Advertisement

Cellulose-Based Composite Hydrogels: Preparation, Structures, and Applications

  • Liying Qian
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)

Abstract

In this chapter, cellulose-based composite hydrogels were summarized in three categories according to the components. Synthetic polymer/cellulose composite hydrogels combine the advantages of synthetic polymers and cellulose. Soluble cellulose derivatives are feasible to construct the composite hydrogels with polyacrylamide, polyvinyl alcohol, polyacrylic acid, and so on. The composite hydrogels are normally applied as superabsorbents for heavy metal ions and dyes because the abundant functional groups in the hydrogels can act as binding sites. Due to most of the crosslinked polymeric hydrogels suffering from poor mechanical performance, low breaking strain, and sensitivity to fracture, cellulose nanocrystal can be combined into the hydrogels to enhance the mechanical properties significantly in order to obtain the mechanically strong, tough, or highly stretchable nanocomposite hydrogels. Natural macromolecules/cellulose composite hydrogels have a great potential for applications in tissue engineering, drug delivery, sensors, and purification for their excellent biocompatible, biodegradable, and nontoxic properties. Cellulose hydrogels have high mechanical strength and good permeability for liquids, gases, and electrolytes, the composite hydrogels which combine cellulose and extracellular matrixes are very promising scaf folds for the tissue repair and regeneration. Chitosan, alginate, and other polysaccharides are popular natural macromolecules for the composite hydrogels. Inorganics/cellulose composite hydrogels have recently received considerable attentions in both academic research and industrial application due to their excellent hybrid properties. Montmorillonite, clay, and bentonite are traditional inorganic minerals to fabricate the composite hydrogels as superabsorbents for water treatment, personal care, and agriculture. Nanoparticles of ZnO and Ag are also incorporated into the cellulose hydrogels to render the antimicrobial activity to biomedical materials. Recently, the novel cellulose-based composite hydrogels with graphene oxide, carbon nanotube, and carbon dots show potential applications in supercapacitors and biosensors.

Keywords

Composite hydrogel Synthetic polymer Natural macromolecules Inorganic; Preparation Structures and applications 

References

  1. 1.
    Silva AK, Richard C, Bessodes M, Scherman D, Merten OW (2009) Growth factor delivery approaches in hydrogels. Biomacromolecules 10(1):9–18PubMedCrossRefGoogle Scholar
  2. 2.
    Chang CY, Zhang LN (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84(1):40–53CrossRefGoogle Scholar
  3. 3.
    Fekete T, Borsa J, Takács E, Wojnárovits L (2016) Synthesis of cellulose-based superabsorbent hydrogels by high-energy irradiation in the presence of crosslinking agent. Radiat Phys Chem 118:114–119CrossRefGoogle Scholar
  4. 4.
    Wang WB, Wang AQ (2010) Nanocomposite of carboxymethyl cellulose and attapulgite as a novel ph-sensitive superabsorbent: synthesis, characterization and properties. Carbohydr Polym 82(1):83–91CrossRefGoogle Scholar
  5. 5.
    Gao XY, Cao Y, Song XF, Zhang Z, Zhuang XL, He CL, Chen XS (2014) Biodegradable, ph-responsive carboxymethyl cellulose/poly(acrylic acid) hydrogels for oral insulin delivery. Macromol Biosci 14(4):565–575PubMedCrossRefGoogle Scholar
  6. 6.
    Bajpai AK, Mishra A (2004) Ionizable interpenetrating polymer networks of carboxymethyl cellulose and polyacrylic acid: evaluation of water uptake. J Appl Polym Sci 93(5):2054–2065CrossRefGoogle Scholar
  7. 7.
    Wang WB, Wang AQ (2011) Preparation, swelling, and stimuli-responsive characteristics of superabsorbent nanocomposites based on carboxymethyl cellulose and rectorite. Polym Adv Technol 22(12):1602–1611CrossRefGoogle Scholar
  8. 8.
    Mohy Eldin MS, El-Sherif HM, Soliman EA, Elzatahry AA, Omer AM (2011) Polyacrylamide-grafted carboxymethyl cellulose: smart pH-sensitive hydrogel for protein concentration. J Appl Polym Sci 122:469–479CrossRefGoogle Scholar
  9. 9.
    Said HM, Abd Alla SGA, El-Naggar AWM (2004) Synthesis and characterization of novel gels based on carboxymethyl cellulose/acrylic acid prepared by electron beam irradiation. React Funct Polym 61(3):397–404CrossRefGoogle Scholar
  10. 10.
    Abd El-Mohdy HL (2015) Radiation initiated synthesis of 2-acrylamidoglycolic acid grafted carboxymethyl cellulose as pH-sensitive hydrogel. Polym Eng Sci 54(12):2753–2761CrossRefGoogle Scholar
  11. 11.
    Abdel Ghaffar AM, El-Arnaouty MB, Abdel Baky AA, Shama SA (2016) Radiation-induced grafting of acrylamide and methacrylic acid individually onto carboxymethyl cellulose for removal of hazardous water pollutants. Des Monomers Polym 19(8):706–718CrossRefGoogle Scholar
  12. 12.
    Vimala K, Samba Sivudu K, Murali Mohan Y, Sreedhar B, Mohana RK (2009) Controlled silver nanoparticles synthesis in semi-hydrogel networks of poly(acrylamide) and carbohydrates: a rational methodology for antibacterial application. Carbohydr Polym 75(3):463–471CrossRefGoogle Scholar
  13. 13.
    Fekete T, Borsa J, Takács E, Wojnárovits L (2016) Synthesis of carboxymethylcellulose/ acrylic acid hydrogels with superabsorbent properties by radiation-initiated crosslinking. Radiat Phys Chem 124:135–139CrossRefGoogle Scholar
  14. 14.
    Wang WB, Wang Q, Wang AQ (2011) pH-responsive carboxymethylcellulose-g-poly (sodium acrylate)/polyvinylpyrrolidone semi-IPN hydrogels with enhanced responsive and swelling properties. Macromol Res 19(1):57–65CrossRefGoogle Scholar
  15. 15.
    Salama A (2015) Carboxymethyl cellulose-g-poly(acrylic acid)/calcium phosphate as a multifunctional hydrogel composite. Mater Lett 157:243–247CrossRefGoogle Scholar
  16. 16.
    Mandal B, Ray SK (2016) Removal of safranine t and brilliant cresyl blue dyes from water by carboxy methyl cellulose incorporated acrylic hydrogels: isotherms, kinetics and thermodynamic study. J Taiwan Inst Chem Eng 60:313–327CrossRefGoogle Scholar
  17. 17.
    Maswal M, Chat OA, Dar AA (2015) Rheological characterization of multi-component hydrogel based on carboxymethyl cellulose: insight into its encapsulation capacity and release kinetics towards ibuprofen. Colloid Polym Sci 293(6):1723–1735CrossRefGoogle Scholar
  18. 18.
    Malik NS, Ahmad M, Minhas MU (2017) Cross-linked beta-cyclodextrin and carboxymethyl cellulose hydrogels for controlled drug delivery of acyclovir. PLoS One 12(2):e0172727.  https://doi.org/10.1371/journal.pone.0172727CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Zhu LX, Qiu JH, Sakai E, Ito K (2017) Rapid recovery double cross-linking hydrogel with stable mechanical properties and high resilience triggered by visible light. ACS Appl Mater Interfaces 9(15):13593–13601PubMedCrossRefGoogle Scholar
  20. 20.
    El-Din HMN, Alla SGA, El-Naggar AWM (2010) Swelling and drug release properties of acrylamide/carboxymethyl cellulose networks formed by gamma irradiation. Radiat Phys Chem 79(6):725–730CrossRefGoogle Scholar
  21. 21.
    Maziad NA, FIA EF, El-Kelesh NA, El-Hamouly SH, Zeid IF, Gayed HM (2016) Radiation synthesis and characterization of super absorbent hydrogels for controlled release of some agrochemicals. J Radioanal Nucl Chem 307(1):513–521CrossRefGoogle Scholar
  22. 22.
    Li N, Chen GX, Chen W, Huang JH, Tian JF, Wan XF, He MH, Zhang HF (2017) Multivalent cations-triggered rapid shape memory sodium carboxymethyl cellulose/polyacrylamide hydrogels with tunable mechanical strength. Carbohydr Polym 178:159–165PubMedCrossRefGoogle Scholar
  23. 23.
    Wu SP, Yu F, Dong H, Cao XD (2017) A hydrogel actuator with flexible folding deformation and shape programming via using sodium carboxymethyl cellulose and acrylic acid. Carbohydr Polym 173:526–534PubMedCrossRefGoogle Scholar
  24. 24.
    Vasile C, Bumbu GG, Dumitriu RP, Staikos G (2004) Comparative study of the behavior of carboxymethyl cellulose-g-poly(N-isopropylacrylamide) copolymers and their equivalent physical blends. Eur Polym J 40(6):1209–1215CrossRefGoogle Scholar
  25. 25.
    Ekici S (2011) Intelligent poly(N-isopropylacrylamide)-carboxymethyl cellulose full interpenetrating polymeric networks for protein adsorption studies. J Mater Sci 46(9):2843–2850CrossRefGoogle Scholar
  26. 26.
    Don TM, Huang ML, Chiu AC, Kuo KH, Chiu WY, Chiu LH (2008) Preparation of thermo-responsive acrylic hydrogels useful for the application in transdermal drug delivery systems. Mater Chem Phys 107(2–3):266–273CrossRefGoogle Scholar
  27. 27.
    Dutta S, Samanta P, Dhara D (2016) Temperature, pH and redox responsive cellulose based hydrogels for protein delivery. Int J Biol Macromol 87:92–100PubMedCrossRefGoogle Scholar
  28. 28.
    Patenaude M, Hoare T (2012) Injectable, mixed natural-synthetic polymer hydrogels with modular properties. Biomacromolecules 13(2):369–378PubMedCrossRefGoogle Scholar
  29. 29.
    Tran TH, Okabe H, Hidaka Y, Hara K (2017) Removal of metal ions from aqueous solutions using carboxymethyl cellulose/sodium styrene sulfonate gels prepared by radiation grafting. Carbohydr Polym 157:335–343PubMedCrossRefGoogle Scholar
  30. 30.
    Pourjavadi A, Ghasemzadeh H, Mojahedi F (2010) Swelling properties of CMC-g-poly (AAM-co-AMPS) superabsorbent hydrogel. J Appl Polym Sci 113(6):3442–3449CrossRefGoogle Scholar
  31. 31.
    Lam YC, Joshi SC, Tan BK (2007) Thermodynamic characteristics of gelation for methyl-cellulose hydrogels. J Therm Anal Calorim 87(2):475–482CrossRefGoogle Scholar
  32. 32.
    Zhang YL, Gao CJ, Li XL, Xu C, Zhang Y, Sun ZM, Liu Y, Gao JP (2014) Thermosensitive methyl cellulose-based injectable hydrogels for post-operation anti-adhesion. Carbohydr Polym 101:171–178PubMedCrossRefGoogle Scholar
  33. 33.
    Bortolin A, Aouada FA, Mattoso LHC, Ribeiro C (2013) Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: evidence of synergistic effects for the slow release of fertilizers. J Agric Food Chem 61(31):7431–7439PubMedCrossRefGoogle Scholar
  34. 34.
    Aouada FA, Pan ZL, Orts WJ, Mattoso LHC (2009) Removal of paraquat pesticide from aqueous solutions using a novel adsorbent material based on polyacrylamide and methylcellulose hydrogels. J Appl Polym Sci 114(4):2139–2148CrossRefGoogle Scholar
  35. 35.
    Chen Q, Zhu L, Su XY, An HY (2011) Preparation and swelling dynamics research on polyacrylamide/methyl cellulose semi-interpenetrating polymer networks. Sci Technol Rev 29(29):38–43Google Scholar
  36. 36.
    Rassu M, Alzari V, Nuvoli D, Nuvoli L, Sanna D, Sanna V, Malucelli G, Mariani A (2017) Semi-interpenetrating polymer networks of methyl cellulose and polyacrylamide prepared by frontal polymerization. J Polym Sci A Polym Chem 55(7):1268–1274CrossRefGoogle Scholar
  37. 37.
    Stalling SS, Akintoye SO, Nicoll SB (2009) Development of photocrosslinked methylcellulose hydrogels for soft tissue reconstruction. Acta Biomater 5(6):1911–1918PubMedCrossRefGoogle Scholar
  38. 38.
    Samanta S, Das S, Layek RK, Chatterjee DP, Nandi AK (2012) Polythiophene-g-poly(dimethylaminoethyl methacrylate) doped methyl cellulose hydrogel behaving like a polymeric and logic gate. Soft Matter 8(22):6066–6072CrossRefGoogle Scholar
  39. 39.
    Das R, Pal S (2013) Hydroxypropyl methyl cellulose grafted with polyacrylamide: application in controlled release of 5-amino salicylic acid. Colloids Surf B Biointerfaces 110:236–241PubMedCrossRefGoogle Scholar
  40. 40.
    Das R, Panda AB, Pal S (2012) Synthesis and characterization of a novel polymeric hydrogel based on hydroxypropyl methyl cellulose grafted with polyacrylamide. Cellulose 19(3):933–945CrossRefGoogle Scholar
  41. 41.
    Xiao YL, Xia CC, Duan GY, Zhao XD (2011) Preparation and characterization of thermo-sensitive hydroxypropylmethyl cellulose/poly(N-isopropylacrylamide) hydrogel. Adv Mater Res 194-196:773–776CrossRefGoogle Scholar
  42. 42.
    Davaran S, Rashidi MR, Khani A (2007) Synthesis of chemically cross-linked hydroxypropyl methyl cellulose hydrogels and their application in controlled release of 5-amino salicylic acid. Drug Dev Ind Pharm 33(8):881–887PubMedCrossRefGoogle Scholar
  43. 43.
    Velickova E, Petrov P, Tsvetanov C, Kuzmanova S, Cvetkovska M, Winkelhausen E (2010) Entrapment of saccharomyces cerevisiae cells in u.V. Crosslinked hydroxyethylcellulose/ poly (ethylene oxide) double-layered gels. React Funct Polym 70(11):908–915CrossRefGoogle Scholar
  44. 44.
    Plungpongpan K, Koyanukkul K, Kaewvilai A, Nootsuwan N, Kewsuwan P, Laobuthee A (2013) Preparation of pvp/mhec blended hydrogels via gamma irradiation and their calcium ion uptaking and releasing ability. Energy Procedia 34:775–781CrossRefGoogle Scholar
  45. 45.
    Li QJ, Gong JX, Zhang JF (2015) Rheological properties and microstructures of hydroxyethyl cellulose/poly(acrylic acid) blend hydrogels. J Macromol Sci Part B Phys 54(9):1132–1143CrossRefGoogle Scholar
  46. 46.
    Wang JL, Wang WB, Zheng YA, Wang AQ (2011) Effects of modified vermiculite on the synthesis and swelling behaviors of hydroxyethyl cellulose-g-poly(acrylic acid)/vermiculite superabsorbent nanocomposites. J Polym Res 18(3):401–408CrossRefGoogle Scholar
  47. 47.
    Peng ZY, Chen FG (2010) Synthesis and properties of temperature-sensitive hydrogel based on hydroxyethyl cellulose. Int J Polym Mater 59(6):450–461CrossRefGoogle Scholar
  48. 48.
    Yamashita S, Hiroki A, Taguchi M (2014) Radiation-induced change of optical property of hydroxypropyl cellulose hydrogel containing methacrylate compounds: as a basis for development of a new type of radiation dosimeter. Radiat Phys Chem 101:53–58CrossRefGoogle Scholar
  49. 49.
    Marsano E, Bianchi E, Sciutto L (2003) Microporous thermally sensitive hydrogels based on hydroxypropyl cellulose crosslinked with poly-ethyleneglicol diglycidyl ether. Polymer 44(22):6835–6841CrossRefGoogle Scholar
  50. 50.
    Lei M, Hu JW, Lu MG, Tu YY, Chen X, Li YW, Lin SD, Li F, Hu SY (2016) Alkynyl-functionalization of hydroxypropyl cellulose and thermoresponsive hydrogel thereof prepared with P (NIPAAm-co-HEMAPCL). Carbohydr Polym 137:433–440CrossRefGoogle Scholar
  51. 51.
    Xu FJ, Zhu Y, Liu FS, Nie J, Ma J, Yang WT (2010) Comb-shaped conjugates comprising hydroxypropyl cellulose backbones and low-molecular-weight poly (N-isopropylacryamide) side chains for smart hydrogels: synthesis, characterization, and biomedical applications. Bioconjug Chem 21(3):456–464PubMedCrossRefGoogle Scholar
  52. 52.
    Hoo SP, Loh QL, Yue ZL, Fu J, Tan TTY, Choong C, Chan PPY (2013) Preparation of a soft and interconnected macroporous hydroxypropyl cellulose methacrylate scaffold for adipose tissue engineering. J Mater Chem B 1(24):3107–3117CrossRefGoogle Scholar
  53. 53.
    Zamarripa-Cerón JL, García-Cruz JC, Martínez-Arellano AC, Castro-Guerrero CF, Martín MEÁS, Morales-Cepeda AB (2016) Heavy metal removal using hydroxypropyl cellulose and polyacrylamide gels, kinetical study. J Appl Polym Sci 133(15):43285.  https://doi.org/10.1002/app.43285CrossRefGoogle Scholar
  54. 54.
    Castro-Guerrero CF, Morales-Cepeda A, Rivera-Armenta J, Mendoza-Martínez A, Álvarez-Castillo A (2008) Gels from acrylic acid and hydroxypropyl cellulose via free radical polymerization. E-Polymers 8(1):1697–1704CrossRefGoogle Scholar
  55. 55.
    George J, Sabapathi SN, Siddaramaiah (2015) Water soluble polymer-based nanocomposites containing cellulose nanocrystals. In: Eco-friendly polymer nanocomposites. Springer, New Delhi, pp 259–293Google Scholar
  56. 56.
    De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29(11):4609–4631CrossRefGoogle Scholar
  57. 57.
    Tummala GK, Joffre T, Rojas R, Persson C, Mihranyan A (2017) Strain-induced stiffening of nanocellulose-reinforced poly(vinyl alcohol) hydrogels mimicking collagenous soft tissues. Soft Matter 13(21):3936–3945PubMedCrossRefGoogle Scholar
  58. 58.
    Chen X, Chen CT, Zhang H, Huang Y, Yang JZ, Sun DP (2017) Facile approach to the fabrication of 3D cellulose nanofibrils (CNFs) reinforced poly (vinyl alcohol) hydrogel with ideal biocompatibility. Carbohydr Polym 173:547–555PubMedCrossRefGoogle Scholar
  59. 59.
    Han JQ, Lei TZ, Wu QL (2013) Facile preparation of mouldable polyvinyl alcohol-borax hydrogels reinforced by well-dispersed cellulose nanoparticles: physical, viscoelastic and mechanical properties. Cellulose 20(6):2947–2958CrossRefGoogle Scholar
  60. 60.
    Abitbol T, Johnstone T, Quinn TM, Gray DG (2011) Reinforcement with cellulose nanocrystals of poly (vinyl alcohol) hydrogels prepared by cyclic freezing and thawing. Soft Matter 7(6):2373–2379CrossRefGoogle Scholar
  61. 61.
    Gonzalez JS, Ludueña LN, Ponce A, Alvarez VA (2014) Poly(vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings. Mater Sci Eng C 34:54–61CrossRefGoogle Scholar
  62. 62.
    Xu ZY, Li JY, Zhou H, Jiang XD, Yang C, Wang F, Pan YY, Li NN, Li XY, Shi LN, Shi XM (2016) Morphological and swelling behavior of cellulose nanofiber (CNF)/poly(vinyl alcohol) (PVA) hydrogels: poly(ethylene glycol) (PEG) as porogen. RSC Adv 6(49):43626–43633CrossRefGoogle Scholar
  63. 63.
    Tummala GK, Rojas R, Mihranyan A (2016) Poly(vinyl alcohol) hydrogels reinforced with nanocellulose for ophthalmic applications: general characteristics and optical properties. J Phys Chem B 120(51):13094–13101PubMedCrossRefGoogle Scholar
  64. 64.
    Tummala GK, Joffre T, Lopes VR, Liszka A, Buznyk O, Ferraz N, Persson C, Griffith M, Mihranyan A (2016) Hyperelastic nanocellulose-reinforced hydrogel of high water content for ophthalmic applications. ACS Biomater Sci Eng 2(11):2072–2079CrossRefGoogle Scholar
  65. 65.
    Mckee JR, Appel EA, Seitsonen J, Kontturi E, Scherman OA, Ikkala O (2014) Healable, stable and stiff hydrogels: combining conflicting properties using dynamic and selective three-component recognition with reinforcing cellulose nanorods. Adv Funct Mater 24(18):2706–2713CrossRefGoogle Scholar
  66. 66.
    Mihranyan A (2013) Viscoelastic properties of cross-linked polyvinyl alcohol and surface-oxidized cellulose whisker hydrogels. Cellulose 20(3):1369–1376CrossRefGoogle Scholar
  67. 67.
    Anirudhan TS, Rejeena SR (2014) Poly (acrylic acid-co-acrylamide-co-2-acrylamido −2-methyl-1-propanesulfonic acid)-grafted nanocellulose/poly (vinyl alcohol) composite for the in vitro gastrointestinal release of amoxicillin. J Appl Polym Sci 131(17):40699.  https://doi.org/10.1002/app.40699CrossRefGoogle Scholar
  68. 68.
    Zhou YM, Fu SY, Zhang LL, Zhan HY, Levit MV (2014) Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb(II). Carbohydr Polym 101:75–82PubMedCrossRefGoogle Scholar
  69. 69.
    Yue YY, Han JQ, Han GP, French AD, Qi YD, Wu QL (2016) Cellulose nanofibers reinforced sodium alginate-polyvinyl alcohol hydrogels: core-shell structure formation and property characterization. Carbohydr Polym 147:155–164PubMedCrossRefGoogle Scholar
  70. 70.
    Kobe R, Yoshitani K, Teramoto Y (2016) Fabrication of elastic composite hydrogels using surface-modified cellulose nanofiber as a multifunctional crosslinker. J Appl Polym Sci 133(4):42906.  https://doi.org/10.1002/app.42906CrossRefGoogle Scholar
  71. 71.
    Kobe R, Iwamoto S, Endo T, Yoshitani K, Teramoto Y (2016) Stretchable composite hydrogels incorporating modified cellulose nanofiber with dispersibility and polymerizability: mechanical property control and nanofiber orientation. Polymer 97:480–486CrossRefGoogle Scholar
  72. 72.
    Hebeish A, Farag S, Sharaf S, Shaheen TI (2014) Thermal responsive hydrogels based on semi interpenetrating network of poly(NIPAm) and cellulose nanowhiskers. Carbohydr Polym 102:159–166PubMedCrossRefGoogle Scholar
  73. 73.
    Wei JG, Chen YF, Liu HZ, Du CG, Yu HL, Zhou ZX (2016) Thermo-responsive and compression properties of tempo-oxidized cellulose nanofiber-modified pnipam hydrogels. Carbohydr Polym 147:201–207PubMedCrossRefGoogle Scholar
  74. 74.
    Wei JG, Chen YF, Liu HZ, Du CG, Yu HL, Ru J, Zhou ZX (2016) Effect of surface charge content in the tempo-oxidized cellulose nanofibers on morphologies and properties of poly (N -isopropylacrylamide)-based composite hydrogels. Ind Crop Prod 92:227–235CrossRefGoogle Scholar
  75. 75.
    Larsson E, Boujemaoui A, Malmstrom E, Carlmark A (2015) Thermoresponsive cryogels reinforced with cellulose nanocrystals. RSC Adv 5(95):77643–77650CrossRefGoogle Scholar
  76. 76.
    Zhou CJ, Wu QL, Yue YY, Zhang QG (2011) Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels. J Colloid Interface Sci 353(1):116–123PubMedCrossRefGoogle Scholar
  77. 77.
    Zhou CJ, Wu QL, Zhang QG (2011) Dynamic rheology studies of in situ polymerization process of polyacrylamide-cellulose nanocrystal composite hydrogels. Colloid Polym Sci 289(3):247–255CrossRefGoogle Scholar
  78. 78.
    Yang J, Han CR, Duan JF, Ma MG, Zhang XM, Xu F, Sun RC (2013) Synthesis and characterization of mechanically flexible and tough cellulose nanocrystals- polyacrylamide nanocomposite hydrogels. Cellulose 20(1):227–237CrossRefGoogle Scholar
  79. 79.
    Yang J, Zhao JJ, Zhang XM (2014) Modification of cellulose nanocrystal-reinforced composite hydrogels: effects of co-crosslinked and drying treatment. Cellulose 21(5):3487–3496CrossRefGoogle Scholar
  80. 80.
    Yang J, Han CR, Duan JF, Ma MG, Zhang XM, Xu F, Sun RC, Xie XM (2012) Studies on the properties and formation mechanism of flexible nanocomposite hydrogels from cellulose nanocrystals and poly (acrylic acid). J Mater Chem 22(42):22467–22480CrossRefGoogle Scholar
  81. 81.
    Yang J, Zhao JJ, Xu F, Sun RC (2013) Revealing strong nanocomposite hydrogels reinforced by cellulose nanocrystals: insight into morphologies and interactions. ACS Appl Mater Interfaces 5(24):12960–12967PubMedCrossRefGoogle Scholar
  82. 82.
    Yang J, Han CR, Xu F, Sun RC (2014) Simple approach to reinforce hydrogels with cellulose nanocrystals. Nanoscale 6(11):5934–5943PubMedCrossRefGoogle Scholar
  83. 83.
    Yuan NX, Xu L, Zhang L, Ye HW, Zhao JH, Liu Z, Rong JH (2016) Superior hybrid hydrogels of polyacrylamide enhanced by bacterial cellulose nanofiber clusters. Mat Sci Eng C 67:221–230CrossRefGoogle Scholar
  84. 84.
    Yang J, Xu F (2017) Synergistic reinforcing mechanisms in cellulose nanofibrils composite hydrogels: interfacial dynamics, energy dissipation, and damage resistance. Biomacromolecules 18(8):2623–2632PubMedCrossRefGoogle Scholar
  85. 85.
    Yang J, Han CR, Zhang XM, Xu F, Sun RC (2014) Cellulose nanocrystals mechanical reinforcement in composite hydrogels with multiple cross-links: correlations between dissipation properties and deformation mechanisms. Macromolecules 47(12):4077–4086CrossRefGoogle Scholar
  86. 86.
    Mohamad N, Amin MCIM, Pandey M, Ahmad N, Rajab NF (2014) Bacterial cellulose/acrylic acid hydrogel synthesized via electron beam irradiation: accelerated burn wound healing in an animal model. Carbohydr Polym 114:312–320PubMedCrossRefGoogle Scholar
  87. 87.
    Amin MCIM, Ahmad N, Halib N, Ahmad I (2012) Synthesis and characterization of thermo- and ph-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydr Polym 88(2):465–473CrossRefGoogle Scholar
  88. 88.
    Wen YB, Zhu XH, Gauthier DE, An XY, Cheng D, Ni YH, Yin LH (2015) Development of poly(acrylic acid)/nanofibrillated cellulose superabsorbent composites by ultraviolet light induced polymerization. Cellulose 22(4):2499–2506CrossRefGoogle Scholar
  89. 89.
    Bajpai SK, Pathak V, Soni B, Mohan YM (2014) CNWs loaded poly(SA) hydrogels: effect of high concentration of CNWs on water uptake and mechanical properties. Carbohydr Polym 106:351–358PubMedCrossRefGoogle Scholar
  90. 90.
    Di Z, Shi ZJ, Ullah MW, Li SX, Yang G (2017) A transparent wound dressing based on bacterial cellulose whisker and poly (2-hydroxyethyl methacrylate). Int J Biol Macromol 105:638–644PubMedCrossRefGoogle Scholar
  91. 91.
    Karaaslan MA, Tshabalala MA, Yelle DJ, Buschle-Diller G (2011) Nanoreinforced biocompatible hydrogels from wood hemicelluloses and cellulose whiskers. Carbohydr Polym 86(1):192–201CrossRefGoogle Scholar
  92. 92.
    Volynets B, Nakhoda H, Ghalia MA, Dahman Y (2017) Preparation and characterization of poly (2-hydroxyethyl methacrylate) grafted bacterial cellulose using atom transfer radical polymerization. Fibers Polym 18(5):859–867CrossRefGoogle Scholar
  93. 93.
    Shen XP, Shamshina JL, Paula B, Gurau G, Rogers RD (2016) Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chem 47(9):53–75CrossRefGoogle Scholar
  94. 94.
    Han S, Wang T, Yang L, Li B (2017) Building a bio-based hydrogel via electrostatic and host-guest interactions for realizing dual-controlled release mechanism. Int J Biol Macromol 105:377–384PubMedCrossRefGoogle Scholar
  95. 95.
    Wang YP, Qian JM, Zhao N, Liu T, Xu WJ, Suo AL (2017) Novel hydroxyethyl chitosan/cellulose scaffolds with bubble-like porous structure for bone tissue engineering. Carbohydr Polym 167:44–51PubMedCrossRefGoogle Scholar
  96. 96.
    Li N, Bai RB (2005) Copper adsorption on chitosan-cellulose hydrogel beads: behaviors and mechanisms. Sep Purif Technol 42(3):237–247CrossRefGoogle Scholar
  97. 97.
    Essawy HA, Ghazy MBM, Abd El-Hai F, Mohamed MF (2016) Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients. Int J Biol Macromol 89:144–151PubMedCrossRefGoogle Scholar
  98. 98.
    Kaihara S, Suzuki Y, Fujimoto K (2011) In situ synthesis of polysaccharide nanoparticles via polyion complex of carboxymethyl cellulose and chitosan. Colloids Surf B Biointerfaces 85(2):343–348PubMedCrossRefGoogle Scholar
  99. 99.
    Benghanem S, Chetouani A, Elkolli M, Bounekhel M, Benachour D (2017) Grafting of oxidized carboxymethyl cellulose with hydrogen peroxide in presence of cu(II) to chitosan and biological elucidation. Biocybern Biomed Eng 37(1):94–102CrossRefGoogle Scholar
  100. 100.
    Jiang XL, Zhao Y, Peng YF, Han BQ, Li ZY, Li XH, Liu WS (2016) Preparation, characterization and feasibility study of dialdehyde carboxymethyl cellulose as a novel crosslinking reagent. Carbohydr Polym 137:632–641PubMedCrossRefGoogle Scholar
  101. 101.
    Weng LH, Le HC, Lin JY, Golzarian J (2011) Doxorubicin loading and eluting characteristics of bioresorbable hydrogel microspheres: in vitro study. Int J Pharm 409(1–2):185–193PubMedCrossRefGoogle Scholar
  102. 102.
    Weng LH, Rostambeigi N, Zantek ND, Rostamzadeh P, Bravo M, Carey J, Golzarian J (2013) An in situ forming biodegradable hydrogel-based embolic agent for interventional therapies. Acta Biomater 9(9):8182–8191PubMedCrossRefGoogle Scholar
  103. 103.
    Fan LH, Tan C, Wang LB, Pan XR, Cao M, Wen F, Xie WG, Nie M (2013) Preparation, characterization and the effect of carboxymethylated chitosan–cellulose derivatives hydrogels on wound healing. J Appl Polym Sci 128(5):2789–2796CrossRefGoogle Scholar
  104. 104.
    Kimura S, Isobe N, Wada M, Kuga S, Ko JH, Kim UJ (2011) Enzymatic hydrolysis of chitosan-dialdehyde cellulose hydrogels. Carbohydr Polym 83(4):1850–1853CrossRefGoogle Scholar
  105. 105.
    Yoshii F, Zhao L, Wach RA, Nagasawa N, Mitomo H, Kume T (2003) Hydrogels of polysaccharide derivatives crosslinked with irradiation at paste-like condition. Nucl Instrum Methods Phys Res B 208:320–324CrossRefGoogle Scholar
  106. 106.
    Hiroki A, Tran HT, Nagasawa N, Yagi T, Tamada M (2009) Metal adsorption of carboxymethyl cellulose/carboxymethyl chitosan blend hydrogels prepared by gamma irradiation. Radiat Phys Chem 78(12):1076–1080CrossRefGoogle Scholar
  107. 107.
    Wach RA, Mitomo H, Nagasawa N, Yoshii F (2003) Radiation crosslinking of carboxymethylcellulose of various degree of substitution at high concentration in aqueous solutions of natural pH. Radiat Phys Chem 68(5):771–779CrossRefGoogle Scholar
  108. 108.
    Zhao L, Mitomo H, Nagasawa N, Yoshii F, Kume T (2003) Radiation synthesis and characteristic of the hydrogels based on carboxymethylated chitin derivatives. Carbohydr Polym 51(2):169–175CrossRefGoogle Scholar
  109. 109.
    Yan LF, Qian F, Zhu QS (2001) Interpolymer complex polyampholytic hydrogel of chitosan and carboxymethyl cellulose (CMC): synthesis and ion effect. Polym Int 50(12):1370–1374CrossRefGoogle Scholar
  110. 110.
    Wang M, Xu L, Zhai ML, Peng J, Li JQ, Wei GS (2008) Gamma-ray radiation-induced synthesis and Fe(III) ion adsorption of carboxymethylated chitosan hydrogels. Carbohydr Polym 74(3):498–503CrossRefGoogle Scholar
  111. 111.
    Wach RA, Mitomo H, Yoshii F (2004) ESR investigation on gamma-irradiated methylcellulose and hydroxyethylcellulose in dry state and in aqueous solution. J Radioanal Nucl Chem 261(1):113–118CrossRefGoogle Scholar
  112. 112.
    Barros SC, da Silva AA, Costa DB, Cesarino I, Costa CM, Lanceros-Méndez S, Pawlicka A, Silva MM (2014) Thermo-sensitive chitosan-cellulose derivative hydrogels: swelling behaviour and morphologic studies. Cellulose 21(6):4531–4544CrossRefGoogle Scholar
  113. 113.
    Barros SC, da Silva AA, Costa DB, Costa CM, Lanceros-Méndez S, Maciavello MNT, Ribelles JLG, Sentanin F, Pawlicka A, Silva MM (2015) Thermal-mechanical behaviour of chitosan-cellulose derivative thermoreversible hydrogel films. Cellulose 22(3):1911–1929CrossRefGoogle Scholar
  114. 114.
    Yan SF, Yin JB, Tang L, Chen XS (2011) Novel physically crosslinked hydrogels of carboxymethyl chitosan and cellulose ethers: structure and controlled drug release behavior. J Appl Polym Sci 119(4):2350–2358CrossRefGoogle Scholar
  115. 115.
    Bhattarai N, Gunn J, Zhang MQ (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62(1):83–99PubMedCrossRefGoogle Scholar
  116. 116.
    Vashist A, Gupta YK, Ahmad S (2012) Interpenetrating biopolymer network based hydrogels for an effective drug delivery system. Carbohydr Polym 87(2):1433–1439CrossRefGoogle Scholar
  117. 117.
    Kim MH, An S, Won K, Kim HJ, Lee SH (2012) Entrapment of enzymes into cellulose-biopolymer composite hydrogel beads using biocompatible ionic liquid. J Mol Catal B Enzym 75:68–72CrossRefGoogle Scholar
  118. 118.
    Liu Z, Wang HS, Liu C, Jiang YJ, Yu G, Mu XD, Wang XY (2012) Magnetic cellulose-chitosan hydrogels prepared from ionic liquids as reusable adsorbent for removal of heavy metal ions. Chem Commun 48(59):7350–7352CrossRefGoogle Scholar
  119. 119.
    Wang YY, Hong CT, Chiu WT, Fang JY (2001) In vitro and in vivo evaluations of topically applied capsaicin and nonivamide from hydrogels. Int J Pharm 224(1–2):89–104PubMedCrossRefGoogle Scholar
  120. 120.
    Mitsumata T, Suemitsu Y, Fujii K, Fujii T, Taniguchi T, Koyama K (2003) pH-response of chitosan, κ-carrageenan, carboxymethyl cellulose sodium salt complex hydrogels. Polymer 44(23):7103–7111CrossRefGoogle Scholar
  121. 121.
    Gaihre B, Jayasuriya AC (2016) Fabrication and characterization of carboxymethyl cellulose novel microparticles for bone tissue engineering. Mater Sci Eng C 69:733–743CrossRefGoogle Scholar
  122. 122.
    Lai YL, Annadurai G, Huang FC, Lee JF (2008) Biosorption of Zn(II) on the different ca-alginate beads from aqueous solution. Bioresour Technol 99(14):6480–6487PubMedCrossRefGoogle Scholar
  123. 123.
    Dewangan T, Tiwari A, Bajpai AK (2011) Removal of chromium(VI) ions by adsorption onto binary biopolymeric beads of sodium alginate and carboxymethyl cellulose. J Dispers Sci Technol 32(8):1075–1082CrossRefGoogle Scholar
  124. 124.
    Dewangan T, Tiwari A, Bajpai AK (2010) Adsorption of hg(II) ions onto binary biopolymeric beads of carboxymethyl cellulose and alginate. J Dispers Sci Technol 31(6):844–851CrossRefGoogle Scholar
  125. 125.
    Agarwal T, Narayana SNGH, Pal K, Pramanik K, Giri S, Banerjee I (2015) Calcium alginate-carboxymethyl cellulose beads for colon-targeted drug delivery. Int J Biol Macromol 75:409–417PubMedCrossRefGoogle Scholar
  126. 126.
    Banerjee S, Singh S, Bhattacharya SS, Chattopadhyay P (2013) Trivalent ion cross-linked pH sensitive alginate-methyl cellulose blend hydrogel beads from aqueous template. Int J Biol Macromol 57:297–307PubMedCrossRefGoogle Scholar
  127. 127.
    Thi HAM, Van NT, Van VML (2013) Biochemical studies on the immobilized lactase in the combined alginate-carboxymethyl cellulose gel. Biochem Eng J 74(7):81–87Google Scholar
  128. 128.
    Thomas M, Naikoo GA, Sheikh MUD, Bano M, Khan F (2016) Effective photocatalytic degradation of Congo red dye using alginate/carboxymethyl cellulose/TiO2, nanocomposite hydrogel under direct sunlight irradiation. J Photochem Photobiol A 327:33–43CrossRefGoogle Scholar
  129. 129.
    Wang Q, Wang WB, Wu J, Wang AQ (2012) Effect of attapulgite contents on release behaviors of a pH sensitive carboxymethyl cellulose-g-poly(acrylic acid)/attapulgite/ sodium alginate composite hydrogel bead containing diclofenac. J Appl Polym Sci 124(6):4424–4432Google Scholar
  130. 130.
    Chiaoprakobkij N, Sanchavanakit N, Subbalekha K, Pavasant P, Phisalaphong M (2011) Characterization and biocompatibility of bacterial cellulose/alginate composite sponges with human keratinocytes and gingival fibroblasts. Carbohydr Polym 85(3):548–553CrossRefGoogle Scholar
  131. 131.
    Park MS, Lee DJ, Hyun JH (2015) Nanocellulose-alginate hydrogel for cell encapsulation. Carbohydr Polym 116:223–228PubMedCrossRefGoogle Scholar
  132. 132.
    Kirdponpattara S, Khamkeaw A, Sanchavanakit N, Pavasant P, Phisalaphong M (2015) Structural modification and characterization of bacterial cellulose-alginate composite scaffolds for tissue engineering. Carbohydr Polym 132:146–155PubMedCrossRefGoogle Scholar
  133. 133.
    Shao W, Liu H, Liu XF, Wang SX, Wu JM, Zhang R, Min MH, Huang M (2015) Development of silver sulfadiazine loaded bacterial cellulose/sodium alginate composite films with enhanced antibacterial property. Carbohydr Polym 132:351–358PubMedCrossRefGoogle Scholar
  134. 134.
    Shi XN, Zheng YD, Wang C, Yue LN, Qiao K, Wang GJ, Wang LN, Quan HY (2015) Dual stimulus responsive drug releasing under the interaction of ph value and pulsatile electric field for bacterial cellulose/sodium alginate/multi-walled carbon nanotubes hybrid hydrogel. RSC Adv 5(52):41820–41829CrossRefGoogle Scholar
  135. 135.
    Kim JH, Park S, Kim H, Kim HJ, Yang YH, Kim YH, Jung SK, Kan E, Lee SH (2017) Alginate/bacterial cellulose nanocomposite beads prepared using gluconacetobacter xylinus and their application in lipase immobilization. Carbohydr Polym 157:137–145PubMedCrossRefGoogle Scholar
  136. 136.
    Kirdponpattara S, Phisalaphong M (2013) Bacterial cellulose-alginate composite sponge as a yeast cell carrier for ethanol production. Biochem Eng J 77:103–109CrossRefGoogle Scholar
  137. 137.
    Mohamed MA (2012) Swelling characteristics and application of gamma-radiation on irradiated SBR-carboxymethylcellulose (CMC) blends. Arab J Chem 5(2):207–211CrossRefGoogle Scholar
  138. 138.
    Bhattacharya SS, Ghosh AK, Banerjee S, Chattopadhyay P, Ghosh A (2012) Al3+ ion cross-linked interpenetrating polymeric network microbeads from tailored natural polysaccharides. Int J Biol Macromol 51(5):1173–1184PubMedCrossRefGoogle Scholar
  139. 139.
    Kim MS, Park SJ, Gu BK, Kim CH (2012) Ionically crosslinked alginate–carboxymethyl cellulose beads for the delivery of protein therapeutics. Appl Surf Sci 262(13):28–33CrossRefGoogle Scholar
  140. 140.
    Swamy BY, Yun YS (2015) In vitro release of metformin from iron (III) cross-linked alginate-carboxymethyl cellulose hydrogel beads. Int J Biol Macromol 77:114–119PubMedCrossRefGoogle Scholar
  141. 141.
    Tsirigotis-Maniecka M, Gancarz R, Wilk KA (2017) Polysaccharide hydrogel particles for enhanced delivery of hesperidin: fabrication, characterization and in vitro evaluation. Colloids Surf A Physicochem Eng Asp 532:48–56CrossRefGoogle Scholar
  142. 142.
    Ren HX, Gao ZM, Wu DJ, Jiang JH, Sun YM, Luo CW (2016) Efficient Pb(II) removal using sodium alginate-carboxymethyl cellulose gel beads: preparation, characterization, and adsorption mechanism. Carbohydr Polym 137:402–409PubMedCrossRefGoogle Scholar
  143. 143.
    Işiklan N (2006) Controlled release of insecticide carbaryl from sodium alginate, sodium alginate/gelatin, and sodium alginate/sodium carboxymethyl cellulose blend beads crosslinked with glutaraldehyde. J Appl Polym Sci 99(4):1310–1319CrossRefGoogle Scholar
  144. 144.
    Al-Kahtani AA, Sherigara BS (2014) Controlled release of diclofenac sodium through acrylamide grafted hydroxyethyl cellulose and sodium alginate. Carbohydr Polym 104(104):151–157PubMedCrossRefGoogle Scholar
  145. 145.
    Chang CY, Duan B, Zhang LN (2009) Fabrication and characterization of novel macroporous cellulose-alginate hydrogels. Polymer 50(23):5467–5473CrossRefGoogle Scholar
  146. 146.
    Bang S, Ko YG, Kim WII, Cho D, Park WH, Kwon OH (2017) Preventing postoperative tissue adhesion using injectable carboxymethyl cellulose-pullulan hydrogels. Int J Biol Macromol 105:886–893PubMedCrossRefGoogle Scholar
  147. 147.
    Pathak VM, Kumar N (2017) Dataset on the superabsorbent hydrogel synthesis with SiO2 nanoparticle and role in water restoration capability of agriculture soil. Data Brief 13:291–294PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Gomes RF, de Neto A, Antonio C, Pereira AGB, Muniz EC, Fajardo AR, Rodrigues FHA (2015) Fast dye removal from water by starch-based nanocomposites. J Colloid Interface Sci 454:200–209PubMedCrossRefGoogle Scholar
  149. 149.
    Spagnol C, Rodrigues FHA, Pereira AGB, Fajardo AR, Rubira AF, Muniz EC (2012) Superabsorbent hydrogel nanocomposites based on starch-g-poly(sodium acrylate) matrix filled with cellulose nanowhiskers. Cellulose 19(4):1225–1237CrossRefGoogle Scholar
  150. 150.
    Liu ZJ, Huang HH (2016) Preparation and characterization of cellulose composite hydrogels from tea residue and carbohydrate additives. Carbohydr Polym 147:226–233PubMedCrossRefGoogle Scholar
  151. 151.
    Hu XY, Wang J, Huang HH (2013) Impacts of some macromolecules on the characteristics of hydrogels prepared from pineapple peel cellulose using ionic liquid. Cellulose 20:2923–2933CrossRefGoogle Scholar
  152. 152.
    Michailova V, Titeva S, Kotsilkova R, Krusteva E, Minkov E (2001) Influence of hydrogel structure on the processes of water penetration and drug release from mixed hydroxypropylmethyl cellulose/thermally pregelatinized waxy maize starch hydrophilic matrices. Int J Pharm 222(1):7–17PubMedCrossRefGoogle Scholar
  153. 153.
    Nagasawa N, Yagi T, Kume T, Yoshii F (2004) Radiation crosslinking of carboxymethyl starch. Carbohydr Polym 58(2):109–113CrossRefGoogle Scholar
  154. 154.
    Othman Z, Hassan O, Hashim K (2015) Physicochemical and thermal properties of gamma-irradiated sago (metroxylon sagu) starch. Radiat Phys Chem 109:48–53CrossRefGoogle Scholar
  155. 155.
    Basri SN, Zainuddin N, Hashim K, Yusof NA (2016) Preparation and characterization of irradiated carboxymethyl sago starch-acid hydrogel and its application as metal scavenger in aqueous solution. Carbohydr Polym 138:34–40PubMedCrossRefGoogle Scholar
  156. 156.
    Senna MM, Mostafa AEKB, Mahdy SR, El-Naggar AWM (2016) Characterization of blend hydrogels based on plasticized starch/cellulose acetate/carboxymethyl cellulose synthesized by electron beam irradiation. Nucl Instrum Methods Phys Res B 386:22–29CrossRefGoogle Scholar
  157. 157.
    Tan HL, Wong YY, Muniyandy S, Hashim K, Pushpamalar J (2016) Carboxymethyl sago pulp/carboxymethyl sago starch hydrogel: effect of polymer mixing ratio and study of controlled drug release. J Appl Polym Sci 133(28):43652.  https://doi.org/10.1002/app.43652CrossRefGoogle Scholar
  158. 158.
    Fekete T, Borsa J, Takács E, Wojnárovits L (2017) Synthesis of carboxymethylcellulose/ starch superabsorbent hydrogels by gamma-irradiation. Chem Cent J 11:46PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Liu SM, Luo WC, Huang HH (2016) Characterization and behavior of composite hydrogel prepared from bamboo shoot cellulose and β-cyclodextrin. Int J Biol Macromol 89:527–534PubMedCrossRefGoogle Scholar
  160. 160.
    Badruddoza AZM, Tay ASH, Tan PY, Hidajat K, Uddin MS (2011) Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: synthesis and adsorption studies. J Hazard Mater 185(2–3):1177–1186PubMedCrossRefGoogle Scholar
  161. 161.
    Goto H, Furusho Y, Yashima E (2007) Supramolecular control of unwinding and rewinding of a double helix of oligoresorcinol using cyclodextrin/adamantane system. J Am Chem Soc 129(1):109–112PubMedCrossRefGoogle Scholar
  162. 162.
    Zhang LZ, Zhou JP, Zhang LN (2013) Structure and properties of β-cyclodextrin/ cellulose hydrogels prepared in naoh/urea aqueous solution. Carbohydr Polym 94(1):386–393PubMedCrossRefGoogle Scholar
  163. 163.
    Ghorpade VS, Yadav AV, Dias RJ (2016) Citric acid crosslinked cyclodextrin/ hydroxypropylmethyl cellulose hydrogel films for hydrophobic drug delivery. Int J Biol Macromol 93:75–86PubMedCrossRefGoogle Scholar
  164. 164.
    Ghorpade VS, Yadav AV, Dias RJ (2017) Citric acid crosslinked β -cyclodextrin/ carboxymethylcellulose hydrogel films for controlled delivery of poorly soluble drugs. Carbohydr Polym 164:339–348PubMedCrossRefGoogle Scholar
  165. 165.
    Rodriguez-Tenreiro C, Alvarez-Lorenzo C, Rodriguez-Perez A, Concheiro A, Torres-Labandeira JJ (2006) New cyclodextrin hydrogels cross-linked with diglycidylethers with a high drug loading and controlled release ability. Pharm Res 23(1):121–130PubMedCrossRefGoogle Scholar
  166. 166.
    Pinho E, Henriques M, Soares G (2014) Cyclodextrin/cellulose hydrogel with gallic acid to prevent wound infection. Cellulose 21(6):4519–4530CrossRefGoogle Scholar
  167. 167.
    Medronho B, Duarte H, Alves L, Antunes FE, Romano A, Valente AJM (2016) The role of cyclodextrin-tetrabutyl ammonium complexation on the cellulose dissolution. Carbohydr Polym 140:136–143PubMedCrossRefGoogle Scholar
  168. 168.
    Medronho B, Duarte H, Magalhães S, Alves L, Valente AJM, Romano A (2017) From a new cellulose solvent to the cyclodextrin induced formation of hydrogels. Colloids Surf A Physicochem Eng Asp 532:548–555CrossRefGoogle Scholar
  169. 169.
    Duan JF, Zhang XJ, Jiang JX, Han CR, Yang J, Liu LJ, Lan HY, Huang DZ (2014) The synthesis of a novel cellulose physical gel. J Nanomater 2014:312696CrossRefGoogle Scholar
  170. 170.
    Sun N, Wang T, Yan XF (2017) Self-assembled supermolecular hydrogel based on hydroxyethyl cellulose: formation, in vitro release and bacteriostasis application. Carbohydr Polym 172:49–59PubMedCrossRefGoogle Scholar
  171. 171.
    Lin N, Dufresne A (2013) Supramolecular hydrogels from in situ host-guest inclusion between chemically modified cellulose nanocrystals and cyclodextrin. Biomacromolecules 14(3):871–880PubMedCrossRefGoogle Scholar
  172. 172.
    Mourtas S, Aggelopoulos CA, Klepetsanis P, Tsakiroglou CD, Antimisiaris SG (2009) Complex hydrogel systems composed of polymers, liposomes, and cyclodextrins: implications of composition on rheological properties and aging. Langmuir 25(15):8480–8488PubMedCrossRefGoogle Scholar
  173. 173.
    Kato N, Tanaka T, Nakagawa S, Morohoshi T, Hiratani K, Ikeda T (2007) Control of virulence factor expression in opportunistic pathogens using cyclodextrin immobilized gel. J Incl Phenom Macrocycl Chem 57(1–4):419–423CrossRefGoogle Scholar
  174. 174.
    Pose-Vilarnovo B, Rodríguez-Tenreiro C, dos JFR S, Vázquez-Doval J, Concheiro A, Alvarez-Lorenzo C, Torres-Labandeira JJ (2004) Modulating drug release with cyclodextrins in hydroxypropyl methylcellulose gels and tablets. J Control Release 94(2–3):351–363PubMedCrossRefGoogle Scholar
  175. 175.
    Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK (2016) Extracellular matrix structure. Adv Drug Deliv Rev 97:4–27PubMedCrossRefGoogle Scholar
  176. 176.
    Badylak SF (2007) The extracellular matrix as a biologic scaffold material. Biomaterials 28(25):3587–3593PubMedCrossRefGoogle Scholar
  177. 177.
    Gelse K, Pöschl E, Aigner T (2003) Collagens-structure, function, and biosynthesis. Adv Drug Deliv Rev 55(12):1531–1546PubMedCrossRefGoogle Scholar
  178. 178.
    Kanth SV, Ramaraj A, Rao JR, Nair BU (2009) Stabilization of type I collagen using dialdehyde cellulose. Process Biochem 44(8):869–874CrossRefGoogle Scholar
  179. 179.
    Pietrucha K, Safandowska M (2015) Dialdehyde cellulose-crosslinked collagen and its physicochemical properties. Process Biochem 50(12):2105–2111CrossRefGoogle Scholar
  180. 180.
    Cheng YM, Lu JT, Liu SL, Zhao P, Lu GZ, Chen JH (2014) The preparation, characterization and evaluation of regenerated cellulose/collagen composite hydrogel films. Carbohydr Polym 107:57–64PubMedCrossRefGoogle Scholar
  181. 181.
    Li HL, Wu B, Mu CD, Lin W (2011) Concomitant degradation in periodate oxidation of carboxymethyl cellulose. Carbohydr Polym 84(3):881–886CrossRefGoogle Scholar
  182. 182.
    Tan H, Wu B, Li CP, Mu CD, Li HL, Lin W (2015) Collagen cryogel cross-linked by naturally derived dialdehyde carboxymethyl cellulose. Carbohydr Polym 129:17–24PubMedCrossRefGoogle Scholar
  183. 183.
    Pei Y, Wang XY, Huang WH, Liu P, Zhang LN (2013) Cellulose-based hydrogels with excellent microstructural replicationability and cytocompatibility for microfluidic devices. Cellulose 20(4):1897–1909CrossRefGoogle Scholar
  184. 184.
    Dai J, Yang H, Yan H, Shangguan YG, Zheng Q, Cheng RS (2011) Phosphate adsorption from aqueous solutions by disused adsorbents: chitosan hydrogel beads after the removal of copper(II). Chem Eng J 166(3):970–977CrossRefGoogle Scholar
  185. 185.
    Wang JL, Wei LG, Ma YC, Li KL, Li MH, Yu YC, Wang L, Qiu HH (2013) Collagen/cellulose hydrogel beads reconstituted from ionic liquid solution for cu(II) adsorption. Carbohydr Polym 98(1):736–743PubMedCrossRefGoogle Scholar
  186. 186.
    Cai ZJ, Yang G (2015) Bacterial cellulose/collagen composite: characterization and first evaluation of cytocompatibility. J Appl Polym Sci 120(5):2938–2944Google Scholar
  187. 187.
    Fontes de Sousa Moraes PR, Saska S, Barud H, Saska S, Barud H, LRD L, VDCA M, AMDG P, SJL R, AMM G (2016) Bacterial cellulose/collagen hydrogel for wound healing. Mater Res-Ibero-Am J 19(1):106–116Google Scholar
  188. 188.
    Lin YK, Chen KH, Ou KL, Liu M (2011) Effects of different extracellular matrices and growth factor immobilization on biodegradability and biocompatibility of macroporous bacterial cellulose. J Bioact Compat Polym 26(5):508–518CrossRefGoogle Scholar
  189. 189.
    Yang Q, Ma H, Dai ZW, Wang JF, Dong SW, Shen JJ, Dong J (2017) Improved thermal and mechanical properties of bacterial cellulose with the introduction of collagen. Cellulose 24(9):3777–3787CrossRefGoogle Scholar
  190. 190.
    Sampath UGTM, Ching YC, Cheng HC, Singh R, Lin PC (2017) Preparation and characterization of nanocellulose reinforced semi-interpenetrating polymer network of chitosan hydrogel. Cellulose 24(5):2215–2228CrossRefGoogle Scholar
  191. 191.
    Gunathilake TMSU, Ching YC, Cheng HC (2017) Enhancement of curcumin bioavailability using nanocellulose reinforced chitosan hydrogel. Polymers 9(2):64.  https://doi.org/10.3390/polym9020064CrossRefGoogle Scholar
  192. 192.
    Yang H, Sheikhi A, van de Ven TG (2016) Reusable green aerogels from crosslinked hairy nanocrystalline cellulose and modified chitosan for dye removal. Langmuir 32(45):11771–11779PubMedCrossRefGoogle Scholar
  193. 193.
    Sukul M, Ventura RD, Bae SH, Choi HJ, Lee SY, Lee BT (2017) Plant-derived oxidized nanofibrillar cellulose-chitosan composite as an absorbable hemostat. Mater Lett 197:150–155CrossRefGoogle Scholar
  194. 194.
    Lai C, Zhang SJ, Chen XC, Sheng LY (2014) Nanocomposite films based on tempo–mediated oxidized bacterial cellulose and chitosan. Cellulose 21(4):2757–2772CrossRefGoogle Scholar
  195. 195.
    Spagnol C, Rodrigues FHA, Pereira AGB, Fajardo AR, Rubira AF, Muniz EC (2012) Superabsorbent hydrogel composite made of cellulose nanofibrils and chitosan-graft- poly(acrylic acid). Carbohydr Polym 87(3):2038–2045CrossRefGoogle Scholar
  196. 196.
    Rao KM, Kumar A, Han SS (2017) Polysaccharide based bionanocomposite hydrogels reinforced with cellulose nanocrystals: drug release and biocompatibility analyses. Int J Biol Macromol 101:165–171CrossRefGoogle Scholar
  197. 197.
    Ul-Islam M, Khan T, Park JK (2012) Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr Polym 88(2):596–603CrossRefGoogle Scholar
  198. 198.
    Kim HJ, Jin JN, Kan E, Kim KJ, Lee SH (2017) Bacterial cellulose-chitosan composite hydrogel beads for enzyme immobilization. Biotechnol Bioprocess Eng 22(1):89–94CrossRefGoogle Scholar
  199. 199.
    Jia YY, Wang XH, Huo MM, Zhai XL, Li F, Zhong C (2017) Preparation and characterization of a novel bacterial cellulose/chitosan bio-hydrogel. Nanomater Nanotechno 7.  https://doi.org/10.1177/1847980417707172CrossRefGoogle Scholar
  200. 200.
    Mohammed N, Grishkewich N, Waeijen HA, Berry RM, Tam KC (2016) Continuous flow adsorption of methylene blue by cellulose nanocrystal-alginate hydrogel beadsin fixed bed columns. Carbohydr Polym 136:1194–1202PubMedCrossRefGoogle Scholar
  201. 201.
    Mohammed N, Grishkewich N, Berry RM, Tam KC (2015) Cellulose nanocrystal-alginate hydrogel beads as novel adsorbents for organic dyes in aqueoussolutions. Cellulose 22(6):3725–3738CrossRefGoogle Scholar
  202. 202.
    Suratago T, Taokaew S, Kanjanamosit N, Kanjanaprapakul K, Burapatana V, Phisalaphong M (2015) Development of bacterial cellulose/alginate nanocomposite membrane for separation of ethanol-water mixtures. J Ind Eng Chem 32:305–312CrossRefGoogle Scholar
  203. 203.
    Leppiniemi J, Lahtinen P, Paajanen A, Mahlberg R, Metsä-Kortelainen S, Pinomaa T, Pajari H, Vikholm-Lundin I, Pursula P, Hytönen VP (2017) 3D-printable bioactivated Nanocellulose-alginate hydrogels. ACS Appl Mater Interfaces 9(26):21959–21970PubMedCrossRefGoogle Scholar
  204. 204.
    Naseri N, Deepa B, Mathew AP, Oksman K, Girandon L (2016) Nanocellulose- based interpenetrating polymer network (IPN) hydrogels for cartilage applications. Biomacromolecules 17(11):3714–3723PubMedCrossRefGoogle Scholar
  205. 205.
    Lin N, Geze A, Wouessidjewe D, Huang J, Dufresne A (2016) Biocompatible double-membrane hydrogels from cationic cellulose nanocrystals and anionic alginate as complexing drugs Codelivery. ACS Appl Mater Interfaces 8(11):6880–6889PubMedCrossRefGoogle Scholar
  206. 206.
    Dai QZ, Kadla JF (2009) Effect of Nanofillers on Carboxymethyl cellulose/ hydroxyethyl cellulose hydrogels. J Appl Polym Sci 114(3):1664–1669CrossRefGoogle Scholar
  207. 207.
    Mckee JR, Hietala S, Seitsonen J, Laine J, Kontturi E, Ikkala O (2014) Thermoresponsive Nanocellulose hydrogels with tunable mechanical properties. ACS Macro Lett 3(3):266–270CrossRefGoogle Scholar
  208. 208.
    Yang X, Bakaic E, Hoare T, Cranston ED (2013) Injectable polysaccharide hydrogels reinforced with cellulose nanocrystals: morphology, rheology, degradation, and Cytotoxicityv. Biomacromolecules 14(12):4447–4455PubMedCrossRefGoogle Scholar
  209. 209.
    Zhou YM, Fu SY, Zhang LL, Zhan HY (2013) Superabsorbent nanocomposite hydrogels made of carboxylated cellulose nanofibrils and CMC-g-p(AA-co-AM). Carbohydr Polym 97(2):429–435PubMedCrossRefGoogle Scholar
  210. 210.
    Nakayama A, Kakugo A, Gong JP, Osada Y, Takai M, Erata T, Kawano S (2004) High mechanical strength double-network hydrogel with bacterial cellulose. Adv Funct Mater 14(11):1124–1128CrossRefGoogle Scholar
  211. 211.
    Wang WH, Zhang XW, Teng AG, Liu AJ (2017) Mechanical reinforcement of gelatin hydrogel with nanofiber cellulose as a function of percolation concentration. Int J Biol Macromol 103:226–233PubMedCrossRefGoogle Scholar
  212. 212.
    Li WC, Lan Y, Guo R, Zhang Y, Xue W, Zhang YM (2015) In vitro and in vivo evaluation of a novel collagen/cellulose nanocrystals scaffold for achievingthe sustained release of basic fibroblast growth factor. J Biomater Appl 29(6):882–893PubMedCrossRefGoogle Scholar
  213. 213.
    Mathew AP, Oksman K, Pierron D, Harmad MF (2012) Crosslinked fibrous composites based on cellulose nanofibers and collagen with in situ pHinduced fibrillation. Cellulose 19(1):139–150CrossRefGoogle Scholar
  214. 214.
    Mathew AP, Oksman K, Pierron D, Harmand MF (2013) Biocompatible fibrous networks of cellulose Nanofibres and collagen crosslinked using Genipin: potential as artificial ligament/tendons. Macromol Biosci 13(3):289–298PubMedCrossRefGoogle Scholar
  215. 215.
    Lu TH, Li Q, Chen WS, Yu HP (2014) Composite aerogels based on dialdehyde nanocellulose and collagen for potential applicationsas wound dressing and tissue engineering scaffold. Compos Sci Technol 94:132–138CrossRefGoogle Scholar
  216. 216.
    Mauricio MR, da Coster PG, Haraguchi SK, Guilherme MR, Muniz EC, Rubira AF (2015) Synthesis of a microhydrogel composite from cellulose nanowhiskers and starch for drugdelivery. Carbohydr Polym 115:715–722PubMedCrossRefGoogle Scholar
  217. 217.
    Chiu CW, Lin JJ (2012) Self-assembly behavior of polymer-assisted clays. Prog Polym Sci 37(3):406–444CrossRefGoogle Scholar
  218. 218.
    Zafar R, Zia KM, Tabasum S, Jabeen F, Noreen A, Zuber M (2016) Polysaccharide based bionanocomposites, properties and applications: a review. Int J Biol Macromol 92:1012–1024PubMedCrossRefGoogle Scholar
  219. 219.
    Liu Y, Wang WB, Jin YL, Wang AQ (2011) Adsorption behavior of methylene blue from aqueous solution by the hydrogel CompositesBased on Attapulgite. Sep Sci Technol 46(5):858–868CrossRefGoogle Scholar
  220. 220.
    Bao Y, Ma JZ, Li N (2011) Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydr Polym 84(1):76–82CrossRefGoogle Scholar
  221. 221.
    Bao Y, Ma JZ, Sun YG (2012) Swelling behaviors of organic/inorganic composites based on various cellulose derivatives and inorganic particles. Carbohydr Polym 88(2):589–595CrossRefGoogle Scholar
  222. 222.
    Fan XW, Xia CJ, Advincula RC (2003) Intercalation of polymerization initiators into montmorillonite platelets: free radical vs. anionic initiator clays. Colloids Surf A Physicochem Eng Asp 219(1–3):75–86CrossRefGoogle Scholar
  223. 223.
    Uthirakumar P, Nahm KS, Hahn YB, Lee YS (2004) Preparation of polystyrene/ montmorillonite nanocomposites using a new radical initiator- montmorillonite hybrid via in situ intercalative polymerization. Eur Polym J 40(11):2437–2444CrossRefGoogle Scholar
  224. 224.
    Karadag E, Nalbantoglu A, Kundakci S, Uzum OB (2014) Highly swollen polymer/clay composite sorbent-based AAm/AMPS hydrogels and semi-IPNsComposed of Carboxymethyl cellulose and montmorillonite and cross-linked by PEGDA. Polym-Plast Technol Eng 53(1):54–64CrossRefGoogle Scholar
  225. 225.
    Bortolin A, Serafim AR, Aouada FA, Mattoso LHC, Ribeiro C (2016) Macro- and micronutrient simultaneous slow release from highly Swellable nanocomposite hydrogels. J Agric Food Chem 64(16):3133–3140PubMedCrossRefGoogle Scholar
  226. 226.
    Ozkahraman B, Acar I, Emik S (2011) Removal of Cu2+ and Pb2+ ions using CMC based Thermoresponsive nanocomposite hydrogel. Clean: Soil Air Water 39(7):658–664Google Scholar
  227. 227.
    Peng N, Hu DN, Zeng J, Li Y, Liang L, Chang CY (2016) Superabsorbent cellulose-clay nanocomposite hydrogels for highly efficient removal of dye in water. ACS Sustain Chem Eng 4(12):7217–7224CrossRefGoogle Scholar
  228. 228.
    Anirudhan TS, Tharun AR (2012) Preparation and adsorption properties of a novel interpenetrating polymer network (IPN) containing carboxyl groups for basic dye from aqueous media. Chem Eng J 181:761–769CrossRefGoogle Scholar
  229. 229.
    Abu-Jdayil B, Ghannam M (2014) The modification of rheological properties of sodium bentonite-water dispersions with low viscosity CMC polymer effect. Energy Source Part A 36(10):1037–1048CrossRefGoogle Scholar
  230. 230.
    Li JF, Lu JH, Li YM (2009) Carboxylmethylcellulose/bentonite composite gels: water sorption behavior and controlled release of herbicide. J Appl Polym Sci 112(1):261–268CrossRefGoogle Scholar
  231. 231.
    Huang B, Liu MX, Zhou CR (2017) Cellulose-halloysite nanotube composite hydrogels for curcumin delivery. Cellulose 24(7):2861–2875CrossRefGoogle Scholar
  232. 232.
    Del Buffa S, Rinaldi E, Carretti E, Ridi F, Bonini M (2016) Injectable composites via functionalization of 1D nanoclays and biodegradable coupling with a polysaccharide hydrogel. Colloids Surf B: Biointerfaces 145:562–566PubMedCrossRefGoogle Scholar
  233. 233.
    Dai HJ, Huang HH (2017) Enhanced swelling and responsive properties of pineapple peel Carboxymethyl cellulose-g-poly(acrylic acid-co-acrylamide) superabsorbent hydrogel by the introduction of Carclazyte. J Agric Food Chem 65(3):565–574PubMedCrossRefGoogle Scholar
  234. 234.
    Xu J, Meng YZ, Li RKY, Xu Y, Rajulu AV (2003) Preparation and properties of poly(vinyl alcohol)-vermiculite nanocomposites. J Polym Sci B Polym Phys 41(7):749–755CrossRefGoogle Scholar
  235. 235.
    Wang WB, Wang J, Kang YR, Wang AQ (2011) Synthesis, swelling and responsive properties of a new composite hydrogel based on hydroxyethyl cellulose and medicinal stone. Compos Part B Eng 42(4):809–818CrossRefGoogle Scholar
  236. 236.
    AshaRani PV, Mun GLK, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290PubMedCrossRefGoogle Scholar
  237. 237.
    Hebeish A, Hashem M, Abd El-Hady MM, Sharaf S (2013) Development of CMC hydrogels loaded with silver nano-particles for medical applications. Carbohydr Polym 92(1):407–413PubMedCrossRefGoogle Scholar
  238. 238.
    Park MVDZ, Neigh AM, Vermeulen JP, de la LJJ F, Verharen HW, Briede JJ, van Loveren H, de Jong WH (2011) The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32(36):9810–9817PubMedCrossRefGoogle Scholar
  239. 239.
    Mohan YM, Vimala K, Thomas V, Varaprasad K, Sreedhar B, Bajpai SK, Raju KM (2010) Controlling of silver nanoparticles structure by hydrogel networks. J Colloid Interface Sci 342(1):73–82CrossRefGoogle Scholar
  240. 240.
    Rangelova N, Aleksandrov L, Angelova T, Georgieva N, Muller R (2014) Preparation and characterization of SiO2/CMC/ag hybrids with antibacterial properties. Carbohydr Polym 101:1166–1175PubMedCrossRefGoogle Scholar
  241. 241.
    Hebeish AA, El-Rafie MH, Abdel-Mohdy FA, Abdel-Halim ES, Emam HE (2010) Carboxymethyl cellulose for green synthesis and stabilization of silver nanoparticles. Carbohydr Polym 82(3):933–941CrossRefGoogle Scholar
  242. 242.
    Abdel-Halim ES, Alanazi HH, Al-Deyab SS (2015) Utilization of hydroxypropyl carboxymethyl cellulose in synthesis of silver nanoparticles. Int J Biol Macromol 75:467–473PubMedCrossRefGoogle Scholar
  243. 243.
    Goia DV (2004) Preparation and formation mechanisms of uniform metallic particles in homogeneous solutions. J Mater Chem 14(4):451–458CrossRefGoogle Scholar
  244. 244.
    Chen J, Wang J, Zhang X, Jin YL (2008) Microwave-assisted green synthesis of silver nanoparticles by carboxymethyl cellulose sodium and silver nitrate. Mater Chem Phys 108(2–3):421–424CrossRefGoogle Scholar
  245. 245.
    Bozaci E, Akar E, Ozdogan E, Demir A, Altinisik A, Seki Y (2015) Application of carboxymethylcellulose hydrogel based silver nanocomposites on cotton fabrics for antibacterial property. Carbohydr Polym 134:128–135PubMedCrossRefGoogle Scholar
  246. 246.
    Alshehri SM, Aldalbahi A, Al-Hajji AB, Chaudhary AA, Panhuis MIH, Alhokbany N, Ahamad T (2016) Development of carboxymethyl cellulose-based hydrogel and nanosilver composite as antimicrobial agents for UTI pathogens. Carbohydr Polym 138:229–236PubMedCrossRefGoogle Scholar
  247. 247.
    Hebeish A, Sharaf S (2015) Novel nanocomposite hydrogel for wound dressing and other medical applications. RSC Adv 5(125):103036–103046CrossRefGoogle Scholar
  248. 248.
    Gulsonbi M, Parthasarathy S, Raj KB, Jaisankar V (2016) Green synthesis, characterization and drug delivery applications of a novel silver/carboxymethylcellulose - poly(acrylamide) hydrogel nanocomposite. Ecotoxicol Environ Saf 134:421–426PubMedCrossRefGoogle Scholar
  249. 249.
    Wang QY, Cai J, Zhang LN (2014) In situ synthesis of Ag3PO4/cellulose nanocomposites with photocatalytic activities under sunlight. Cellulose 21(5):3371–3382CrossRefGoogle Scholar
  250. 250.
    Nocchetti M, Donnadio A, Ambrogi V, Andreani P, Bastianini M, Pietrella D, Latterini L (2013) Ag/AgCl nanoparticle decorated layered double hydroxides: synthesis, characterization and antimicrobial properties. J Mater Chem B 1(18):2383–2393CrossRefGoogle Scholar
  251. 251.
    Yadollahi M, Namazi H, Aghazadeh M (2015) Antibacterial carboxymethyl cellulose/ag nanocomposite hydrogels cross-linked with layered double hydroxides. Int J Biol Macromol 79:269–277PubMedCrossRefGoogle Scholar
  252. 252.
    Dong H, Snyder JF, Tran DT, Leadore JL (2013) Hydrogel, aerogel and film of cellulose nanofibrils functionalized with silver nanoparticles. Carbohydr Polym 95(2):760–767PubMedCrossRefGoogle Scholar
  253. 253.
    Yang JZ, Liu XL, Huang LY, Sun DP (2013) Antibacterial properties of novel bacterial cellulose nanofiber containing silver nanoparticles. Chin J Chem Eng 21(12):1419–1424CrossRefGoogle Scholar
  254. 254.
    Li Y, Lin ML, Davenport JW (2011) Ab initio studies of cellulose I: crystal structure, intermolecular forces, and interactions with water. J Phys Chem C 115(23):11533–11539CrossRefGoogle Scholar
  255. 255.
    Chen CT, Zhang T, Dai BB, Zhang H, Chen X, Yang JZ, Liu J, Sun DP (2016) Rapid fabrication of composite hydrogel microfibers for Weavable and sustainable antibacterial applications. ACS Sustain Chem Eng 4(12):6534–6542CrossRefGoogle Scholar
  256. 256.
    Pal S, Nisi R, Stoppa M, Licciulli A (2017) Silver-functionalized bacterial cellulose as antibacterial membrane for wound-healing applications. ACS Omega 2:3632–3639PubMedCentralCrossRefPubMedGoogle Scholar
  257. 257.
    Petrov P, Petrova E, Tsvetanov CB (2009) UV-assisted synthesis of super-macroporous polymer hydrogels. Polymer 50(5):1118–1123CrossRefGoogle Scholar
  258. 258.
    Gustaite S, Kazlauske J, Bobokalonov J, Perni S, Dutschk V, Liesiene J, Prokopovich P (2015) Characterization of cellulose based sponges for wound dressings. Colloids Surf A Physicochem Eng Asp 480:336–342CrossRefGoogle Scholar
  259. 259.
    Mekkawy AI, El-Mokhtar MA, Nafady NA, Yousef N, Hamad MA, El-Shanawany SM, Ibrahim EH, Elsabahy M (2017) In vitro and in vivo evaluation of biologically synthesized silver nanoparticles for topical applications: effect of surface coating and loading into hydrogels. Int J Nanomedicine 12:759–777PubMedPubMedCentralCrossRefGoogle Scholar
  260. 260.
    Zhang LL, Ding YL, Povey M, York D (2008) ZnO nanofluids - a potential antibacterial agent. Prog Nat Sci 18(8):939–944CrossRefGoogle Scholar
  261. 261.
    El Shafei A, Abou-Okeil A (2011) ZnO/carboxymethyl chitosan bionano-composite to impart antibacterial and UV protection for cotton fabric. Carbohydr Polym 83(2):920–925CrossRefGoogle Scholar
  262. 262.
    Perelshtein I, Ruderman E, Perkas N, Tzanov T, Beddow J, Joyce E, Mason TJ, Blanes M, Molla K, Patlolla A (2013) Chitosan and chitosan-ZnO-based complex nanoparticles: formation, characterization, and antibacterial activity. J Mater Chem B 1(14):1968–1976CrossRefGoogle Scholar
  263. 263.
    Yadollahi M, Gholamali I, Namazi H, Aghazadeh M (2015) Synthesis and characterization of antibacterial carboxymethyl cellulose/ZnO nanocomposite hydrogels. Int J Biol Macromol 74:136–141PubMedCrossRefGoogle Scholar
  264. 264.
    Fei JQ, Gu LX (2002) PVA/PAA thermo-crosslinking hydrogel fiber: preparation and pH-sensitive properties in electrolyte solution. Eur Polym J 38(8):1653–1658CrossRefGoogle Scholar
  265. 265.
    Hashem M, Sharaf S, Abd El-Hady MM, Hebeish A (2013) Synthesis and characterization of novel carboxymethyl cellulose hydrogels and carboxymethyl cellulolse-hydrogel-ZnO-nanocomposites. Carbohydr Polym 95(1):421–427PubMedCrossRefGoogle Scholar
  266. 266.
    Li XB, Zhang X, Li LC, Huang LL, Zhang W, Ye JD, Hong JG (2016) Preparation of nano-ZnO/regenerated cellulose composite particles via co-gelation and low-temperature hydrothermal synthesis. Mater Lett 175:122–125CrossRefGoogle Scholar
  267. 267.
    Cai J, Zhang L (2006) Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromolecules 7(1):183–189PubMedCrossRefGoogle Scholar
  268. 268.
    Qin C, Li SJ, Jiang GQ, Jun CB, Guo YL, Li JW, Zhang B, Han SY (2017) Preparation of flower-like ZnO nanoparticles in a cellulose hydrogel microreactor. Bioresources 12(2):3182–3191CrossRefGoogle Scholar
  269. 269.
    Janpetch N, Saito N, Rujiravanit R (2016) Fabrication of bacterial cellulose-ZnO composite via solution plasma process for antibacterial applications. Carbohydr Polym 148:335–344PubMedCrossRefGoogle Scholar
  270. 270.
    Zare-Akbari Z, Farhadnejad H, Furughi-Nia B, Abedin S, Yadollahi M, Khorsand-Ghayeni M (2016) PH-sensitive bionanocomposite hydrogel beads based on carboxymethyl cellulose/ZnO nanoparticle as drug carrier. Int J Biol Macromol 93:1317–1327PubMedCrossRefGoogle Scholar
  271. 271.
    Rakhshaei R, Namazi H (2017) A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel. Mater Sci Eng C Mater Biol Appl 73:456–464PubMedCrossRefGoogle Scholar
  272. 272.
    Ahtzaz S, Nasir M, Shahzadi L, Amir W, Anjum A, Arshad R, Iqbal F, Chaudhry AA, Yar M, Rehman IU (2017) A study on the effect of zinc oxide and zinc peroxide nanoparticles to enhance angiogenesis-pro-angiogenic grafts for tissue regeneration applications. Mater Des 132:409–418CrossRefGoogle Scholar
  273. 273.
    Wan CC, Li J (2016) Graphene oxide/cellulose aerogels nanocomposite: preparation, pyrolysis, and application for electromagnetic interference shielding. Carbohydr Polym 150:172–179PubMedCrossRefGoogle Scholar
  274. 274.
    Xu MM, Huang QB, Wang XH, Sun RC (2015) Highly tough cellulose/graphene composite hydrogels prepared from ionic liquids. Ind Crop Prod 70:56–63CrossRefGoogle Scholar
  275. 275.
    Liu JJ, Chu HJ, Wei HL, Zhu HZ, Wang G, Zhu J, He J (2016) Facile fabrication of carboxymethyl cellulose sodium/graphene oxide hydrogel microparticles for water purification. RSC Adv 6(55):50061–50069CrossRefGoogle Scholar
  276. 276.
    Wang ZM, Ning AM, Xie PH, Gao GQ, Xie LX, Li X, Song AD (2017) Synthesis and swelling behaviors of carboxymethyl cellulose-based superabsorbent resin hybridized with graphene oxide. Carbohydr Polym 157:48–56PubMedCrossRefGoogle Scholar
  277. 277.
    Varaprasad K, Jayaramudu T, Sadiku ER (2017) Removal of dye by carboxymethyl cellulose, acrylamide and graphene oxide via a free radical polymerization process. Carbohydr Polym 164:186–194PubMedCrossRefGoogle Scholar
  278. 278.
    Sung Y, Kim TH, Lee B (2016) Syntheses of carboxymethylcellulose/graphene nanocomposite superabsorbent hydrogels with improved gel properties using electron beam radiation. Macromol Res 24(2):143–151CrossRefGoogle Scholar
  279. 279.
    Chen X, Zhou SK, Zhang LM, You TT, Xu F (2016) Adsorption of heavy metals by graphene oxide/cellulose hydrogel prepared from NaOH/urea aqueous solution. Materials 9(7):582PubMedCentralCrossRefGoogle Scholar
  280. 280.
    Rasoulzadeh M, Namazi H (2017) Carboxymethyl cellulose/graphene oxide bio-nanocomposite hydrogel beads as anticancer drug carrier agent. Carbohydr Polym 168:320–326PubMedCrossRefGoogle Scholar
  281. 281.
    Wang R, Shou D, Lv O, Kong Y, Deng LH, Shen J (2017) pH-controlled drug delivery with hybrid aerogel of chitosan, carboxymethyl cellulose and graphene oxide as the carrier. Int J Biol Macromol 103:248–253PubMedCrossRefGoogle Scholar
  282. 282.
    Zhang HJ, Zhai DD, He Y (2014) Graphene oxide/polyacrylamide/carboxymethyl cellulose sodium nanocomposite hydrogel with enhanced mechanical strength: preparation, characterization and the swelling behavior. RSC Adv 4(84):44600–44609CrossRefGoogle Scholar
  283. 283.
    Liu XY, Zhou YF, Nie WY, Song LY, Chen PP (2015) Fabrication of hydrogel of hydroxypropyl cellulose (HPC) composited with graphene oxide and its application for methylene blue removal. J Mater Sci 50(18):6113–6123CrossRefGoogle Scholar
  284. 284.
    Hao N, Zhang X, Zhou Z, Hua R, Zhang Y, Liu Q, Qian J, Li H, Wang K (2017) AgBr nanoparticles/3D nitrogen-doped graphene hydrogel for fabricating all-solid-state luminol-electrochemiluminescence Escherichia coli aptasensors. Biosens Bioelectron 97:377–383PubMedCrossRefGoogle Scholar
  285. 285.
    Jiang M, Zhang JL, Qiao F, Zhang RY, Xing LB, Zhou J, Cui HY, Zhuo SP (2016) Self-assembled reduced graphene hydrogels by facile chemical reduction using acetaldehyde oxime for electrode materials in supercapacitors. RSC Adv 6(54):48276–48282CrossRefGoogle Scholar
  286. 286.
    Feng YY, Zhang XQ, Shen YT, Yoshino K, Feng W (2012) A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite. Carbohydr Polym 87(1):644–649CrossRefGoogle Scholar
  287. 287.
    Shao W, Wang SX, Liu H, Wu JM, Zhang R, Min HH, Huang M (2016) Preparation of bacterial cellulose/graphene nanosheets composite films with enhanced mechanical performances. Carbohydr Polym 138:166–171PubMedCrossRefGoogle Scholar
  288. 288.
    Ramani D, Sastry TP (2014) Bacterial cellulose-reinforced hydroxyapatite functionalized graphene oxide: a potential osteoinductive composite. Cellulose 21(5):3585–3595CrossRefGoogle Scholar
  289. 289.
    Luo HL, Xiong GY, Yang ZW, Raman SR, Si HJ, Wan YZ (2014) A novel three-dimensional graphene/bacterial cellulose nanocomposite prepared by in situ biosynthesis. RSC Adv 4(28):14369–14372CrossRefGoogle Scholar
  290. 290.
    Si HJ, Luo HL, Xiong GY, Yang ZW, Raman SR, Guo RS, Wan YZ (2014) One-step in situ biosynthesis of graphene oxide-bacterial cellulose nanocomposite hydrogels. Macromol Rapid Commun 35(19):1706–1711PubMedCrossRefGoogle Scholar
  291. 291.
    Luo HL, Ao HY, Li G, Li W, Xiong GY, Zhu Y, Wan YZ (2017) Bacterial cellulose/ graphene oxide nanocomposite as a novel drug delivery system. Curr Appl Phys 17(2):249–254CrossRefGoogle Scholar
  292. 292.
    Wong BS, Yoong SL, Jagusiak A, Panczyk T, Ho HK, Ang WH, Pastorin G (2013) Carbon nanotubes for delivery of small molecule drugs. Adv Drug Deliv Rev 65(15):1964–2015PubMedCrossRefGoogle Scholar
  293. 293.
    Hu Y, Li YZ, Wang D, Zhou WY, Dong XM, Zhou SY, Wang CY, Yang ZH (2017) Highly flexible polymer-carbon dot-ferric ion nanocomposite hydrogels displaying super stretchability, ultrahigh toughness, good self-recovery and shape memory performance. Eur Polym J 95:482–490CrossRefGoogle Scholar
  294. 294.
    Mandal B, Das D, Rameshbabu AP, Dhara S, Pal S (2016) A biodegradable, biocompatible transdermal device derived from carboxymethyl cellulose and multi-walled carbon nanotubes for sustained release of diclofenac sodium. RSC Adv 6(23):19605–19611CrossRefGoogle Scholar
  295. 295.
    Zhang YP, Huang R, Peng S, Ma ZC (2015) MWCNTs/cellulose hydrogels prepared from NaOH/urea aqueous solution with improved mechanical properties. J Chem 2015:1–8Google Scholar
  296. 296.
    Wang M, Anoshkin IV, Nasibulin AG, Ras RHA, Nonappa LJ, Kauppinen EI, Ikkala O (2016) Electrical behaviour of native cellulose nanofibril/carbon nanotube hybrid aerogels under cyclic compression. RSC Adv 6(92):89051–89056PubMedPubMedCentralCrossRefGoogle Scholar
  297. 297.
    Yan ZY, Chen SY, Wang HP, Wang BA, Jiang JM (2008) Biosynthesis of bacterial cellulose/multi-walled carbon nanotubes in agitated culture. Carbohydr Polym 74(3):659–665CrossRefGoogle Scholar
  298. 298.
    Junka K, Guo JQ, Filpponen I, Laine J, Rojas OJ (2014) Modification of cellulose Nanofibrils with luminescent carbon dots. Biomacromolecules 15(3):876–881PubMedCrossRefGoogle Scholar
  299. 299.
    Kim YH, Park S, Won K, Kim HJ, Sang HL (2013) Bacterial cellulose-carbon nanotube composite as a biocompatible electrode for the direct electron transfer of glucose oxidase. J Chem Technol Biotechnol 88(6):1067–1070CrossRefGoogle Scholar
  300. 300.
    Liu SM, Zheng YD, Sun Y, Su L, Yue LN, Wang YS, Feng JX, Fan JS (2016) An oxygen tolerance conductive hydrogel anode membrane for use in a potentially implantable glucose fuel cell. RSC Adv 6(114):112971–112980CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Pulp & Paper EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations