Advertisement

Nanocomposite Hydrogels Obtained by Gamma Irradiation

  • Aleksandra Radosavljević
  • Jelena Spasojević
  • Jelena Krstić
  • Zorica Kačarević-Popović
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)

Abstract

During the past decades hydrogels have gained considerable interest and reviewed from different points of view, because of their unique properties. The hydrogel 3D structure, porosity, swelling behavior, stability, gel strength, as well as biodegradability, nontoxicity, and biocompatibility are properties which are widely variable and easily adjusted, making them suitable for many versatile applications, especially in the field of medicine and biotechnology. Generally, hydrogels possess the huge potential to be used as a matrix for incorporation of different types of nanoparticles. Namely, hydrogels in the swollen state provide free space between cross-linked polymer chains, in which the nucleation and growth of nanoparticles occurs. In this way, the carrier-hydrogel system acts as a nanoreactor that also immobilizes nanoparticles and provides easy handling with obtained hydrogel nanocomposites. It is well known that the properties of nanocomposite materials are dependent on the method of synthesis. Among various techniques, the radiation-induced synthesis offers a number of advantages over the conventional physical and chemical methods. Radiolytic method is a highly suitable way for formation of three-dimensional polymer network, i.e., hydrogels, as well as for generation of nanoparticles in a solution (especially metal nanoparticles). This method provides fast, easy, and clean synthesis of hydrogel nanocomposites. Moreover, and probably the most important from the biomedical point of view, is the possibility of simultaneous formation of nanocomposite hydrogel and its sterilization in one technological step. Despite all the mentioned advantages of radiolytic method, there are not so many investigations related to nanocomposite materials based on nanoparticles incorporated in a hydrogel matrix.

Keywords

Gamma irradiation Hydrogels Nanoparticles Nanocomposites 

Notes

Acknowledgment

This work was supported by the Ministry of Education, Science, and Technological Development of the Republic of Serbia (Project No. 45005).

References

  1. 1.
    Gachard E, Remita H, Khatouri J, Keita B, Nadjo L, Belloni J (1998) Radiation-induced and chemical formation of gold clusters. New J Chem 22:1257–1265CrossRefGoogle Scholar
  2. 2.
    Jayaramudu T, Raghavendra GM, Varaprasad K, Sadiku R, Raju KM (2013) Development of novel biodegradable Au nanocomposite hydrogels based on wheat: for inactivation of bacteria. Carbohyd Polym 92:2193–2200CrossRefGoogle Scholar
  3. 3.
    Krklješ A, Nedeljković JM, Kačarević-Popović ZM (2007) Fabrication of Ag-PVA hydrogel nanocomposite by γ-irradiation. Polym Bul 58:271–279CrossRefGoogle Scholar
  4. 4.
    Krstić J, Spasojević J, Radosavljević A, Perić-Grujić A, Đurić M, Kačarević-Popović Z, Popović S (2014) In vitro silver ion release kinetics from nanosilver/poly(vinyl alcohol) hydrogels synthesized by gamma irradiation. J Appl Polym Sci 131:40321CrossRefGoogle Scholar
  5. 5.
    Radosavljević A, Krstić J, Spasojević J, Kačarević-Popović Z (2016) Radiolytic incorporation of gold nanoparticles into PVA hydrogel. In: Proceedings of 13th international conference of fundamental and applied aspects of physical chemistry, Belgrade, Serbia, 26–30 September 2016, p 589–592Google Scholar
  6. 6.
    Marinović-Cincović MT, Radosavljević AN, Krstić JI, Spasojević JP, Bibić NM, Mitrić MN, ZM KP (2014) Physicochemical characteristics of gamma irradiation crosslinked poly(vinyl alcohol)/magnetite ferrogel composite. Hem Ind 68(6):743–753CrossRefGoogle Scholar
  7. 7.
    Eid M (2013) Preparation and characterization of natural polymers as stabilizer for magnetic nanoparticles by gamma irradiation. J Polym Res 20:112CrossRefGoogle Scholar
  8. 8.
    Gattas-Asfura KM, Zheng Y, Micic M, Snedaker MJ, Ji X, Sui G, Orbulescu J, Andreopoulos FM, Pham SM, Wang C, Leblanc RM (2003) Immobilization of quantum dots in the photo-cross-linked poly(ethylene glycol)-based hydrogel. J Phys Chem B 107:10464–10469CrossRefGoogle Scholar
  9. 9.
    Kuljanin-Jakovljević JŽ, Radosavljević AN, Spasojević JP, Carević MV, Mitrić MN, Kačarević-Popović ZM (2017) Gamma irradiation induced in situ synthesis of lead sulfide nanoparticles in poly(vinyl alcohol) hydrogel. Radiat Phys Chem 130:282–290CrossRefGoogle Scholar
  10. 10.
    Mohan YM, Premkumar T, Lee K, Geckeler KE (2006) Fabrication of silver nanoparticles in hydrogel networks. Macrom Rap Commun 27:1346–1354CrossRefGoogle Scholar
  11. 11.
    Mohan YM, Lee K, Premkumar T, Geckeler KE (2007) Hydrogel networks as nanoreactors: a novel approach to silver nanoparticles for antibacterial applications. Polymer 48:158–164CrossRefGoogle Scholar
  12. 12.
    Thomas V, Yallapu MM, Sreedhar B, Bajpai SK (2007) A versatile strategy to fabricate hydrogel-silver nanocomposites and investigation of their antimicrobial activity. J Colloid Interf Sci 315:389–395CrossRefGoogle Scholar
  13. 13.
    Murthy PSK, Mohan YM, Varaprasad K, Sreedhar B, Raju KM (2008) First successful design of semi-IPN hydrogel-silver nanocomposites: a facile approach for antibacterial application. J Colloid Interf Sci 318:217–224CrossRefGoogle Scholar
  14. 14.
    Luo YL, Wei QB, Xu F, Chen YS, Fan LH, Zhang CH (2009) Assembly, characterization and swelling kinetics of Ag nanoparticles in PDMAA-g-PVA hydrogel networks. Mater Chem Phys 118:329–336CrossRefGoogle Scholar
  15. 15.
    Rosiak JM (1994) Radiation formation of hydrogels for drug delivery. J Control Release 31(1):9–19CrossRefGoogle Scholar
  16. 16.
    Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E (2010) Theoretical description of hydrogel swelling: a review. Iran Polym J 19(5):375–398Google Scholar
  17. 17.
    Peppas NA, Sahlin JJ (1996) Hydrogels as mucoadhesive and bioadhesive materials: a review. Biomaterials 17(16):1553–1561PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Hennink WE, van Nostrum CF (2002) Novel crosslinking methods to design hydrogels. Adv Drug Deliver Rev 54(1):13–36CrossRefGoogle Scholar
  19. 19.
    Schacht EH (2004) Polymer chemistry and hydrogel systems. J Phys Conf Ser 3:22–28CrossRefGoogle Scholar
  20. 20.
    Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliver Rev 64:18–23CrossRefGoogle Scholar
  21. 21.
    Maeda S, Hara Y, Sakai T, Yoshida R, Hashimoto S (2007) Self-walking gel. Adv Mater 19:3480–3484CrossRefGoogle Scholar
  22. 22.
    Techawanitchai P, Ebara M, Idota N, Asoh T-A, Kikuchi A, Aoyagi T (2012) Photo-switchable control of pH-responsive actuators via pH jump reaction. Soft Matter 8:2844–2851CrossRefGoogle Scholar
  23. 23.
    Beebe DJ, Moore JS, Bauer JM, Yu Q, Liu RH, Devadoss C, Jo B-H (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404:588–590PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Idota N, Kikuchi A, Kobayashi J, Sakai K, Okano T (2005) Microfluidic valves comprising nanolayered thermoresponsive polymer-grafted capillaries. Adv Mater 17:2723–2727CrossRefGoogle Scholar
  25. 25.
    Hoffman AS (1987) Applications of thermally reversible polymers and hydrogels in therapeutics and diagnostics. J Control Release 6:297–305CrossRefGoogle Scholar
  26. 26.
    Kim Y-J, Ebara M, Aoyagi T (2012) A smart nanofiber web that captures and releases cells. Angew Chem Int Edit 51:10537–10541CrossRefGoogle Scholar
  27. 27.
    Matsumoto A, Ishii T, Nishida J, Matsumoto H, Kataoka K, Miyahara Y (2012) A synthetic approach toward a self-regulated insulin delivery system. Angew Chem Int Edit 51:2124–2128CrossRefGoogle Scholar
  28. 28.
    Miyata T, Uragami T, Nakamae K (2002) Biomolecule-sensitive hydrogels. Adv Drug Deliver Rev 54:79–98CrossRefGoogle Scholar
  29. 29.
    Feil H, Bae YH, Feijen J, Kim SW (1991) Molecular separation by thermosensitive hydrogel membranes. J Membr Sci 64:283–294CrossRefGoogle Scholar
  30. 30.
    Chmielewski AG, Haji-Saeid M (2004) Radiation technologies: past, present and future. Radiat Phys Chem 71:16–20Google Scholar
  31. 31.
    Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185:117–118CrossRefGoogle Scholar
  32. 32.
    Rosiak JM, Uanski P, Pajewski LA, Yoshii F, Makuuchi K (1995) Radiation formation of hydrogels for biomedical purposes. Some remarks and comments. Radiat Phys Chem 46(2):161–168CrossRefGoogle Scholar
  33. 33.
    Kabanov VY (1998) Preparation of polymeric biomaterials with the aid of radiation-chemical methods. Russ Chem Rev 67(9):783–816CrossRefGoogle Scholar
  34. 34.
    Coqueret X (2008) Obtaining high performance polymeric materials by irradiation. In: Spotheim-Maurizot M, Mostafavi M, Douki T, Belloni J (eds) Radiation chemistry: from basics to applications in material and life sciences. EDP Sciences, Les Ulis, pp 131–150Google Scholar
  35. 35.
    Chapiro A (1964) Radiation chemistry of polymers. Radiat Res Suppl 4:179–191CrossRefGoogle Scholar
  36. 36.
    Caykara T (2004) Effect of maleic acid content on network structure and swelling properties of poly(N-isopropylacrylamide-co-maleic acid) polyelectrolyte hydrogels. J Appl Polym Sci 92:763–769CrossRefGoogle Scholar
  37. 37.
    Charlesby A (1960) Atomic radiation and polymers. Pergamon Press, Oxford, pp 467–491CrossRefGoogle Scholar
  38. 38.
    Rosiak JM, Uanski P (1999) Synthesis of hydrogels by irradiation of polymers in aqueous solution. Radiat Phys Chem 55:139–151CrossRefGoogle Scholar
  39. 39.
    Draganić IG, Draganić ZD (1971) The radiation chemistry of water. Academic Press, New York/London, pp 47–170Google Scholar
  40. 40.
    Wang B, Mukataka S, Kokofuta E, Kodama M (2000) The influence of polymer concentration on the radiation-chemical yield of intermolecular crosslinking of poly(vinyl alcohol) by γ-rays in deoxygenated aqueous solution. Radiat Phys Chem 59:91–95CrossRefGoogle Scholar
  41. 41.
    von Sonntag C (2006) Free-radical-induced DNA damage and its repair: a chemical perspective. Springer, Berlin/Heidelberg, pp 197–210CrossRefGoogle Scholar
  42. 42.
    Kadlubowski S, Grobelny J, Olejniczak W, Cichomski M, Ulanski P (2003) Pulses of fast electrons as a tool to synthesize poly(acrylic acid) nanogels. Intramolecular cross-linking of linear polymer chains in additive-free aqueous solution. Macromolecules 36:2484–2492CrossRefGoogle Scholar
  43. 43.
    Rosiak JM, Olejniczak J, Pekala W (1990) Fast reaction of irradiated polymers - I. Crosslinking and degradation of polyvinylpyrrolidone. Radiat Phys Chem 36:747–755Google Scholar
  44. 44.
    Rosiak JM, Olejniczak J (1993) Medical applications of radiation formed hydrogels. Radiat Phys Chem 42:903–906CrossRefGoogle Scholar
  45. 45.
    Spasojević J, Radosavljević A, Krstić J, Jovanović D, Spasojević V, Kalagasidis-Krušić M, Kačarević-Popović Z (2015) Dual responsive antibacterial Ag-poly(N-isopropylacrylamide/itaconic acid) hydrogel nanocomposites synthesized by gamma irradiation. Eur Polym J 69:168–185CrossRefGoogle Scholar
  46. 46.
    Caykara T, Dogmus M, Kantoglu O (2004) Network structure and swelling-shrinking behaviors of pH sensitive poly(acrylamide-co-itaconic acid) hydrogels. J Polym Sci Pol Phys 42:2586–2594CrossRefGoogle Scholar
  47. 47.
    Karadag E, Saraydin D, Sahiner N, Guven O (2001) Radiation induced acrylamide/citric acid hydrogels and their swelling behaviors. J Macromol Sci A 38:1105–1121CrossRefGoogle Scholar
  48. 48.
    Abd El-Mohdy HL, Safrany A (2008) Preparation of fast response superabsorbent hydrogels by radiation polymerization and crosslinking of N-isopropylacrylamide in solution. Radiat Phys Chem 77:273–279CrossRefGoogle Scholar
  49. 49.
    Qiao ZP, Xie Y, Xu JG, Zhu YJ, Quian YT (1999) γ-Radiation synthesis of the nanocrystalline semiconductors PbS and CuS. J Colloid Interf Sci 214:459–461CrossRefGoogle Scholar
  50. 50.
    Thoniyot P, Tan MJ, Karim AA, Young DJ, Loh XJ (2015) Nanoparticle-hydrogel composites: concept, design, and applications of these promising, multi-functional materials. Adv Sci 2:1400010CrossRefGoogle Scholar
  51. 51.
    Hu Y, Chen J-F (2007) Synthesis and characterization of semiconductor nanomaterials and micromaterials via gamma-irradiation route. J Clust Sci 18:371–387CrossRefGoogle Scholar
  52. 52.
    Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677CrossRefGoogle Scholar
  53. 53.
    Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 112(3):788–800CrossRefGoogle Scholar
  54. 54.
    Karthikeyan B (2005) Spectroscopic studies on Ag–polyvinyl alcohol nanocomposite films. Physica B 364(1–4):328–332CrossRefGoogle Scholar
  55. 55.
    Gaddy GA, Korchev AS, McLain JL, Slaten BL, Steigerwalt ES, Mills G (2004) Light-induced formation of silver particles and clusters in crosslinked PVA/PAA films. J Phys Chem B 108(39):14850–14857CrossRefGoogle Scholar
  56. 56.
    Henglein A (1993) Physicochemical properties of small metal particles in solution: “microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J Phys Chem 97(21):5457–5471CrossRefGoogle Scholar
  57. 57.
    Belloni J, Mostafavi M, Remita H, Marignier JL, Delcourt MO (1998) Radiation-induced synthesis of mono- and multi-metallic clusters and nanocolloids. New J Chem 22(11):1239–1255CrossRefGoogle Scholar
  58. 58.
    Temgire MK, Joshi SS (2004) Optical and structural studies of silver nanoparticles. Rad Phys Chem 71(5):1039–1044CrossRefGoogle Scholar
  59. 59.
    Belloni J, Mostafavi M (2001) Radiation chemistry of nanocolloids and clusters. In: Charles Jonah CD, Madhava Rao BS (eds) Radiation chemistry present status and future trends, vol 87. Elsevier, Amsterdam, pp 411–452CrossRefGoogle Scholar
  60. 60.
    Krstić J, Spasojević J, Radosavljević A, Šiljegovć M, Kačarević-Popović Z (2014) Optical and structural properties of radiolytically in situ synthesized silver nanoparticles stabilized by chitosan/poly(vinylalcohol) blends. Radiat Phys Chem 96:158–166CrossRefGoogle Scholar
  61. 61.
    Mostafavi M, Liu YP, Pernot P, Belloni J (2000) Dose rate effect on size of CdS clusters induced by irradiation. Radiat Phys Chem 59:49–59CrossRefGoogle Scholar
  62. 62.
    Souici AH, Keghouche N, Delaire JA, Remita H, Mostafavi M (2006) Radiolytic synthesis and optical properties of ultra-small stabilized ZnS nanoparticles. Chem Phys Lett 422:25–29CrossRefGoogle Scholar
  63. 63.
    Souici AH, Keghouche N, Delaire JA, Remita H, Etcheberry A, Mostafavi M (2009) Structural and optical properties of PbS nanoparticles synthesized by the radiolytic method. J Phys Chem C 113:8050–8057CrossRefGoogle Scholar
  64. 64.
    Mie G (1908) Contributions to the optics of turbid media, particularly of colloidal metal solutions. Ann Phys 25:377–445CrossRefGoogle Scholar
  65. 65.
    Liz-Marzan LM (2004) Nanometals: formation and color. Mater Today 7:26–31CrossRefGoogle Scholar
  66. 66.
    Gudiksen MS, Lauhon UJ, Wang J, Smith DC, Lieber CM (2002) Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415:617–620PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Melosh NA, Boukai A, Diana F, Gerardot B, Badolato A, Petroff PM, Heath JR (2003) Ultrahigh-density nanowire lattices and circuits. Science 300:112–115PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Rujitanaroj P, Pimpha N, Supaphol P (2008) Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymer 49:4723–4732CrossRefGoogle Scholar
  69. 69.
    Agarwal S, Wendorff J, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer 49:5603–5621CrossRefGoogle Scholar
  70. 70.
    Secinti KD, Ayten M, Kahilogullari G, Kaygusuz G, Ugur HC, Attar A (2008) Antibacterial effects of electrically activated vertebral implants. J Clin Neurosci 15:434–439PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Hilton JR, Williams DT, Beuker B, Miller DR, Harding KG (2004) Wound dressings in diabetic foot disease. Clin Infect Dis 39:S100–S103PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Zan X, Kozlov M, Mc Carthy TJ, Su Z (2010) Covalently attached, silver-doped poly(vinyl alcohol) hydrogel films on poly(l-lactic acid). Biomacromolecules 11:1082–1088PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Davis SC, Martinez L, Kirsner R (2006) The diabetic foot: the importance of biofilms and wound bed preparation. Curr Diabetes Rep 6:439–445CrossRefGoogle Scholar
  74. 74.
    Xiu Z, Zhang Q, Puppala HL, Colvin VL, Alvarez PJJ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12:4271–4275PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Liu J, Sonshine DA, Shervani S, Hurt RH (2010) Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4:6903–6913PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Singh B (2007) Psyllium as therapeutic and drug delivery agent. Int J Pharm 334:1–14PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Hardes J, Ahrens H, Gebert C, Streitberger A, Buerger H, Erre M, Gunsel A, Wedemeyer C, Saxler G, Winkelmann W, Gosheger G (2007) Lack of toxicological side-effects in silver-coated megaprostheses in humans. Biomaterials 28:2869–2875PubMedCrossRefGoogle Scholar
  78. 78.
    Jain J, Arora S, Rajwade JM, Omray P, Khandelwal S, Paknikar KM (2009) Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol Pharm 6:1388–1401PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Jovanović Ž, Radosavljević A, Kačarević-Popović Z, Stojkovska J, Perić-Grujić A, Ristić M, Matić ZM, Juranić ZD, Obradović B, Mišković-Stanković V (2013) Bioreactor validation and biocompatibility of Ag/poly(N-vinyl-2-pyrrolidone) hydrogel nanocomposites. Colloid Surface B 105:230–235CrossRefGoogle Scholar
  80. 80.
    Ratner B, Hoffman A (1976) Synthetic hydrogels for biomedical applications. In: Andrade JD (ed) Hydrogels for medical and related applications, vol 31. American Chemical Society, Washington DC, pp 1–36CrossRefGoogle Scholar
  81. 81.
    Kobayashi M, Hyu HS (2010) Development and evaluation of polyvinyl alcohol-hydrogels as an artificial atrticular cartilage for orthopedic implants. Materials 3(4):2753–2771PubMedCentralCrossRefGoogle Scholar
  82. 82.
    Petrović M, Mitraković D, Bugarski D, Vonwil D, Martin I, Obradović B (2009) A novel bioreactor with mechanical stimulation for skeletal tissue engineering. CI&CEQ 15:41–44CrossRefGoogle Scholar
  83. 83.
    Jovanović Ž, Krklješ A, Stojkovska J, Tomić S, Obradović B, Mišković-Stanković V, Kačarević-Popović Z (2011) Synthesis and characterization of silver/poly(N-vinyl-2-pyrrolidone) hydrogel nanocomposite obtained by in situ radiolytic method. Radiat Phys Chem 80:1208–1215CrossRefGoogle Scholar
  84. 84.
    Gu ZQ, Xiao JM, Zhang XH (1998) The development of artificial articular cartilage-PVA-hydrogel. Biomed Mater Eng 8:75–81PubMedPubMedCentralGoogle Scholar
  85. 85.
    Yong Q, Kinam P (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 64:49–60Google Scholar
  86. 86.
    Milašinović N, Milosavljević N, Filipović J, Knežević-Jugović Z, Kalagasidis-Krušić M (2010) Synthesis, characterization and application of poly(N-isopropylacrylamide-co-itaconic acid) hydrogels as supports for lipase immobilization. React Funct Polym 70:807–814CrossRefGoogle Scholar
  87. 87.
    Chanda M, Roy SK (2009) Hydrogels and smart polymers. In: Hudgin DE (ed) Industrial polymers, specialty polymers and their applications. CRC Press, Boca Raton, pp 2115–2122Google Scholar
  88. 88.
    Cortes J, Mendizabal E, Katime I (2008) Effect of comonomer type and concentration on the equilibrium swelling and volume phase transition temperature of N-Isopropylacrylamide-based hydrogels. J Appl Polym Sci 108:1792–1796CrossRefGoogle Scholar
  89. 89.
    Tasdelen B, Kayaman-Apohan N, Guven O, Baysal B (2004) Investigation of drug release from thermo- and pH-sensitive poly(N-isopropylacrylamide/itaconic acid) copolymeric hydrogels. Polym Adv Technol 15:528–532CrossRefGoogle Scholar
  90. 90.
    Ramirez-Fuentes Y, Bucio E, Burillo G (2008) Thermo and pH sensitive copolymer based on acrylic acid and N-Isopropylacrylamide grafted onto polypropylene. Polym Bull 60:79–87CrossRefGoogle Scholar
  91. 91.
    Constantin M, Cristea M, Ascenzi P, Fundueanu G (2011) Lower critical solution temperature versus volume phase transition temperature in thermoresponsive drug delivery systems. Express Polym Lett 5:839–848CrossRefGoogle Scholar
  92. 92.
    Kalagasidis-Krušić M, Ilić M, Filipović J (2009) Swelling behaviour and paracetamol release from poly(N-isopropylacrylamide-itaconic acid) hydrogel. Polym Bull 63:197–211CrossRefGoogle Scholar
  93. 93.
    Bhattacharyya L, Rohrer JS (2012) Applications of ion chromatography for pharmaceutical and biological products, appendix 1. Wiley, Hoboken, pp 451–453CrossRefGoogle Scholar
  94. 94.
    Ni Y, Liu H, Wang F, Liang Y, Hong J, Ma X, Xu Z (2004) PbS crystals with clover-like structure: preparation, characterization, optical properties and influencing factors. Cryst Res Technol 39(3):200–206CrossRefGoogle Scholar
  95. 95.
    Peterson JJ, Krauss TD (2006) Fluorescence spectroscopy of single lead sulfide quantum dots. Nano Lett 6(3):510–514PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Agrawal SK, Sanabria-DeLong N, Tew GN, Bhatia SR (2008) Nanoparticle-reinforced associative network hydrogels. Langmuir 24:13148–13154PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Agrawal SK, Sanabria-DeLong N, Bhatia SK, Tew GN, Bhatia SR (2010) Energetics of association in poly(lactic acid)-based hydrogels with crystalline and nanoparticle-polymer junctions. Langmuir 26:17330–17338PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Buso D, Falcaro P, Costacurta S, Gugliemi M, Martucci A, Innocenzi P, Malfatti L, Bello V, Mattei G, Sada C, Amenitsch H, Gerdova I, Hache A (2005) PbS-doped mesostructured silica films with high optical nonlinearity. Chem Mater 17:4965–4970CrossRefGoogle Scholar
  99. 99.
    Segal N, Keren-Zur S, Hendler N, Ellenbogen T (2015) Controlling light with metamaterial-based nonlinear photonic crystals. Nat Photonics 9:180–184CrossRefGoogle Scholar
  100. 100.
    Laurent S, Forge D, Port M, Roch A, Robic C, Vander EL, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Zrinyi M, Barsi L, Buki A (1997) Ferrogel: a new magneto-controlled elastic medium. Polym Gels Netw 5:415–427CrossRefGoogle Scholar
  102. 102.
    Ramanujan RV, Lao LL (2006) The mechanical behavior of smart magnet–hydrogel composites. Smart Mater Struct 15:952–956CrossRefGoogle Scholar
  103. 103.
    Lao LL, Ramanujan RV (2004) Magnetic and hydrogel composite materials for hyperthermia applications. J Mater Sci Mater Med 15:1061–1064PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Taurin S, Nehoff H, Khaled Greish K (2012) Anticancer nanomedicine and tumor vascular permeability; where is the missing link? J Control Release 164:265–275PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Aleksandra Radosavljević
    • 1
  • Jelena Spasojević
    • 1
  • Jelena Krstić
    • 1
  • Zorica Kačarević-Popović
    • 1
  1. 1.Laboratory for Radiation Chemistry and Physics, Vinča Institute of Nuclear SciencesUniversity of BelgradeBelgradeSerbia

Personalised recommendations