    Andresen M, Johansson L, Tanem B, Stenius P (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13:665–677CrossRefGoogle Scholar
  93. 93.
    Jonoobi M, Harun J, Mathew AP, Hussein MZB, Oksman K (2010) Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose 17:299–307CrossRefGoogle Scholar
  94. 94.
    Tingaut P, Zimmermann T, Lopez-Suevos F (2010) Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose. Biomacromolecules 11:454–464PubMedCrossRefGoogle Scholar
  95. 95.
    Syverud K, Xhanari K, Chinga-carrasco G, Yu Y, Stenius P (2011) Films made of cellulose nanofibrils: surface modification by adsorption of a cationic surfactant and characterization by computer assisted electron microscopy. J Nanopart Res 13:773–782CrossRefGoogle Scholar
  96. 96.
    Nakagaito AN, Yano H (2008) Toughness enhancement of cellulose nanocomposite by akali treatment of the reinforcing cellulose nanofibers. Cellulose 15:323–331CrossRefGoogle Scholar
  97. 97.
    Pahimanolis N, Hippi U, Johansson LS, Saarinen T, Houbenov N, Ruokolainen J, Seppala J (2011) Surface functionalization of nanofibrillated cellulose using click-chemistry approach in aqueous media. Cellulose 18:1201–1212CrossRefGoogle Scholar
  98. 98.
    Xiao M, Li S, Chanklin W, Zhenh A, Xiao H (2011) Surface initiated atom transfer radical polymerization of butyl acrylate on cellulose microfibrils. Carbohydr Polym 83:512–519CrossRefGoogle Scholar
  99. 99.
    Li S, Xiao M, Zheng A, Xiao H (2011) Cellulose microfibrils grafted with PBA via surface initiated atom transfer radical polymerization for biocomposite reinforcement. Biomacromolecules 12:3305–3312PubMedCrossRefGoogle Scholar
  100. 100.
    Thompson TT, Bastarrachea MIL, Vega MJA (2005) Characterization of henequen cellulose microfibers treated with an epoxide and grafted with poly(acrylc acid). Carbohydr Polym 62:67–73CrossRefGoogle Scholar
  101. 101.
    Lonnberg H, Larrson K, Lindstrom T, Hult A, Malmstrom E (2011) Synthesis of polycaprolactone-grafted microfibrillated cellulose for use in novel bionanocomposites-influence of the graft length on the mechanical properties. ACS Appl Mater Interfaces 3:1426–1433PubMedCrossRefGoogle Scholar
  102. 102.
    Littunen K, Hippi U, Johansson LS, Osterberg M, Tammeline T, Laine J, Seppala J (2011) Free radical graft copolymerization of nanofibrillated cellulose with acrylic monomers. Carbohydr Polym 84:1039–1047CrossRefGoogle Scholar
  103. 103.
    Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2(2):353–373PubMedCentralCrossRefPubMedGoogle Scholar
  104. 104.
    Mihranyan A, Llasgostera AP, Karmhag R, Stromme M, Ek R (2004) Moisture sorption by cellulose powder of varying crystallinity. In J Pharm 269:433–442Google Scholar
  105. 105.
    Abraham E, Deepa B, Pohan LA, Jacob M, Thomas S, Cvelbar U, Anandjiwala R (2011) Extraction of nanocellulose fibrils from lignocellulosic fibers: a novel approach. Carbohydr Polym 86:1468–1475CrossRefGoogle Scholar
  106. 106.
    Bhattacharya M, Malinen MM, Lauren P, Lou YR, Kuisma SW, Kanninen L, Lille M, Corlu A, GuGuen-Guillouzo C, Ikkala O, Laukkanen A, Urtti A, Yliperttula M (2012) Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. J Control Release 164:291–298PubMedCrossRefGoogle Scholar
  107. 107.
    Kopecek J (2009) Hydrogels: from soft contact lenses and implants to self-assembled nanomaterials. J Polym Sci Part A 47:5929–5946CrossRefGoogle Scholar
  108. 108.
    Mertaniemi H, Escobedo-Lucea C, Sanz-Garcia A, Gandía C, Mäkitie A, Partanen J, Ikkala O, Yliperttula M (2016) Human stem cell decorated nanocellulose threads for biomedical applications. Biomaterials 82:208–220PubMedCrossRefGoogle Scholar
  109. 109.
    Alexandrescu L, Syverud K, Gatti A, Chinga-Carrasco G (2013) Cytotoxicity tests of cellulose nanofibril-based structures. Cellulose 20:1765–1775CrossRefGoogle Scholar
  110. 110.
    Syverud K, Chinga-Carrasco G, Toledo J, Toledo PG (2011) A comparative study of Eucalyptus and Pinus radiate pulp fibres as raw material of production of cellulose nanofibrils. Carbohydr Polym 84:1033–1038CrossRefGoogle Scholar
  111. 111.
    Liu J, Korpinen R, Mikkonen K, Willfor S, Xu C (2014) Nanofibrillated cellulose originated from birch sawdust after sequential extractions: a promising polymeric material from waste to film. Cellulose 21:2587–2598CrossRefGoogle Scholar
  112. 112.
    Liu J, Chinga-Carrasco G, Cheng F, Xu W, Willfor S, Syverud K, Xu C (2016) Hemicellulose-reinforced nanocellulose hydrogels for wound healing application. Cellulose 23:3129–3143CrossRefGoogle Scholar
  113. 113.
    Lopez-Suevos F, Eyholzer C, Bordeanu N, Richter K (2010) DMA analysis and wood bonding of PVAc latex reinforced with cellulose nanofibrils. Cellulose 17:387–398CrossRefGoogle Scholar
  114. 114.
    Seydibeyoglu MO, Oksman K (2008) Novel nanocomposites based on polyurethane and micro fibrillated cellulose. Compos Sci Technol 68:908–914CrossRefGoogle Scholar
  115. 115.
    Zimmermann T, Pohler E, Geiger T (2010) Reinforcing effect of carboxymethylated nanofibrillated cellulose powder on hydroxypropyl cellulose. Cellulose 17:793–802CrossRefGoogle Scholar
  116. 116.
    Nair SS, Zhu JY, Deng Y, Ragauskas AJ (2014) Hydrogels prepared from cross-linked nanofibrillated cellulose. ACS Sustain Chem Eng 2:772–780CrossRefGoogle Scholar
  117. 117.
    Eyholzer C, Borges AC, Duc F, Bourban PE, Tingaut P, Zimmermann T, Månson JA, Oksman K (2011) Biocomposite hydrogels with carboxymethylated, nanofibrilated cellulose powder for replacement of the nucleus pulposus. Biomacromolecules 12:1419–1427PubMedCrossRefGoogle Scholar
  118. 118.
    Wen Y, Zhu X, Gauthier DE, An X, Cheng D, Ni Y, Yin L (2015) Development of poly(acrylic acid)/nanofibrillated cellulose superabsorbent composites by ultraviolet light induced polymerization. Cellulose 22:2499–2506CrossRefGoogle Scholar
  119. 119.
    Borges AC, Eyholzer C, Duc F, Bourban P, Tingaut P, Zimmermann T, Pioletti DP, Månson JE (2011) Nanofibrillated cellulose composite hydrogel for the replacement of the nucleus pulposus. Acta Biomater 7:3412–3421PubMedCrossRefGoogle Scholar
  120. 120.
    Mathew AP, Oksman K, Pierron D, Harmand MF (2012) Fibrous cellulose nanocomposite scaffolds prepared by partial dissolution for potential use as ligament or tendon substitutes. Carbohydr Polym 87:2291–2298CrossRefGoogle Scholar
  121. 121.
    Mathew AP, Oksman K, Pierron D, Harmad MF (2012) Crosslinked fibrous composites based on cellulose nanofibers and collagen with in situ pH induced fibrillation. Cellulose 19:139–150CrossRefGoogle Scholar
  122. 122.
    Powell LC, Khan S, Chinga-Carrasco G, Wright CJ, Hill KE, Thomas DW (2016) An investigation of Pseudomonas aeruginosa biofilm growth on novel nanocellulose fibre dressings. Carbohydr Polym 137:191–197PubMedCrossRefGoogle Scholar
  123. 123.
    Prakobna K, Kisonen V, Xu C, Berglund L (2015) Strong reinforcing effects from galactoglucomannan hemicellulose on mechanical behavior of wet cellulose nanofiber gels. J Mater Sci 50:7413–7423CrossRefGoogle Scholar
  124. 124.
    Garcia A, Gandini A, Labidi J, Belgacem N, Brass J (2016) Industrial and crop wastes: a new source for nanocellulose biorafinery. Ind Crop Prod 93:26–38CrossRefGoogle Scholar
  125. 125.
    Trovatti E, Freire CS, Pinto PC, Almeida IF, Costa P, Silvestre AJ, Neto CP, Rosado C (2012) Bacterial cellulose membranes applied in topical and transdermal delivery of lidocaine hydrochloride and ibuprofen: in vitro diffusion studies. Int J Pharm 435:83–87PubMedCrossRefGoogle Scholar
  126. 126.
    Wei B, Yang G, Hong F (2011) Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydr Polym 84(1):533–538CrossRefGoogle Scholar
  127. 127.
    Luan J, Wu J, Zheng Y, Song W, Wang G, Guo J, Ding X (2012) Impregnation of silver sulfadiazine into bacterial cellulose for antimicrobial and biocompatible wound dressing. Biomed Mater 7(6):065006PubMedCrossRefGoogle Scholar
  128. 128.
    Hübner N-O, Siebert J, Kramer A (2010) Octenidine Dihydrochloride, a modern antiseptic for skin, mucous membranes and wounds. Skin Pharmacol Physiol 23(5):244–258PubMedCrossRefGoogle Scholar
  129. 129.
    Moritz S, Wiegand C, Wesarg F, Hessler N, Müller FA, Kralisch D, Hipler UC, Fischer D (2014) Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine.Int. J Pharm 471(1–2):45–55Google Scholar
  130. 130.
    Rojewska A, Karewicz A, Boczkaja K, Wolski K, Kępczyński M, Zapotoczny S, Nowakowska M (2017) Modified Bionanocellulose for bioactive wound-healing dressing. Eur Polym J 96:200–209CrossRefGoogle Scholar
  131. 131.
    Wathoni N, Motoyama K, Higashi T, Okajima M, Kaneko T, Arima H (2017) Enhancement of curcumin wound healing ability by complexation with 2-hydroxypropyl-γ-cyclodextrin in sacran hydrogel film. Int J Biol Macromol 98:268–276PubMedCrossRefGoogle Scholar
  132. 132.
    Janpetch N, Saito N, Rujiravanit R (2016) Fabrication of bacterial cellulose-ZnO composite via solution plasma process for antibacterial applications. Carbohydr Polym 148:335–344PubMedCrossRefGoogle Scholar
  133. 133.
    Tokai O (2008) Solution plasma processing (SPP). Pure Appl Chem 80(9):2003–2011CrossRefGoogle Scholar
  134. 134.
    Zhang P, Chen L, Zhang Q, Hong FF (2016) Using in situ dynamic cultures to rapidly biofabricate fabric-reinforced composites of chitosan/bacterial Nanocellulose for antibacterial wound dressings. Front Microbiol 7:Article 260, 1–15PubMedGoogle Scholar
  135. 135.
    Wiegand C, Moritz S, Hessler N, Kralisch D, Wesarg F, Müller FA, Fischer D, Hipler U-C (2015) Antimicrobial functionalization of bacterial nanocellulose by loading with polihexanide and povidone-iodine. J Mater Sci Mater Med 26:Article 245, 1–14PubMedCrossRefGoogle Scholar
  136. 136.
    Kralisch D, Hessler N, Klemm D, Erdmann R, Schmidt W (2010) White biotechnology for cellulose manufacturing-the HoLiR concept. Biotechnol Bioeng 105(4):740–747PubMedGoogle Scholar
  137. 137.
    Petersen N, Gatenholm P (2011) Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol 91:1277–1286PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Bodin A, Ahrenstedt L, Fink H, Brumer H, Risberg B, Gatenholm P (2007) Modification of Nanocellulose with a xyloglucan–RGD conjugate enhances adhesion and proliferation of endothelial cells: implications for tissue engineering. Biomacromolecules 8(12):3697–3704PubMedCrossRefGoogle Scholar
  139. 139.
    Kuzmenko V, Sämfors S, Hägg D, Gatenholm P (2013) Universal method for protein bioconjugation with nanocellulose scaffolds for increased cell adhesion. Mater Sci Eng C 33:4599–4607CrossRefGoogle Scholar
  140. 140.
    Paul R, Anderson GW (1960) N,N′-Carbonyldiimidazole, a new peptide forming reagent. J Am Chem Soc 82(17):4596–4600CrossRefGoogle Scholar
  141. 141.
    Behrens MM, Inman K, Vannier WE (1967) Protein-cellulose derivatives for use as immunoadsorbents: preparation employing an active ester intermediate. Arch Biochem Biophys 119:411–419PubMedCrossRefGoogle Scholar
  142. 142.
    Nilsson K, Mosbach K (1981) Immobilization of enzymes and affinity ligands to various hydroxyl group carrying supports using highly reactive sulfonyl chlorides. Biochem Biophys Res Commun 102(1):449–457PubMedCrossRefGoogle Scholar
  143. 143.
    Alosmanov R, Wolski K, Zapotoczny S (2017) Grafting of thermosensitive poly(N-isopropylacrylamide) from wet bacterial cellulose sheets to improve its swelling-drying ability. Cellulose 24(1):285–293CrossRefGoogle Scholar
  144. 144.
    Ahrem H, Pretzel D, Endres M, Conrad D, Courseau J, Müller H, Jaeger R, Kaps C, Klemm DO, Kinne RW (2014) Laser-structured bacterial nanocellulose hydrogels support ingrowth and differentiation of chondrocytes and show potential as cartilage implants. Acta Biomater 10(3):1341–1353PubMedCrossRefGoogle Scholar
  145. 145.
    Rambo CR, Recouvreux DOS, Carminatti CA, Pitlovanciv AK, Antônio RV, Porto LM (2008) Template assisted synthesis of porous nanofibrous cellulose membranes for tissue engineering. Mater Sci Eng C 28:549–554CrossRefGoogle Scholar
  146. 146.
    Wang J, Yang C, Wan Y, Luo H, He F, Dai K, Huang Y (2011) Laser patterning of bacterial cellulose hydrogel and its modification with gelatin and hydroxyapatite for bone tissue engineering. Soft Mater 11:173–180Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Joanna Lewandowska-Łańcucka
    • 1
  • Anna Karewicz
    • 1
  • Karol Wolski
    • 1
  • Szczepan Zapotoczny
    • 1
  1. 1.Faculty of ChemistryJagiellonian UniversityKrakowPoland

Personalised recommendations