Advertisement

Bacterial Cellulose-Based Hydrogels: Synthesis, Properties, and Applications

  • Bhavana V. Mohite
  • Sunil H. Koli
  • Satish V. Patil
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)

Abstract

There is an importunate effort taking place worldwide to obtain the innovative hydrogels either from natural, synthetic, or mixed type polymers, ever since the breakthrough invention of the first hydrogel of polyhydroxy ethyl methacrylate. Predominantly the cellulose-based hydrogels attracted the attention of researchers due to its renewable, biodegradable biopolymeric nature. In comparison to plant cellulose (PC), the bacterial cellulose (BC) has been preferred due to its pure fibrous biomaterial nature, high crystallinity, ultrafine three-dimensional nanostructure network, high water absorption, superior mechanical properties, biocompatibility, and biodegradability. These promising valuable properties of BC exploit its use especially in hydrogel form in a variety of technological fields like a development of new bacterial cellulose-based hydrogels. The present review focused on its current synthesis methods and use in biomedicine, pharmaceutical, environment, agriculture, etc. In recent years BC itself and in combination have become the subject of intensive studies for the synthesis of hydrogels in search of properties and applications of BC-based hydrogels. On the whole, the review after introducing BC production and its properties discusses the synthesis of BC-based smart hydrogels with various composite materials, formation mechanism, and improved characters. The latest use of BC-based hydrogels in both well-established and innovative high-tech fields is emphatically reviewed. The review concludes with the need for future research with some suggestions for BC-based hydrogels to be commercialized as a smart biomaterial.

Keywords

Biopolymer Microbial cellulose Biomaterial Biocompatible Biodegradable 

Notes

Acknowledgments

The author BVM is thankful to the Science and Engineering Research Board (SERB) for financial support under the Start-Up Research Grant (Young Scientist) File No. YSS/2015/001722. Authors are grateful to UGC and DST for making the research facilities available under the UGC-SAP-DRS-Phase-III and DST-FIST programs sanctioned to the School of Life Sciences.

References

  1. 1.
    Jordan LD (1926) The problem of gel structure. Colloid Chem 1:767–782Google Scholar
  2. 2.
    Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6(2):105–121PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185(4706):117–118CrossRefGoogle Scholar
  4. 4.
    Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101(7):1869–1880PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Zrinyi M, Szabo D, Filipcsei G, Feher J (2002) In: Osada Y, Khokhlov AR, Dekker M (eds) Polymer gels and networks. CRC Press, New York, pp 309–355Google Scholar
  6. 6.
    Akiyoshi K, Deguchi S, Moriguchi N, Yamaguchi S, Sunamoto J (1993) Self-aggregates of hydrophobized polysaccharides in water. Formation and characteristics of nanoparticles. Macromolecules 26(12):3062–3068CrossRefGoogle Scholar
  7. 7.
    Morimoto N, Winnik FM, Akiyoshi K (2007) Botryoidal assembly of cholesteryl–pullulan/poly(nisopropylacrylamide) nanogels. Langmuir 23(1):217–223PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Coviello T, Matricardi P, Marianecci C, Alhaique F (2007) Polysaccharide hydrogels for modified release formulations. J Control Release 119(1):5–24PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Tanaka T (1981) Gels. Sci Am 244(1):124–136PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Fan M, Ma Y, Tan H, Jia Y, Zou S, Guo S, Zhao M, Huang H, Ling Z, Chen Y, Hu X (2017) Covalent and injectable chitosan-chondroitin sulfate hydrogels embedded with chitosan microspheres for drug delivery and tissue engineering. Mater Sci Eng C 71:67–74CrossRefGoogle Scholar
  11. 11.
    Singh B, Sharma V (2017) Crosslinking of poly(vinylpyrrolidone)/acrylic acid with tragacanth gum for hydrogels formation for use in drug delivery applications. Carbohydr Polym 157:185–195PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Hamidi M, Azadi A, Rafiei P (2008) Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 60(15):1638–1649PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Păvăloiu RD, Stoica-Guzun A, Dobre T (2015) Swelling studies of composite hydrogels based on bacterial cellulose and gelatin. UPB Sci Bull Ser B 77(1):53–62Google Scholar
  14. 14.
    Cipriano BH, Banik SJ, Sharma R, Rumore D, Hwang W, Briber RM, Raghavan SR (2014) Superabsorbent hydrogels that are robust and highly stretchable. Macromolecules 47(13): 4445–4452CrossRefGoogle Scholar
  15. 15.
    Zhang M, Cheng Z, Zhao T, Liu M, Hu M, Li J (2014) Synthesis, characterization, and swelling behaviors of salt-sensitive maize bran–poly (acrylic acid) superabsorbent hydrogel. J Agric Food Chem 62(35):8867–8874PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Ma J, Li X, Bao Y (2015) Advances in cellulose-based superabsorbent hydrogels. RSC Adv 5(73):59745–59757CrossRefGoogle Scholar
  17. 17.
    Johari NS, Ahmad I, Halib N (2012) Comparison study of hydrogels properties synthesized with micro- and nano- size bacterial cellulose particles extracted from nata de coco. Chem Biochem Eng Q 26(4):399–404Google Scholar
  18. 18.
    Qin C, Soykeabkaew N, Xiuyuan N, Peijs T (2008) The effect of fibre volume fraction and mercerization on the properties of all-cellulose composites. Carbohydr Polym 71(3):458–467CrossRefGoogle Scholar
  19. 19.
    Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, Uryu M (1989) The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mater Sci 24(9):3141–3145CrossRefGoogle Scholar
  20. 20.
    Mohite BV, Patil SV (2014) A novel biomaterial: bacterial cellulose and its new era applications. Biotechnol Appl Biochem 61(2):101–110PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55(1):35–58PubMedPubMedCentralGoogle Scholar
  22. 22.
    Shoda M, Sugano Y (2005) Recent advances in bacterial cellulose production. Biotechnol Bioprocess Eng 10(1):1CrossRefGoogle Scholar
  23. 23.
    Gromet-Elhanan Z, Hestrin S (1963) Synthesis of cellulose by Acetobacter xylinum VI. Growth on citric acid-cycle intermediates. J Bacteriol 85(2):284–292PubMedPubMedCentralGoogle Scholar
  24. 24.
    Jung JY, Park JK, Chang HN (2005) Bacterial cellulose production by Gluconacetobacter hansenii in an agitated culture without living non-cellulose producing cells. Enzym Microb Technol 37(3):347–354CrossRefGoogle Scholar
  25. 25.
    Yoshino T, Asakura T, Toda K (1996) Cellulose production by Acetobacter pasteurianus on silicone membrane. J Ferment Bioeng 81(1):32–36CrossRefGoogle Scholar
  26. 26.
    Km JY, Kim JN, Wee YJ, Park DH, Ryu HW (2007) Bacterial cellulose production by Gluconacetobacter sp. PKY5 in a rotary biofilm contactor. Appl Biochem Biotechnol 137:529–537Google Scholar
  27. 27.
    Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47(2):107–124Google Scholar
  28. 28.
    Sannino A, Pappadà S, Madaghiele M, Maffezzoli A, Ambrosio L, Nicolais L (2005) Crosslinking of cellulose derivatives and hyaluronic acid with water-soluble carbodiimide. Polymer 46(25):11206–11212CrossRefGoogle Scholar
  29. 29.
    Pita PCDC, Pinto FCM, Lira MMDM, Melo FDAD, Ferreira LM, Aguiar JLDA (2015) Biocompatibility of the bacterial cellulose hydrogel in subcutaneous tissue of rabbits. Acta Cir Bras 30(4):296–300PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Lee KY, Buldum G, Mantalaris A, Bismarck A (2014) More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromol Biosci 14(1):10–32PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Czaja W, Romanovicz D, Brown RM (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11(3):403–411CrossRefGoogle Scholar
  32. 32.
    Watanabe K, Tabuchi M, Morinaga Y, Yoshinaga F (1998) Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5(3):187–200CrossRefGoogle Scholar
  33. 33.
    Kim DY, Nishiyama Y, Kuga S (2002) Surface acetylation of bacterial cellulose. Cellulose 9(3):361–367CrossRefGoogle Scholar
  34. 34.
    Czaja WK, Young DJ, Kawecki M Jr (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8(1):1–12PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Eming S, Smola H, Kreig T (2002) Treatment of chronic wounds: state of the art and future concepts. Cells Tissues Organs 172(2):105–117PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Fontana JD, de Sousa AM, Fontana CK, Torriani IL, Moreschi JC, Gallotti BJ, De Souza SJ, Narcisco GP, Bichara JA, Farah LFX (1990) Acetobacter cellulose pellicle as a temporary skin substitute. Appl Biochem Biotechnol 24(1):253–264PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Okiyama A, Motoki M, Yamanaka S (1993) Bacterial cellulose IV. Application to processed foods. Food Hydrocoll 6(6):503–511CrossRefGoogle Scholar
  38. 38.
    Millon LE, Wan WK (2006) The polyvinyl alcohol–bacterial cellulose system as a new nanocomposite for biomedical applications. J Biomed Mater Res Part B 79(2):245–253CrossRefGoogle Scholar
  39. 39.
    Millon LE, Mohammadi H, Wan WK (2006) Anisotropic polyvinyl alcohol hydrogel for cardiovascular applications. J Biomed Mater Res Part B 7(2):305–311CrossRefGoogle Scholar
  40. 40.
    Chang ST, Chen LC, Lin SB, Chen HH (2012) Nano-biomaterials application: morphology and physical properties of bacterial cellulose/gelatin composites via crosslinking. Food Hydrocoll 27(1):137–144CrossRefGoogle Scholar
  41. 41.
    Dash R, Foston M, Ragauskas A (2013) Improving the mechanical and thermal properties of gelatin hydrogels cross-linked by cellulose nanowhiskers. Carbohydr Polym 91(2):638–645PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Ciechanska D (2004) Multifunctional bacterial cellulose/chitosan composite materials for medical applications. Fibres Tex East Eur 12(4):48–52Google Scholar
  43. 43.
    Woehl MA, Canestraro CD, Mikowski A, Sierakowski MR, Ramos LP, Wypych F (2010) Bionanocomposites of thermoplastic starch reinforced with bacterial cellulose nanofibres: effect of enzymatic treatment on mechanical properties. Carbohydr Polym 80(3):866–873CrossRefGoogle Scholar
  44. 44.
    Chiaoprakobkija N, Sanchavanakitb N, Subbalekhad K, Pavasantb P, Phisalaphonga M (2011) Characterization and biocompatibility of bacterial cellulose/alginate composite sponges with human keratinocytes and gingival fibroblasts. Carbohydr Polym 85(3):548–553CrossRefGoogle Scholar
  45. 45.
    Phisalaphong M, Suwanmajo T, Tammarate P (2007) Synthesis and characterization of bacterial cellulose/alginate blend membranes. J Appl Polym Sci 107(5):3419–3424CrossRefGoogle Scholar
  46. 46.
    Amin MCIM, Ahmad N, Halib N, Ahmad I (2012) Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydr Polym 88(2):465–473CrossRefGoogle Scholar
  47. 47.
    Trovatti E, Oliveira L, Freire C, Silvestre A, Neto CP, Pinto JC, Gandini A (2010) Novel bacterial cellulose–acrylic resin nanocomposites. Compos Sci Technol 70(7):1148–1153CrossRefGoogle Scholar
  48. 48.
    Czaja W, Krystynowicz A, Bielecki S, Brownjr R (2006) Microbial cellulose the natural power to heal wounds. Biomaterials 27(2):145–151PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26(4):419–431PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Trovatti E, Silva N, Duarte I, Rosado C, Almeida I, Costa P, Freire C, Silvestre A, Neto CP (2011) Biocellulose membranes as supports for dermal release of lidocaine. Biomacromolecules 12(11):4162–4168PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Li X, Wan W, Panchal CJ (2015) US Patent 8,940,337, 27 Jan 2015Google Scholar
  52. 52.
    Muller D, Mandelli JS, Marins JA, Soare BG, Porto LM, Rambo CR (2012) Electrically conducting nanocomposites: preparation and properties of polyaniline (PAni)-coated bacteria cellulose nanofibers (BC). Cellulose 19(5):1645–1654CrossRefGoogle Scholar
  53. 53.
    Marins JA, Soares BG, Fraga M, Muller D, Barra GMO (2014) Self-supported bacterial cellulose polyaniline conducting membrane as electromagnetic interference shielding material: effect of the oxidizing agent. Cellulose 21(3):1409–1418CrossRefGoogle Scholar
  54. 54.
    Campano C, Balea A, Blanco A, Negro C (2016) Enhancement of the fermentation process and properties of bacterial cellulose: a review. Cellulose 23(1):57–91CrossRefGoogle Scholar
  55. 55.
    Faria-Tischer PC, Costa CA, Tozetti I, Dall’Antonia LH, Vidotti M (2016) Structure and effects of gold nanoparticles in bacterial cellulose–polyaniline conductive membranes. RSC Adv 6(12):9571–9580CrossRefGoogle Scholar
  56. 56.
    Lin Z, Guan Z, Huang Z (2013) New bacterial cellulose/polyaniline nanocomposite film with one conductive side through constrained interfacial polymerization. Ind Eng Chem Res 52(8):2869–2874CrossRefGoogle Scholar
  57. 57.
    Mashkour M, Rahimnejad M, Mashkour M, Bakeri G, Luque R, Oh SE (2017) Application of wet nanostructured bacterial cellulose as a novel hydrogel bioanode for microbial fuel cells. Chem Electro Chem 4(3):648–654Google Scholar
  58. 58.
    Oshima T, Taguchi S, Ohe K, Baba Y (2011) Phosphorylated bacterial cellulose for adsorption of proteins. Carbohydr Polym 83(2):953–958CrossRefGoogle Scholar
  59. 59.
    Cai Z, Kim J (2010) Preparation and characterization of novel bacterial cellulose/gelatin scaffold for tissue regeneration using bacterial cellulose hydrogel. J Nanotechnol Eng Med 1(2):021002CrossRefGoogle Scholar
  60. 60.
    Khan S, Ul-Islam M, Ikram M, Ullah MW, Israr M, Subhan F, Park JK (2016) Three-dimensionally microporous and highly biocompatible bacterial cellulose–gelatin composite scaffolds for tissue engineering applications. RSC Adv 6(112):110840–110849CrossRefGoogle Scholar
  61. 61.
    Nainggolan H, Gea S, Bilotti E, Peijs T, Hutagalung SD (2013) Mechanical and thermal properties of bacterial-cellulose-fibre-reinforced Mater-Bi® bionanocomposite. Beilstein J Nanotechnol 4:325PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Grande CJ, Torres FG, Gomez CM, Troncoso OP, Canet-Ferrer J, Martínez-Pastor J (2009) Development of self-assembled bacterial cellulose-starch nanocomposites. Mater Sci Eng C 29(4):1098–1104CrossRefGoogle Scholar
  63. 63.
    Shah R, Vyroubal R, Fei H, Saha N, Kitano T, Saha P (2015) Preparation of bacterial cellulose based hydrogels and their viscoelastic behavior. AIP Conf Proc 1662(1):040007CrossRefGoogle Scholar
  64. 64.
    Velichko EV, Buyanov AL, Chetverikov YO, Duif CP, Bouwman WG, Smyslov RY (2016) Mesostructure anisotropy of bacterial cellulose-polyacrylamide hydrogels as studied by spin-echo small-angle neutron scattering. Cornell University of Library, Chemical Physics, 1–17. arXiv preprint arXiv:1608.00544Google Scholar
  65. 65.
    Zhang J, Rong J, Li W, Lin Z, Zhang X (2011) Preparation and characterization of bacterial cellulose/polyacrylamide hydrogel. Acta Polym Sin 6:602–607CrossRefGoogle Scholar
  66. 66.
    Mulijani S, Irawadi TT, Katresna TC (2014) Composite copolymer acrylamide/bacterial cellulose hydrogel synthesis and characterization by the application of gamma irradiation. Adv Mater Res 974:91–96CrossRefGoogle Scholar
  67. 67.
    Pandey M, Mohd Amin MCI, Ahmad N, Abeer MM (2013) Rapid synthesis of superabsorbent smart-swelling bacterial cellulose/acrylamide-based hydrogels for drug delivery. Int J Polym Sci 2013:905471, 10 pages.  https://doi.org/10.1155/2013/905471CrossRefGoogle Scholar
  68. 68.
    Mohamad N, Amin MCIM, Pandey M, Ahmad N, Rajab NF (2014) Bacterial cellulose/acrylic acid hydrogel synthesized via electron beam irradiation: accelerated burn wound healing in an animal model. Carbohydr Polym 114:312–320PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Ahn SJ, Shin YM, Kim SE, Jeong SI, Jeong JO, Park JS, Gwon HJ, Seo DE, Nho YC, Kang SS, Kim CY (2015) Characterization of hydroxyapatite-coated bacterial cellulose scaffold for bone tissue engineering. Biotechnol Bioprocess Eng 20(5):948–955CrossRefGoogle Scholar
  70. 70.
    Ran J, Jiang P, Liu S, Sun G, Yan P, Shen X, Tong H (2017) Constructing multi-component organic/inorganic composite bacterial cellulose-gelatin/hydroxyapatite double-network scaffold platform for stem cell-mediated bone tissue engineering. Mater Sci Eng C 78:130–140CrossRefGoogle Scholar
  71. 71.
    Shi Z, Phillips GO, Yang G (2013) Nanocellulose electroconductive composites. Nanoscale 5(8):3194–3201PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Boluk Y, Liu Y, Sun X (2014) US Patent Application No. 14/898,944, 20 June 2014Google Scholar
  73. 73.
    Li ZQ, Zhou XD, Pei CH (2010) Synthesis of PLA-co-PGMA copolymer and its application in the surface modification of bacterial cellulose. Int J Polym Mater 59(9):725–737CrossRefGoogle Scholar
  74. 74.
    Lina F, Yue Z, Jin Z, Guang Y (2011) Bacterial cellulose for skin repair materials, Chapter 13. In: Fazel Rezai R (ed) Biomedical engineering frontiers and challenges. In Tech. London, UK.  https://doi.org/10.5772/24323Google Scholar
  75. 75.
    Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15(14):1155–1158CrossRefGoogle Scholar
  76. 76.
    Nakayama A, Kakugo A, Gong JP, Osada Y, Takai M, Erata T, Kawano S (2004) High mechanical strength double-network hydrogel with bacterial cellulose. Adv Funct Mater 14(11):1124–1128CrossRefGoogle Scholar
  77. 77.
    Lopes TD, Riegel-Vidotti IC, Grein A, Tischer CA, de Sousa Faria-Tischer PC (2014) Bacterial cellulose and hyaluronic acid hybrid membranes: production and characterization. Int J Biol Macromol 67:401–408PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    de Oliveira SA, da Silva BC, Riegel-Vidotti IC, Urbano A, de Sousa Faria-Tischer PC, Tischer CA (2017) Production and characterization of bacterial cellulose membranes with hyaluronic acid from chicken comb. Int J Biol Macromol 97:642–653PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Woehl MA, Ono L, Vidotti ICR, Wypych F, Schreiner WH, Sierakowski MR (2014) Bioactive nanocomposites of bacterial cellulose and natural hydrocolloids. J Mater Chem B 2(40): 7034–7044CrossRefGoogle Scholar
  80. 80.
    Moraes PRFDS, Saska S, Barud H, Lima LRD, Martins VDCA, Plepis AMDG, Ribeiro SJL, Gaspar AMM (2016) Bacterial cellulose/collagen hydrogel for wound healing. Mater Res 19(1):106–116CrossRefGoogle Scholar
  81. 81.
    Qiu Y, Qiu L, Cui J, Wei Q (2016) Bacterial cellulose and bacterial cellulose-vaccarin membranes for wound healing. Mater Sci Eng C 59:303–309CrossRefGoogle Scholar
  82. 82.
    Abral H, Mahardika M (2016) Tensile properties of bacterial cellulose nanofibers-polyester composites. IOP Conf Ser: Mater Sci Eng 137(1):012019CrossRefGoogle Scholar
  83. 83.
    Gao C, Wan Y, He F, Liang H, Luo H, Han J (2011) Mechanical, moisture absorption, and photodegradation behaviors of bacterial cellulose nanofiber-reinforced unsaturated polyester composites. Adv Polym Technol 30(4):249–256CrossRefGoogle Scholar
  84. 84.
    Ul-Islam M, Khan T, Khattak WA, Park JK (2013) Bacterial cellulose-MMTs nanoreinforced composite films: novel wound dressing material with antibacterial properties. Cellulose 20(2):589–596CrossRefGoogle Scholar
  85. 85.
    Ul-Islam M, Khan T, Park JK (2012) Nanoreinforced bacterial cellulose–montmorillonite composites for biomedical applications. Carbohydr Polym 89(4):1189–1197PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Fang Q, Zhou X, Deng W, Zheng Z, Liu Z (2016) Freestanding bacterial cellulose-graphene oxide composite membranes with high mechanical strength for selective ion permeation. Sci Rep 6:33185PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Wang J, Gao C, Zhang Y, Wan Y (2010) Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial. Mater Sci Eng C 30(1):214–218CrossRefGoogle Scholar
  88. 88.
    Gupta A, Low WL, Radecka I, Britland ST, Mohd Amin MCI, Martin C (2016) Characterisation and in vitro antimicrobial activity of biosynthetic silver-loaded bacterial cellulose hydrogels. J Micro Encapsul 33(8):725–734Google Scholar
  89. 89.
    Mohite BV, Patil SV (2016) In situ development of nanosilver-impregnated bacterial cellulose for sustainable released antimicrobial wound dressing. J Appl Biomater Funct Mater 14(1):e53–e58PubMedPubMedCentralGoogle Scholar
  90. 90.
    Sun X, Peng B, Ji Y, Chen J, Li D (2009) Chitosan (chitin)/cellulose composite biosorbents prepared using ionic liquid for heavy metal ions adsorption. AICHE J 55(8):2062–2069CrossRefGoogle Scholar
  91. 91.
    Park TJ, Jung YJ, Choi SW, Park H, Kim H, Kim E, Lee SH, Kim JH (2011) Native chitosan/cellulose composite fibers from an ionic liquid via electrospinning. Macromol Res 19(3):213–215CrossRefGoogle Scholar
  92. 92.
    Stefanescu C, Daly HW, Negulescu II (2012) Biocomposite films prepared from ionic liquid solutions of chitosan and cellulose. Carbohydr Polym 87(1):435–443CrossRefGoogle Scholar
  93. 93.
    Peng S, Meng HC, Zhou L, Chang J (2014) Synthesis of novel magnetic cellulose-chitosan composite microspheres and their application in laccase immobilization. J Nanosci Nanotechnol 14(9):7010–7014PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Kim HJ, Jin JN, Kan E, Kim KJ, Lee SH (2017) Bacterial cellulose-chitosan composite hydrogel beads for enzyme immobilization. Biotechnol Bioprocess Eng 22(1):89–94CrossRefGoogle Scholar
  95. 95.
    Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose: artificial blood vessels for microsurgery. Prog Polym Sci 26(9):1561–1603CrossRefGoogle Scholar
  96. 96.
    Zang S, Zhang R, Chen H, Lu Y, Zhou J, Chang X, Yang G (2015) Investigation on artificial blood vessels prepared from bacterial cellulose. Mater Sci Eng C 46:111–117CrossRefGoogle Scholar
  97. 97.
    Sperling LH (1994) Interpenetrating polymer network: an overview. Ch. 1. In: Klempner D, Sperling LH, Utracki LA (eds) Advances in chemistry, vol 239. American Chemical Society, Washington, DC, pp 3–38Google Scholar
  98. 98.
    Buyanov AL, Revel’skaya LG, Kuznetzov YP, Shestakova AS (1998) Cellulose–poly (acrylamide or acrylic acid) interpenetrating polymer network membranes for the pervaporation of water–ethanol mixtures. J Appl Polym Sci 69(4):761–769CrossRefGoogle Scholar
  99. 99.
    Katepetch C, Rujiravanit R (2011) Synthesis of magnetic nanoparticle into bacterial cellulose matrix by ammonia gas-enhancing in situ co-precipitation method. Carbohydr Polym 86(1):162–170CrossRefGoogle Scholar
  100. 100.
    Jia Y, Wang X, Huo M, Zhai X, Li F, Zhong C (2017) Preparation and characterization of a novel bacterial cellulose/chitosan bio-hydrogel. Nanomater Nanotechnol 7: 1847980417707172CrossRefGoogle Scholar
  101. 101.
    Coman CG, Macsim MA, Oprea AM, Hurjui L, Petreus T, Neamtu A (2011) Study on cellulose/chondroitin sulfate hydrogel used in drug release systems. In: International conference on advancements of medicine and health care through technology. Springer, Berlin, pp 348–351CrossRefGoogle Scholar
  102. 102.
    Oprea AM, Neamtu A, Stoica B, Vasile C (2009) Cellulose/chondroitin sulphate hydrogels as carriers for drug delivery applications. Analele Stiintifice ale Universitatii. Cuza Al I, Iasi D (Serie Noua) Sectiunea 2 a Genet Biol Mol 10(3):85–92Google Scholar
  103. 103.
    Daltro P, Daltro G, De Oliveira G, Basmaji P, Guastaldi A (2016) Hydrogel and bacterial cellulose mats behavior with calcium phosphate deposition. In: Front Bioeng Biotechnol conference abstract: 10th World Biomaterials Congress 17–22 May 2016.  https://doi.org/10.3389/conf.FBIOE.2016.01.02697
  104. 104.
    Sun D, Yang J, Wang X (2010) Bacterial cellulose/TiO2 hybrid nanofibers prepared by the surface hydrolysis method with molecular precision. Nanoscale 2(2):287–292PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Yang J, Yu J, Fan J, Sun D, Tang W, Yang X (2011) Biotemplated preparation of CdS nanoparticles/bacterial cellulose hybrid nanofibers for photocatalysis application. J Hazard Mater 189(1):377–383PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Gadim TD, Figueiredo AG, Rosero-Navarro NC, Vilela C, Gamelas JA, Barros-Timmons A, Neto CP, Silvestre AJ, Freire CS, Figueiredo FM (2014) Nanostructured bacterial cellulose–poly (4-styrene sulfonic acid) composite membranes with high storage modulus and protonic conductivity. ACS Appl Mater Interfaces 6(10):7864–7875PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Dalton LW (2004) The Rolls-Royce of celluloses. Chem Eng News 82(17):24–25CrossRefGoogle Scholar
  108. 108.
    Tanpichai S, Quero F, Nogi M, Yano H, Young RJ, Lindstro¨m T, Sampson WW, Eichhorn SJ (2012) Effective Young’s modulus of bacterial and microfibrillated cellulose fibrils in fibrous networks. Biomacromolecules 13(5):1340–1349PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Trovatti E, Carvalho AJ, Ribeiro SJ, Gandini A (2013) Simple green approach to reinforce natural rubber with bacterial cellulose nanofibers. Biomacromolecules 14(8):2667–2674PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Buyanov AL, Gofman IV, Revelskaya LG, Khripunov AK, Tkachenko AA (2010) Anisotropic swelling and mechanical behavior of composite bacterial cellulose (polyacrylamide or polyacrylamide-sodium polyacrylate) hydrogels. J Mech Behav Biomed Mater 3(1):102–111PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Pandey M, Amin MCIM, Mohamad N, Ahmad N, Muda S (2013) Structure and characteristics of bacterial cellulose-based hydrogels prepared by cryotropic gelation and irradiation methods. Polym Plast Technol Eng 52(14):1510–1518CrossRefGoogle Scholar
  112. 112.
    Jovanovic J, Adnadjevic B (2010) Influence of microwave heating on the kinetic of acrylic acid polymerization and crosslinking. J Appl Polym Sci 116(1):55–63CrossRefGoogle Scholar
  113. 113.
    Treesuppharat W, Rojanapanthu P, Siangsanoh C, Manuspiya H, Ummartyotin S (2017) Synthesis and characterization of bacterial cellulose and gelatin-based hydrogel composites for drug-delivery systems. Biotechnol Rep 15:84–91CrossRefGoogle Scholar
  114. 114.
    Chen H, Fan M (2008) Novel thermally sensitive pH-dependent chitosan/carboxymethyl cellulose hydrogels. J Bioact Compat Polym 23(1):38–48CrossRefGoogle Scholar
  115. 115.
    Chang C, Lue A, Zhang L (2008) Effects of crosslinking methods on structure and properties of cellulose/PVA hydrogels. Macromol Chem Phys 209(12):1266–1273CrossRefGoogle Scholar
  116. 116.
    Charlesby A (1955) The degradation of cellulose by ionizing radiation. J Polym Sci 15(79): 263–270CrossRefGoogle Scholar
  117. 117.
    Yoon SH, Jin HJ, Kook MC, Pyun YR (2006) Electrically conductive bacterial cellulose by incorporation of carbon nanotubes. Biomacromolecules 7(4):1280–1284PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Xiong G, Luo H, Gu F, Zhang J, Hu D, Wan Y (2013) A novel in vitro three-dimensional macroporous scaffolds from bacterial cellulose for culture of breast cancer cells. J Biomater Nanobiotech 4(04):316CrossRefGoogle Scholar
  119. 119.
    Petersen N, Gatenholm P (2011) Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol 91(5):1277–1286PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Cherian BM, Leão AL, de Souza SF, de Olyveira GM, Costa LMM, Brandão CVS, Narine SS (2013) Bacterial nanocellulose for medical implants. In: Advances in natural polymers. Springer, Berlin, pp 337–359CrossRefGoogle Scholar
  121. 121.
    Mohite BV, Suryawanshi RK, Patil SV (2016) Study on the drug loading and release potential of bacterial cellulose. Cell ChemTech 50(2):219–223Google Scholar
  122. 122.
    Luo H, Ao H, Li G, Li W, Xiong G, Zhu Y, Wan Y (2017) Bacterial cellulose/graphene oxide nanocomposite as a novel drug delivery system. Curr Appl Phys 17(2):249–254CrossRefGoogle Scholar
  123. 123.
    Shao W, Liu H, Wang S, Wu J, Huang M, Min H, Liu X (2016) Controlled release and antibacterial activity of tetracycline hydrochloride-loaded bacterial cellulose composite membranes. Carbohydr Polym 145:114–120PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Al-Omran AM, Mustafa MA, Shalaby AA (1987) Intermittent evaporation from soil columns as affected by a gel-forming conditioner. Soil Sci Soc Am J 51(6):1593–1599CrossRefGoogle Scholar
  125. 125.
    Mohite BV, Patil SV (2014) Bacterial cellulose of Gluconoacetobacter hansenii as a potential bioadsorption agent for its green environment applications. J Biomater Sci Polym Ed 25(18):2053–2065PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Jeon YS, Lei J, Kim JH (2008) Dye adsorption characteristics of alginate/polyaspartate hydrogels. Ind Eng Chem 14:726–731CrossRefGoogle Scholar
  127. 127.
    Hakam A, Rahman IA, Jamil MSM, Othaman R, Amin MCI, Lazim AM (2015) Removal of methylene blue dye in aqueous solution by sorption on a bacterial-g-poly-(acrylic acid) polymer network hydrogel. Sains Malays 44(6):827–834CrossRefGoogle Scholar
  128. 128.
    Kim MH, An S, Won K, Kim HJ, Lee SH (2012) Entrapment of enzymes into cellulose-biopolymer composite hydrogel beads using biocompatible ionic liquid. J MolCatal B Enz 75:68–72CrossRefGoogle Scholar
  129. 129.
    Wang W, Zhang TJ, Zhang DW, Li HY, Ma YR, Qi LM, Zhou YL, Zhang XX (2011) Amperometric hydrogen peroxide biosensor based on the immobilization of heme proteins on gold nanoparticles–bacterial cellulose nanofibers nanocomposite. Talanta 84(1):71–77PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Bhavana V. Mohite
    • 1
  • Sunil H. Koli
    • 1
  • Satish V. Patil
    • 1
    • 2
  1. 1.School of Life SciencesNorth Maharashtra UniversityJalgaonIndia
  2. 2.North Maharashtra Culture Collection CentreNorth Maharashtra UniversityJalgaonIndia

Personalised recommendations