Advertisement

Synthesis and Properties of Hydrogels Prepared by Various Polymerization Reaction Systems

  • Nalini Ranganathan
  • R Joseph Bensingh
  • M Abdul Kader
  • Sanjay K. Nayak
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)

Abstract

Among all biomass, cellulose is the most abundant renewable polysaccharide in nature, accounting for approximately 40% of the lignocellulosic biomass. The ability of cellulose to absorb enormous amounts of water has prompted the large use of cellulose in preparation of various hydrogels. Cellulose-based hydrogels are generally synthesized by two steps, (i) solubilization of cellulose fibers or powder and (ii) physical and/or chemical cross-linking, in order to obtain a three-dimensional network of hydrophilic polymer chains. The physical synthesizing method includes ionic interaction, hydrophobic interaction, and hydrogen bond formation, whereas the chemically cross-linked hydrogel preparation involves different polymerization techniques such as chain-growth polymerization, irradiation polymerization, and step-growth polymerization. Further, another technique such as bulk polymerization is also used to form gels mainly using lactic acid as monomer. Indeed, the high density of free hydroxyl groups present in the cellulose structure permits them to undergo functionalization/chemical modification, which allows producing cellulose derivatives. The properties of cellulosic hydrogels change based on the different environmental stimuli. The external stimulus includes pH, temperature, light, electric or magnetic field, mechanical stress, etc. The responses of the hydrogel based on the exposure to different stimuli are discussed in this chapter. However, the cellulose hydrogels basically have good biocompatibility and non-toxicity combined with relevant mechanical properties. They showed highest absorption capacity, the swelling/deswelling behavior, and its rate depends on various factors such as particle size, porosity, solvent concentration, cross-linking density, etc. The swell behavior is addressed using various kinetic models such as Fickian, non-Fickian, and Flory. Further, biodegradation, mechanical, and rheological properties variation with respect to cross-linking density and other parameters (shape, pore size, reinforcement, etc.) and stimuli are considered and discussed.

Keywords

Polymerization Hydrogel Cross-linking Properties 

References

  1. 1.
    Akhtar MF, Hanif M, Ranjha NM (2016) Methods of synthesis of hydrogels a review. Saudi Pharm J 24(5):554–559PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Ciolacu D, Oprea AM, Anghel N, Cazacu G, Cazacu M (2012) New cellulose-lignin and their application in controlled release of polyphenols. Mater Sci Eng C 32:452–463CrossRefGoogle Scholar
  3. 3.
    Wu J, Liang S, Dai H, Zhang X, Yu X, Cai Y, Zhang L, Wen N, Jiang B, Xu J (2010) Structure and properties of cellulose/chitin blended hydrogel membranes fabricated via a solution pre-gelation technique. Carbohydr Polym 79:677–684CrossRefGoogle Scholar
  4. 4.
    Navarra MA, Dal Bosco C, Serra Moreno J, Vitucci FM, Paolone A, Panero S (2015) Synthesis and characterization of cellulose-based hydrogels to be used as gel electrolytes. Membranes 5(4):810–823PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Shen X, Shamshina JL, Berton P, Gurau G, Rogers RD (2016) Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chem 18:53–75CrossRefGoogle Scholar
  6. 6.
    Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, Tindall D (2001) Advances in cellulose ester performance and application. Prog Polym Sci 26:1605–1688CrossRefGoogle Scholar
  7. 7.
    Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84(1):40–53CrossRefGoogle Scholar
  8. 8.
    Chang C, Lue A, Zhang L (2008) Effects of crosslinking methods on structure and properties of cellulose/PVA hydrogels. Macromol Chem Phys 209(12):1266–1273CrossRefGoogle Scholar
  9. 9.
    Hennink WE, Nostrum CF (2002) Novel cross linking methods to design hydrogels. Adv Drug Deliv Rev 54:13–36.  https://doi.org/10.1016/S0169-409X(01)00240-XCrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Rosiak JM, Yoshii F (1999) Hydrogels and their medical applications. Nucl Inst Methods Phys Res Sect B 151:56–64CrossRefGoogle Scholar
  11. 11.
    Okay O (2015) Self-healing hydrogels formed via hydrophobic interactions. In: Seiffert S (ed) Supramolecular polymer networks and gels. Advances in polymer science, vol 268. Springer, Berlin, pp 101–142Google Scholar
  12. 12.
    Chai Q, Jiao Y, Yu X (2017) Hydrogels for biomedical applications: their characteristics and the mechanisms behind them. Gels 3(1):6.  https://doi.org/10.3390/gels3010006CrossRefGoogle Scholar
  13. 13.
    Saini K (2017) Preparation method, properties and crosslinking of hydrogel: a review. Pharmatutor 5(1):27–36Google Scholar
  14. 14.
    Martínez-Ruvalcaba A, Chornet E, Rodrigue D (2007) Viscoelastic properties of dispersed chitosan/xanthan hydrogels. Carbohydr Polym 67(4):586–595CrossRefGoogle Scholar
  15. 15.
    El-Sherbiny IM, Yacoub MH (2013) Hydrogel scaffolds for tissue engineering: progress and challenges. Glob Cardiol Sci Pract 2013(3):316–342.  https://doi.org/10.5339/gcsp.2013.38CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Song H, Niu Y, Wang Z, Zhang J (2011) Liquid crystalline phase and gel− sol transitions for concentrated microcrystalline cellulose (MCC)/1-ethyl-3-methylimidazolium acetate (EMIMAc) solutions. Biomacromolecules 12(4):1087–1109PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Wen Qi, Dong Yi (2016) Fundamentals of hydrogels. In: Demirci U, Khademhosseini A (eds) Gels handbook fundamentals, properties and application. World Scientific Publications, Singapore. ISBN 978-981-4656-13-9Google Scholar
  18. 18.
    Vasquez JM, Tumolva TP (2015) Synthesis and characterization of a self-assembling hydrogel from water-soluble cellulose derivatives and sodium hydroxide/thiourea solution. Am J Chem 5(2):60–65Google Scholar
  19. 19.
    Tibbitt MW, Kloxin AM, Sawicki LA, Anseth KS (2013) Mechanical properties and degradation of chain and step polymerized photodegradable hydrogels. Macromolecules 46:2785–2792PubMedCentralCrossRefGoogle Scholar
  20. 20.
    Lee S, Tong X, Yang F (2016) Effects of the poly (ethylene glycol) hydrogel crosslinking mechanism on protein release. Biomater Sci 4(3):405–411PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Ifkovits JL, Burdick JA (2007) Photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng 13(10):2369–2385PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Sannino A, Esposito A, Nicolais L, Del Nobile MA, Giovane A, Balestrieri C, Esposito R, Agresti M (2000) Cellulose-based hydrogels as body water retainers. J Mater Sci Mater Med 11(4):247–253PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Sannino A, Madaghiele M, Conversano F, Mele G, Maffezzoli A, Netti PA, Ambrosio L, Nicolais L (2004) Cellulose derivative-hyaluronic acid-based microporous hydrogels cross-linked through divinyl sulfone (DVS) to modulate equilibrium sorption capacity and network stability. Biomacromolecules 5(1):92–96PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Sannino A, Pappada S, Madaghiele M, Maffezzoli A, Ambrosio L, Nicolais L (2005) Crosslinking of cellulose derivatives and hyaluronic acid with water-soluble carbodiimide. Polym J 46(25):11206–11212CrossRefGoogle Scholar
  25. 25.
    Sannino A, Nicolais L (2005) Concurrent effect of microporosity and chemical structure on the equilibrium sorption properties of cellulose-based hydrogels. Polym J 46(13):4676–4685CrossRefGoogle Scholar
  26. 26.
    Suo A, Qian J, Yao Y, Zhang W (2005) Synthesis and properties of carboxymethyl cellulose-graft-poly(acrylic acid-co-acrylamide) as a novel cellulose-based superabsorbent. J Appl Polym Sci 103(3):1382–1388CrossRefGoogle Scholar
  27. 27.
    Qiu X, Hu S (2013) Smart materials based on cellulose: a review of the preparations, properties, and applications. Dent Mater 6(3):738–781Google Scholar
  28. 28.
    Liao Q, Shao Q, Qiu G, Lu X (2012) Methacrylic acid-triggered phase transition behavior of thermosensitive hydroxypropylcellulose. Carbohydr Polym 89:1301–1304PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Chen Y, Ding D, Mao Z, He Y, Hu Y, Wu W, Jiang X (2008) Synthesis of hydroxypropylcellulose-poly(acrylic acid) particles with semi-interpenetrating polymer network structure. Biomacromolecules 9:2609–2614PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Demirel GB, Caykara T, Demiray M, Guru M (2009) Effect of pore-forming agent type on swelling properties of macroporous poly(N-[3-(dimethylaminopropyl)]-methacrylamide-co-acrylamide) hydrogels. J Macromol Sci A Pure Appl Chem 46:58–64CrossRefGoogle Scholar
  31. 31.
    Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–121.  https://doi.org/10.1016/j.jare.2013.07.006CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Calo E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–326.  https://doi.org/10.1016/j.eurpolymj.2014.11.024CrossRefGoogle Scholar
  33. 33.
    Sato R, Noma R, Tokuyama H (2015) Preparation of macroporous poly (N-isopropylacrylamide) hydrogels using a suspension–gelation method. Eur Polym J 66:91–97.  https://doi.org/10.1016/j.eurpolymj.2015.01.051CrossRefGoogle Scholar
  34. 34.
    Kołodyńska D, Skiba A, Górecka B, Hubicki Z (2016) Hydrogels from fundaments to application, emerging concepts. In: Sutapa Biswas Majee (ed) Analysis and applications of hydrogels. IntechOpen, India. ISBN 978-953-51-2510-5, Print ISBN 978-953-51-2509-9Google Scholar
  35. 35.
    Nguyen KT, West JL (2002) Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23:4307–4314PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Ebara M, Kotsuchibashi Y, Narain R, Idota N, Kim YJ, Hoffman JM, Uto K, Aoyagi T (2014) Smart biomaterials. National Institute for Materials Science. Springer Japan, Tokyo. www.springer.com/gp/book/9784431543992. Accessed 15 Jan 2018
  37. 37.
    Decker C (1987) UV-curing chemistry: past, present and future. J Coatings Technol 59:97–106Google Scholar
  38. 38.
    Frediani M, Giachi G, Rosi L, Frediani P (2011) Ch. 9 Synthesis and processing of biodegradable and bio-based polymers by microwave irradiation. In: Chandra U (ed) Microwave heating. In Tech, United Kingdom. ISBN 978-953-307-573-0, p 382.  https://doi.org/10.5772/23692Google Scholar
  39. 39.
    Reeves R, Ribeiro A, Lombardo L, Boyer R, Leach JB (2010) Synthesis and characterization of carboxymethylcellulose-methacrylate hydrogel cell scaffolds. Polymer 2(3):252–264CrossRefGoogle Scholar
  40. 40.
    Mann BK, Gobin AS, Tsai AT, Schmedlen RH, West JL (2001) Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM eLetters analogs for tissue engineering. Biomaterials 22:3045–3051.  https://doi.org/10.1016/S0142-9612(01)00051-5CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Coates EE, Riggin CN, Fishe JP (2013) Photocrosslinked alginate with hyaluronic acid hydrogels as vehicles for mesenchymal stem cell encapsulation and chondrogenesis. J Biomed Mater Res A 101:1962–1970PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Mohd Amin MCI, Ahmad N, Halib N, Ahmad I (2012) Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydr Polym 88(2):465–473CrossRefGoogle Scholar
  43. 43.
    Alla SG, Sen M, El-Naggar AW (2012) Swelling and mechanical properties of superabsorbent hydrogels based on Tara gum/acrylic acid synthesized by gamma radiation. Carbohydr Polym 89(2):478–485CrossRefGoogle Scholar
  44. 44.
    Panda A, Manohar SB, Sabharwal S, Bhardwaj YK, Majali AB (2000) Synthesis and swelling characteristics of poly (N-isopropylacrylamide) temperature sensitive hydrogels crosslinked by electron beam irradiation. Radiat Phys Chem 58(1):101–110CrossRefGoogle Scholar
  45. 45.
    Said HM, Alla SG, El-Naggar AW (2004) Synthesis and characterization of novel gels based on carboxymethyl cellulose/acrylic acid prepared by electron beam irradiation. React Funct Polym 61(3):397–404CrossRefGoogle Scholar
  46. 46.
    Kudaibergenov S, Jaeger W, Laschewsky A (2006) Polymeric betaines: synthesis, characterization, and application. In: Supramolecular polymers polymeric betains oligomers. Advances in polymer science, vol 201. Springer, Berlin/HeidelbergGoogle Scholar
  47. 47.
    Fei B, Chen C, Chen S, Peng S, Zhuang Y, An Y, Dong L (2004) Crosslinking of poly [(3-hydroxybutyrate)-co-(3-hydroxyvalerate)] using dicumyl peroxide as initiator. Polym Int 53(7):937–943CrossRefGoogle Scholar
  48. 48.
    Darwis D, Mitomo H, Enjoji T, Yoshii F, Makuuchi K (1998) Heat resistance of radiation crosslinked poly (ε-caprolactone). J Appl Polym Sci 68:581–588CrossRefGoogle Scholar
  49. 49.
    Darwis D, Nishimura K, Mitomo H, Yoshii F (1999) Improvement of processability of poly (ε-caprolactone) by radiation techniques. J Appl Polym Sci 74(7):1815–1820CrossRefGoogle Scholar
  50. 50.
    Liu P, Zhai M, Li J, Peng J, Wu J (2002) Radiation preparation and swelling behavior of sodium carboxymethyl cellulose hydrogels. Radiat Phys Chem 63:525–528CrossRefGoogle Scholar
  51. 51.
    Wach RA, Mitomo H, Yoshii F, Kume T (2001) Hydrogel of biodegradable cellulose derivatives. II. Effect of some factors on radiation-induced crosslinking of CMC. J Appl Polym Sci 81:3030–3037CrossRefGoogle Scholar
  52. 52.
    Stille JK (1981) Step-growth polymerization. J Chem Educ 58(11):862–866CrossRefGoogle Scholar
  53. 53.
    Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Dent Mater 2(2):353–373Google Scholar
  54. 54.
    Kharkar PM, Kiick KL, Kloxin AM (2013) Designing degradable hydrogels for orthogonal control of cell microenvironments. Chem Soc Rev 42(17):7335–7372PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18(11):1345–1360CrossRefGoogle Scholar
  56. 56.
    Peppas NA, Khare AR (1993) Preparation, structure and diffusional behavior of hydrogels in controlled release. Adv Drug Deliv Rev 11(1–2):1–35CrossRefGoogle Scholar
  57. 57.
    Shiotani A, Mori T, Niidome T, Niidome Y, Katayama Y (2007) Stable incorporation of gold nanorods into N-isopropylacrylamide hydrogels and their rapid shrinkage induced by near-infrared laser irradiation. Langmuir 23(7):4012–4018PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53(3):321–339PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Mujumdar SK, Siegel RA (2008) Introduction of pH-sensitivity into mechanically strong nanoclay composite hydrogels based on N-isopropylacrylamide. J Polym Sci A Polym Chem 46:6630–6640.  https://doi.org/10.1002/pola.22973CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Zhang K, Luo Y, Li Z (2007) Synthesis and characterization of a pH-and ionic strength-responsive hydrogel. Soft Mater 5(4):183–195CrossRefGoogle Scholar
  61. 61.
    Adel AM, Abou-Youssef H, El-Gendy AA, Nada AM (2010) Carboxymethylated cellulose hydrogel; sorption behavior and characterization. Nat Sci 8(8):244–256Google Scholar
  62. 62.
    Alvarez-Lorenzo C, Blanco-Fernandez B, Puga AM, Concheiro A (2013) Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Adv Drug Deliv Rev 65(9):1148–1171PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    De SK, Aluru N, Johnson B, Crone W, Beebe DJ, Moore J (2002) Equilibrium swelling and kinetics of pH-responsive hydrogels: models, experiments, and simulations. J Microelectromech Syst 11:544–555CrossRefGoogle Scholar
  64. 64.
    Onofrei MD, Filimon A (2016) Cellulose-based hydrogels: designing concepts, properties, and perspectives for biomedical and environmental applications. In: Mendez-Vilas A, Solano-Martin A (eds) Polymer science: research advances, practical applications and educational aspects. Formatex Research Center Publication, Spain. pp 108–120. ISBN: 978-84-942134-8-9Google Scholar
  65. 65.
    Jarry C, Leroux JC, Haeck J, Chaput C (2002) Irradiating or autoclaving chitosan/polyol solutions: effect on thermogelling chitosan-β-glycerophosphate systems. Chem Pharm Bull 50(10):1335–1340PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Schuetz YB, Gurny R, Jordan O (2008) A novel thermoresponsive hydrogel based on chitosan. Eur J Pharm Biopharm 68(1):19–25PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Schild H (1992) Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17:163–249CrossRefGoogle Scholar
  68. 68.
    Gao X, Cao Y, Song X, Zhang Z, Xiao C, He C, Chen X (2013) pH-and thermo-responsive poly(N-isopropylacrylamide-co-acrylic acid derivative) copolymers and hydrogels with LCST dependent on pH and alkyl side groups. J Mater Chem B 1:5578–5587CrossRefGoogle Scholar
  69. 69.
    Meléndez-Ortiz HI, Varca GH, Lugão AB, Bucio E (2015) Smart polymers and coatings obtained by ionizing radiation: synthesis and biomedical applications. J Polym Chem 5(03):17Google Scholar
  70. 70.
    Tomatsu I, Peng K, Kros A (2011) Photoresponsive hydrogels for biomedical applications. Adv Drug Deliv Rev 63(14):1257–1266PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Bawa P, Pillay V, Choonara YE, Du Toit LC (2009) Stimuli-responsive polymers and their applications in drug delivery. Biomed Mater 4(2):022001PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Sanna R, Fortunati E, Alzari V, Nuvoli D, Terenzi A, Casula MF, Kenny JM, Mariani A (2013) Poly (N-vinylcaprolactam) nanocomposites containing nanocrystalline cellulose: a green approach to thermoresponsive hydrogels. Cellulose 20(5):2393–2402CrossRefGoogle Scholar
  73. 73.
    Gong JP, Nitta T, Osada Y (1994) Electrokinetic modeling of the contractile phenomena of polyelectrolyte gels. One-dimensional capillary model. J Phys Chem 98(38):9583–9587CrossRefGoogle Scholar
  74. 74.
    Budtova T, Suleimenov I, Frenkel S (1995) Electrokinetics of the contraction of a polyelectrolyte hydrogel under the influence of constant electric current. Polym Gels Networks 3(3):387–393CrossRefGoogle Scholar
  75. 75.
    Shang J, Shao Z, Chen X (2008) Electrical behavior of a natural polyelectrolyte hydrogel: chitosan/carboxymethylcellulose hydrogel. Biomaterials 9(4):1208–1213Google Scholar
  76. 76.
    Kim J, Wang N, Chen Y, Lee SK, Yun GY (2007) Electroactive-paper actuator made with cellulose/NaOH/urea and sodium alginate. Cellulose 14(3):217–223CrossRefGoogle Scholar
  77. 77.
    Wallace M, Cardoso AZ, Frith WJ, Iggo JA, Adams DJ (2014) Magnetically aligned supramolecular hydrogels. Chem Eur J 20(50):16484–16487PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Zhao W, Odelius K, Edlund U, Zhao C, Albertsson AC (2015) In situ synthesis of magnetic field-responsive hemicellulose hydrogels for drug delivery. Biomacromolecules 16(8):2522–2528PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Chatterjee J, Haik Y, Chen CJ (2001) Modification and characterization of polystyrene-based magnetic microspheres and comparison with albumin-based magnetic microspheres. J Magn Magn Mater 225(1):21–29CrossRefGoogle Scholar
  80. 80.
    Popovic Z, Sjöstrand J (2001) Resolution, separation of retinal ganglion cells, and cortical magnification in humans. Vis Res 41(10):1313–1319PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Liberti PA, Rao CG, Terstappen LW (2001) Optimization of ferrofluids and protocols for the enrichment of breast tumor cells in blood. J Magn Magn Mater 225(1):301–307CrossRefGoogle Scholar
  82. 82.
    Shinkai M, Yanase M, Suzuki M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T (1999) Intracellular hyperthermia for cancer using magnetite cationic liposomes. J Magn Magn Mater 194(1):176–184CrossRefGoogle Scholar
  83. 83.
    Eichler S, Ramon O, Cohen Y, Mizrahi S (2002) Swelling and contraction drove mass transfer processes during osmotic dehydration of uncharged hydrogels. Int J Food Sci Technol 37(3):245–253CrossRefGoogle Scholar
  84. 84.
    Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Gupta S, Sinha S, Sinha A (2010) Composition dependent mechanical response of transparent poly (vinyl alcohol) hydrogels. Colloids Surf B Biointerfaces 78(1):115–119PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Feng D, Bai B, Wang H, Suo Y (2016) Enhanced mechanical stability and sensitive swelling performance of chitosan/yeast hybrid hydrogel beads. New J Chem 40(4):3350–3362CrossRefGoogle Scholar
  87. 87.
    Sannino A, Mensitieri G, Nicolais L (2004) Water and synthetic urine sorption capacity of cellulose based hydrogels under a compressive stress field. J Appl Polym Sci 91:3791–3796CrossRefGoogle Scholar
  88. 88.
    Siepmann J, Peppas NA (2012) Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev 64:163–174CrossRefGoogle Scholar
  89. 89.
    Vashuk EV, Vorobieva EV, Basalyga II, Krutko NP (2001) Water-absorbing properties of hydrogels based on polymeric complexes. Mater Res Innov 4(5–6):350–352CrossRefGoogle Scholar
  90. 90.
    Xiao M, Hu J, Zhang L (2014) Synthesis and swelling behavior of biodegradable cellulose-based hydrogels. Adv Mater Res 1033–1034:352–356CrossRefGoogle Scholar
  91. 91.
    Gulrez SK, Al-Assaf S, Phillips GO (2011) Hydrogels: methods of preparation, characterisation and applications. In: Carpi A (ed) Progress in molecular and environmental bioengineering – from analysis and modeling to technology applications. ISBN 978-953-307-268-5.  https://doi.org/10.5772/24553
  92. 92.
    Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E (2010) Theoretical description of hydrogel swelling: a review. Iran Polym J 19(5):375–388Google Scholar
  93. 93.
    Thakur A, Wanchoo RK, Singh P (2011) Structural parameters and swelling behavior of pH sensitive poly (acrylamide-co-acrylic acid) hydrogels. Chem Biochem Eng Q 25(2):181–194Google Scholar
  94. 94.
    Demitri C, Scalera F, Madaghiele M, Sannino A, Maffezzoli A (2013) Potential of cellulose-based superabsorbent hydrogels as water reservoir in agriculture. Int J Polym Sci.  https://doi.org/10.1155/2013/43
  95. 95.
    Gonçalves M, Figueira P, Maciel D, Rodrigues J, Qu X, Liu C, Tomás H, Li Y (2014) pH-sensitive Laponite®/doxorubicin/alginate nanohybrids with improved anticancer efficacy. Acta Biomater 10(1):300–307PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Nada WM, Blumenstein O (2015) Characterization and impact of newly synthesized superabsorbent hydrogel nanocomposite on water retention characteristics of sandy soil and grass seedling growth. Int J Soil Sci 10(4):153–165CrossRefGoogle Scholar
  97. 97.
    Haque MO, Mondal MI (2016) Synthesis and characterization of cellulose-based eco-friendly hydrogels. J Sci Eng 44:45–53Google Scholar
  98. 98.
    Zhou Y, Fu S, Zhang L, Zhan H (2013) Superabsorbent nanocomposite hydrogels made of carboxylated cellulose nanofibrils and CMC-gp (AA-co-AM). Carbohydr Polym 97(2):429–435PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Purbrick MD (1996). Photoinitiation photopolymerization and photocuring. Fouassier JP and Hanser Publications, Munich Vienna New York. ISBN 3-446-17069-3.Google Scholar
  100. 100.
    Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54:3–12.  https://doi.org/10.1016/S0169-409X(01)00239-3.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Fei B, Wach RA, Mitomo H, Yoshii F, Kume T (2000) Hydrogel of biodegradable cellulose derivatives. I. Radiation-induced crosslinking of CMC. J Appl Polym Sci 78(2):278–283CrossRefGoogle Scholar
  102. 102.
    Senna AM, Novack KM, Botaro VR (2014) Synthesis and characterization of hydrogels from cellulose acetate by esterification crosslinking with EDTA dianhydride. Carbohydr Polym 114:260–268PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Leja K, Lewandowicz G (2010) Polymer biodegradation and biodegradable polymers-a review. Pol J Environ Stud 19(2):255–266Google Scholar
  104. 104.
    Bhattacharyya S, Guillot S, Dabboue H, Tranchant JF, Salvetat JP (2008) Carbon nanotubes as structural nanofibers for hyaluronic acid hydrogel scaffolds. Biomacromolecules 9(2):505–509PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Chan AW, Whitney RA, Neufeld RJ (2009) Semisynthesis of a controlled stimuli-responsive alginate hydrogel. Biomacromolecules 10(3):609–616PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Pal K, Banthia AK, Majumdar DK (2008) Effect of heat treatment of starch on the properties of the starch hydrogels. Mater Lett 62(2):215–218CrossRefGoogle Scholar
  107. 107.
    Roy A, Bajpai J, Bajpai AK (2009) Dynamics of controlled release of chlorpyrifos from carbohydrate polymer swelling and eroding biopolymeric microspheres of calcium alginate and starch. Carbohydr Polym 76(2):222–231CrossRefGoogle Scholar
  108. 108.
    Gattás-Asfura KM, Weisman E, Andreopoulos FM, Micic M, Muller B, Sirpal S, Pham SM, Leblanc RM (2005) Nitrocinnamate-functionalized gelatin: synthesis and “smart” hydrogel formation via photo-cross-linking. Biomacromolecules 6(3):1503–1509PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46(1):92–100CrossRefGoogle Scholar
  110. 110.
    Moura MJ, Figueiredo MM, Gil MH (2007) Rheological study of genipin cross-linked chitosan hydrogels. Biomacromolecules 8(12):3823–3829PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Qu X, Wirsen A, Albertsson AC (2000) Novel pH-sensitive chitosan hydrogels: swelling behavior and states of water. Polymer 41(12):4589–4598CrossRefGoogle Scholar
  112. 112.
    Liu Y, Vrana NE, Cahill PA, McGuinness GB (2009) Physically crosslinked composite hydrogels of PVA with natural macromolecules: structure, mechanical properties, and endothelial cell compatibility. J Biomed Mater Res B Appl Biomater 90(2):492–502PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Zohuriaan-Mehr MJ, Kabiri K (2008) Superabsorbent polymer materials: a review. Iran Polym J 17(6):451Google Scholar
  114. 114.
    Anderson JM, Langone JJ (1999) Issues and perspectives on the biocompatibility and immunotoxicity evaluation of implanted controlled release systems. J Control Release 57(2):107–113PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Borzacchiello A, Russo L, Malle BM, Schwach-Abdellaoui K, Ambrosio L (2015) Hyaluronic acid based hydrogels for regenerative medicine applications. Biomed Res Int 2015:Article ID 871218, 12 pages.  https://doi.org/10.1155/2015/871218CrossRefGoogle Scholar
  116. 116.
    Duan J, Zhang X, Jiang J, Han C, Yang J, Liu L, Lan H, Huang D (2014) The synthesis of a novel cellulose physical gel. J Nanomater 2014:Article ID 312696, 7 pages.  https://doi.org/10.1155/2014/312696CrossRefGoogle Scholar
  117. 117.
    Mao Y, Zhou J, Cai J, Zhang L (2006) Effects of coagulants on porous structure of membranes prepared from cellulose in NaOH/urea aqueous solution. J Membr Sci 279(1):246–255CrossRefGoogle Scholar
  118. 118.
    Webber RE, Shull KR (2004) Strain dependence of the viscoelastic properties of alginate hydrogels. Macromolecules 37(16):6153–6160CrossRefGoogle Scholar
  119. 119.
    Ahearne M, Yang Y, El Haj AJ, Then KY, Liu KK (2005) Characterizing the viscoelastic properties of thin hydrogel-based constructs for tissue engineering applications. J R Soc Interface 2(5):455–463PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Maitra J, Shukla V (2014) Cross-linking in hydrogels – a review. Am J Polym Sci 4(2):25–31Google Scholar
  121. 121.
    Danielssona C, Ruaulta S, Simonetb M, Neuenschwanderb P, Freya P (2006) Polyesterurethane foam scaffold for smooth muscle cell tissue engineering. Bio-Mater 27:1410–1415Google Scholar
  122. 122.
    Bourges X, Weiss P, Coudreuse A, Daculsi G, Legeay G (2002) General properties of silated hydroxyethylcellulose for potential biomedical applications. Biopolymers 63(4):232–238PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Giirdag G, Sarmad S (2013) Cellulose graft copolymers: synthesis, properties, and applications. In: Kalia S, Sabaa MW (eds) Polysaccharide based graft copolymers. Springer, Berlin/Heidelberg, pp 15–57CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Nalini Ranganathan
    • 1
  • R Joseph Bensingh
    • 1
  • M Abdul Kader
    • 1
  • Sanjay K. Nayak
    • 1
  1. 1.Advanced Research School for Technology and Product Simulation (ARSTPS)Central Institute of Plastics Engineering & Technology (CIPET)ChennaiIndia

Personalised recommendations