Advertisement

Modification of Cellulose

  • Sajjad Keshipour
  • Ali Maleki
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)

Abstract

With increasing concerns about synthetic polymers for the environment, the application of natural polymers, especially cellulose due to abundance, biodegradability, nontoxicity, and high functionality, is increasing. For inducing the desired properties of cellulose, it’s necessary to manipulate the cellulose structure. Therefore, the modification of cellulose becomes important. The modification of cellulose is introducing organic and inorganic compounds on the polymer. A significant variation in the cellulose properties can be observed with the binding of polymers. Also, mineralization of cellulose has attracted a great deal of attention in recent years. This chapter investigated all of these modifications on cellulose.

Keywords

Cellulose Modification Cellulose composites Cellulose nanocomposites Mineralization of cellulose 

Notes

Acknowledgments

The authors acknowledge Urmia University and Iran University of Science and Technology for providing research facilities and platform.

References

  1. 1.
    Schützenberger P (1865) Action of anhydrous acetic acid on cellulose, starch, sugars, mannite and its congeners, glycosides and certain vegetable dyestuffs. Compt Rend Sci 61:484–487Google Scholar
  2. 2.
    Schützenberger P (1869) On a new class of platinum compounds. Ber Dtsch Chem Ges 2:163Google Scholar
  3. 3.
    Franchimont A (1879) Comprehensive cellulose chemistry, functionalization of cellulose. Compt Rend 89:111Google Scholar
  4. 4.
    Schlufter K, Schmauder HP, Dorn S, Heinze T (2006) Efficient homogeneous chemical modification of bacterial cellulose in the ionic liquid 1-N-butyl-3-methylimidazolium chloride. Macromol Rapid Commun 27(19):1670–1676CrossRefGoogle Scholar
  5. 5.
    Shimizu Y, Hayashi J (1988) A new method for cellulose acetylation with acetic acid. Sen’i Gakkaishi 44(9):451–456CrossRefGoogle Scholar
  6. 6.
    Johnson DC, Nicholson MD (1976) Dimethyl sulfoxide/paraformaldehyde: a nondegrading solvent for cellulose. Appl Polym Symp 28:931Google Scholar
  7. 7.
    Philipp B, Fanter C, Wagenknecht W, Hartmann M, Klemm D, Geschwend G, Schumann P (1983) Comprehensive cellulose chemistry. Cellul Chem Technol 77:341–353Google Scholar
  8. 8.
    Miyamoto T, Sato Y, Shibata T, Tanahashi M, Inagaki HJ (1985) 13C-NMR spectral studies on the distribution of substituents in water-soluble cellulose acetate. J Polym Sci Polym Chem Ed 23(5):1373–1381CrossRefGoogle Scholar
  9. 9.
    Seymor RB, Johnson EL (1978) Acetylation of DMSO: PF solutions of cellulose. J Polym Sci Polym Chem Ed 16:1–11CrossRefGoogle Scholar
  10. 10.
    Clermont LP, Manery N (1974) Modifiziertes celluloseacetat hergestellt durch reaktion von essigsäureanhydrid mit cellulose gelöst in einer chloral-dimethylformamid-mischung. J Appl Polym Sci 78:2773–2784CrossRefGoogle Scholar
  11. 11.
    Heinze Th, Rahn K, Jaspers M, Berghmans H (1996) Thermal studies on homogeneously synthesized cellulose p-toluenesulfonates. J Appl Polym Sci 60(11):1891–1900Google Scholar
  12. 12.
    Stein A, Klemm D (1988) Preparation and characterization of monolayer and multilayer Langmuir-Blodgett films of a series of 6-O-alkylcelluloses. Makromol Chem Rapid Commun 9(8):569–573CrossRefGoogle Scholar
  13. 13.
    Philipp B, Wagenknecht W (1983) Cellulose sulphate half-ester. Synthesis, structure and properties. Cellul Chem Technol 77:443–459Google Scholar
  14. 14.
    Cunha AG, Zhou Q, Larsson PT, Berglund LA (2014) Topochemical acetylation of cellulose nanopaper structure for biocomposites: mechanisms for reduced water vapor sorption. Cellulose 21(4):2773–2787CrossRefGoogle Scholar
  15. 15.
    Takahashi SL, Fujimoto T, Barua BM, Miyamoto T, Inagaki H (1986) Synthesis and characterization of cellulose derivatives prepared in NaOH/Urea aqueous solutions. J Polym Sci A Polym Chem 24(11):2981–2993CrossRefGoogle Scholar
  16. 16.
    Schnabelrauch M, Vogt S, Klemm D, Nehls L, Philipp B (1992) Readily hydrolyzable cellulose esters as intermediates for the regioselective derivatization of cellulose, 1. Synthesis and characterization of soluble, low-substituted cellulose formates. Angew Macromol Chem 198(1):155–164CrossRefGoogle Scholar
  17. 17.
    Vigo TL, Daighly BJ, Welch CM (1972) Action of cellulose with chlorodimethylformiminium chloride and subsequent reaction with halide ions. J Polym Sci B Polym Phys 10:397–406CrossRefGoogle Scholar
  18. 18.
    Farvardin GR, Howard P (1985) In: Kennedy JF (ed) Cellulose and its derivatives. Ellis Horwood, Chichester, pp 227–236Google Scholar
  19. 19.
    Samaranayake G, Glasser WG (1993) Cellulose derivatives with low DS: II. Analysis of alkanoates. Carbohydr Polym 22(2):79–86CrossRefGoogle Scholar
  20. 20.
    Guo J-X, Gray DG (1994) Preparation, characterization, and mesophase formation of esters of ethylcellulose and methylcellulose. J Polym Sci A Polym Chem 32(5):889–896CrossRefGoogle Scholar
  21. 21.
    Battista OA, Armstrong AT, Radchenko SS (1978) Novel derivatives of cellulose microcrystals. Polym Prepr Am Chem Soc Div Polym Chem 19:567–571Google Scholar
  22. 22.
    Shimizu Y, Nakayama A, Hayashi J (1993) In: Kennedy JF, Phillips GO, Williams DA (eds) Cellulosics chemical biochemical material aspects. Ellis Horwood, Chichester, pp 369–374Google Scholar
  23. 23.
    Shimizu Y, Nakayama A, Hayashi J (1993) Preparation of cellulose esters with aromatic carboxylic acids. Sen’i Gakkaishi 49(7):352–356CrossRefGoogle Scholar
  24. 24.
    Kwatra HS, Caruthers JM, Tao BY (1992) Surface chemical modification of natural cellulose fibers. Ind Eng Chem Res 31:2647–2651CrossRefGoogle Scholar
  25. 25.
    Freire CSR, Silvestre AJD, Pascoal Neto C, Belgacem MN, Gandini A (2006) Controlled heterogeneous modification of cellulose fibers with fatty acids: effect of reaction conditions on the extent of esterification and fiber properties. J Appl Polym Sci 100(2):1093–1102CrossRefGoogle Scholar
  26. 26.
    Tomé LC, Freire MG, Rebelo LPN, Silvestre AJD, Neto CP, Marrucho IM, Freire CSR (2011) Surface hydrophobization of bacterial and vegetable cellulose fibers using ionic liquids as solvent media and catalysts. Green Chem 13(9):2464–2470CrossRefGoogle Scholar
  27. 27.
    Fumagalli M, Sanchez F, Boisseau SM, Heux L (2013) Gas-phase esterification of cellulose nanocrystal aerogels for colloidal dispersion in apolar solvents. Soft Matter 9(47):11309–11317CrossRefGoogle Scholar
  28. 28.
    Almasi H, Ghanbarzadeh B, Dehghannia J, Pirsa S, Zandi M (2015) Heterogeneous modification of softwoods cellulose nanofibers with oleic acid: effect of reaction time and oleic acid concentration. Fibers Polym 16(8):1715–1722CrossRefGoogle Scholar
  29. 29.
    Braun D, Bahlig KH (1994) Herstellung und eigenschaften von cellulosebenzoat. Angew Makromol Chem 220(1):199–207CrossRefGoogle Scholar
  30. 30.
    Mannschreck A, Wernicke R (1990) Mikrokristalline Tribenzoylcellulose, ein vielseitiges Sorbens für die Enantiomerentrennung. Labor Praxis 14:730–738Google Scholar
  31. 31.
    Isogai A, Ishizu A, Nakano J (1988) Conversion of tri-O-benzylcellulose to benzoylcellulose by ozonization. Sen’i Gakkaishi 44(6):312–315CrossRefGoogle Scholar
  32. 32.
    Ishizu A, Isogai A, Tomikawa M, Nakamo J (1991) Preparation of cellulose cinnamate and distribution of cinnamoyl groups. Mokuzai Gakkaishi 37:829–833Google Scholar
  33. 33.
    Jasmani L, Eyley S, Schutz C, Gorp HV, Feyter SD, Thielemans W (2016) One-pot functionalization of cellulose nanocrystals with various cationic groups. Cellulose 23(6):3569–3576CrossRefGoogle Scholar
  34. 34.
    Levesque G, Chiron G, Roux O (1987) Cellulose and chitosan hydrogen phthalates. Makromol Chem 188(7):1659–1664CrossRefGoogle Scholar
  35. 35.
    Kalaskar DM, Gough JE, Ulijn RV, Sampson WW, Scurr DJ, Rutten FJ, Alexander MR, Merry CLR, Eichhorn SJ (2008) Controlling cell morphology on amino acid-modified cellulose. Soft Matter 4(5):1059–1065CrossRefGoogle Scholar
  36. 36.
    Cateto CA, Ragauskas A (2011) Amino acid modified cellulose whiskers. RSC Adv 1(9):1695–1697CrossRefGoogle Scholar
  37. 37.
    Honeyman J (1947) Reactions of cellulose. Part I. J Chem Soc 168Google Scholar
  38. 38.
    Rahn K, Diamatoglou M, Klemm D, Berghmans H, Heinze TH (1996) Homogeneous synthesis of cellulose p-toluenesulfonates in N,N-dimethylacetamide/LiCl solvent system. Angew Makromol Chem 238(1):143–163CrossRefGoogle Scholar
  39. 39.
    Burchard W, Husemann E (1961) Eine vergleichende strukturanalyse von cellulose-und amylase-tricarbanilaten in lösung. Makromol Chem 44(1):358–387CrossRefGoogle Scholar
  40. 40.
    Terbojevich M, Cosani A, Camilot M, Focher B (1995) Solution studies of cellulose tricarbanilates obtained in homogeneous phase. J Appl Polym Sci 55(12):1663–1671CrossRefGoogle Scholar
  41. 41.
    Kaida Y, Okamoto Y (1993) Optical resolution on regioselectively carbamoylated cellulose and amylose with 3,5-dimethylphenyl and 3,5-dichlorophenyl isocyanates. Bull Chem Soc Jpn 66(8):2225–2232CrossRefGoogle Scholar
  42. 42.
    Li WY, Jin AX, Liu CF, Sun RC, Zhang AP, Kennedy JF (2009) Homogeneous modification of cellulose with succinic anhydride in ionic liquid using 4-dimethylaminopyridine as a catalyst. Carbohydr Polym 78(3):389–395CrossRefGoogle Scholar
  43. 43.
    Wu CH, Kuo CY, Hong PKA, Chen MJ (2015) Removal of copper by surface-modified celluloses: kinetics, equilibrium, and thermodynamics. Desalin Water Treat 55(5):1253–1263Google Scholar
  44. 44.
    Schweiger RG (1972) Polysaccharide sulfates. I. Cellulose sulfate with a high degree of substitution. Carbohydr Res 27(2):219–228CrossRefGoogle Scholar
  45. 45.
    Schönbein CF (1847) Notizübereine Veränderung der Pflanzenfaser und einiger andern organischen Substanzen (in German). Ber Natuforsch Ges Basel 7:27Google Scholar
  46. 46.
    Baiser K, Hoppe L, Eichler T, Wandel M, Astheimer HJ (1986) In: Gerhartz W, Yamamoto YS, Campbell FT, Pfefferkorn R, Rounsaville JF (eds) Ullmann’s encyclopedia of industrial chemistry, vol A5. VCH, Weinheim, pp 419–459Google Scholar
  47. 47.
    Miles FD (1955) Cellulose nitrate, the physical chemistry of nitrocellulose, its formation and use. Oliver and Boyd, LondonGoogle Scholar
  48. 48.
    Schweiger RG (1974) Anhydrous solvent systems for cellulose processing. TAPPI J 57:86–90Google Scholar
  49. 49.
    Wagenknecht W, Philipp B, Schleicher H, Beierlein L (1976) Untersuchungen zur Veresterung und Auoflosung der cellulose durch verschiedene Nitrosylverbindungen. Faserforsch Textiltech 27:111–117Google Scholar
  50. 50.
    Nuessle C, Ford PM, Hall WP, Lippert AL (1956) Some aspects of the cellulose-phosphate-urea reaction. Text Res J 26(1):32–39CrossRefGoogle Scholar
  51. 51.
    Touey GP, Kingsport T (1956) Preparation of cellulose phosphates. Patent US 2759924Google Scholar
  52. 52.
    Nehls L, Loth F (1991) 13C-NMR-spektroskopische Untersuchungen zur Phosphatierung von Celluloseprodukten im System H3PO4/Harnstoff. Acta Polym 42(5):233–235CrossRefGoogle Scholar
  53. 53.
    Granja PL, Pouysegu L, Deffieux D, Daude G, Dejeso B, Labrugere C, Baquey C, Barbosa MA (2001) Cellulose phosphates as biomaterials. II. Surface chemical modification of regenerated cellulose hydrogels. J Appl Polym Sci 82(13):3354–3365CrossRefGoogle Scholar
  54. 54.
    Vigo TL, Welch CM (1973) Recent advances in reaction of cotton. Textilveredelung 8(3):93–97Google Scholar
  55. 55.
    Yuldashev A, Muratova UM, Askarov MA (1965) Phosphorylation of cotton cellulose by H3PO4 esters via chlorocellulose. Vysokomol Soedin 7(11):2109–2113Google Scholar
  56. 56.
    Sano T, Shimomura T (1976) Method for manufacturing phosphorylated cellulose ester membranes for use in the separation or concentration of substances. US Patent US4083904 AGoogle Scholar
  57. 57.
    Illy N, Fache M, Ménard R, Negrell C, Caillol S, David G (2015) Phosphorylation of bio-based compounds: the state of the art. Polym Chem 6(35):6257–6291CrossRefGoogle Scholar
  58. 58.
    Zheng Y, Song J, Cheng B, Fang X, Yuan Y (2016) Syntheses of flame-retardant cellulose esters and their fibers. Cellulose 17(1):1–8Google Scholar
  59. 59.
    Shutt TC (2000) Method for producing cellulose insulation materials using liquid borate fire retardant compositions. US Patent US6025027 AGoogle Scholar
  60. 60.
    Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry. Volume II. Functionalization of cellulose. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  61. 61.
    Titkombe LA, Bremner JB, Burgar MI, Ridd MJ, French J, Maddern KN (1989) Evaluation of chemically modified cellulose from cotton linters. Appita 42(4):282–286Google Scholar
  62. 62.
    Bohem RL (1958) Chlorination of cellulose with thionyl chloride in a pyridine medium. J Org Chem 23(11):1716–1720CrossRefGoogle Scholar
  63. 63.
    Polyakov AI, Rogovin ZA (1963) Synthesis of new cellulose derivatives–XXIII. Synthesis of chlorocellulose and its conversion products. Preparation of amino-and nitrilocellulose. Polym Sci USSR 4(4):610–618CrossRefGoogle Scholar
  64. 64.
    Fumasoni S, Schippa G (1963) Chlorination of cellulose with thionyl chloride. Ann Chim Rome 53:894Google Scholar
  65. 65.
    Wagenknecht W, Philipp B, Schleicher H (1979) Zur veresterung und auflösung der cellulose mit säureanhydriden und säurechloriden des schwefels und phosphors. Acta Polym 30(2):108–112CrossRefGoogle Scholar
  66. 66.
    Furuhata K, Chang H-S, Aoki N, Sakamoto M (1992) Chlorination of cellulose with N-chlorosuccinimide-triphenylphosphine under homogeneous conditions in lithium chloride-N,N-dimethylacetamide. Carbohydr Res 230(1):151–164CrossRefPubMedGoogle Scholar
  67. 67.
    Krylova RG (1987) Halogenodeoxy-derivatives of cellulose. Russ Chem Rev 56(1):97–105CrossRefGoogle Scholar
  68. 68.
    Tseng H, Furuhata K, Sakamoto M (1995) Bromination of regenerated chitin with N-bromosuccinimide and triphenylphosphine under homogeneous conditions in lithium bromide-N, N-dimethylacetamide. Carbohydr Res 270(2):149–161CrossRefGoogle Scholar
  69. 69.
    Engelskirchen K (1987) Methoden der Organischen Chemie, vol E20. Georg Thieme, Houben-Weyl, Stuttgart, p 2126Google Scholar
  70. 70.
    Needs PW, Selvendran RR (1993) Avoiding oxidative degradation during sodium hydroxide/methyl iodide-mediated carbohydrate methylation in dimethyl sulfoxide. Carbohydr Res 245(1):1–10CrossRefGoogle Scholar
  71. 71.
    Voiges K, Adden R, Rinken M, Mischnick P (2012) Critical re-investigation of the alditol acetate method for analysis of substituent distribution in methyl cellulose. Cellulose 19(3):993–1004CrossRefGoogle Scholar
  72. 72.
    Klemm D, Stein A (1995) Silylated cellulose materials in design of supramolecular structures of ultrathin cellulose films. J Macromol Sci Pure Appl Chem A32(4):899–904CrossRefGoogle Scholar
  73. 73.
    Mischnick P (1991) Determination of the substitution pattern of cellulose acetates. Carbohydr Chem 10(4):711–722CrossRefGoogle Scholar
  74. 74.
    Bock LH (1937) Water-soluble cellulose ethers. Ind Eng Chem 29(9):985–987CrossRefGoogle Scholar
  75. 75.
    Camacho Gomez JA, Erler UW, Klemm DO (1996) Comprehensive cellulose chemistry. Macromol Chem Phys 797:953–964CrossRefGoogle Scholar
  76. 76.
    Donges R (1990) Non-ionic cellulose ethers. Br Polym J 23(4):315–326Google Scholar
  77. 77.
    Timell T (1950) Studies on cellulose reactions. Esselte Akt, StockholmGoogle Scholar
  78. 78.
    Basque P, de Gunzbourg A, Rondeau P, Ritcey AM (1996) Monolayers of cellulose ethers at the air-water interface. Langmuir 12(23):5614–5619CrossRefGoogle Scholar
  79. 79.
    Blasutto M, Delben F, Milost R, Painter TJ (1995) Novel cellulosic ethers with low degrees of substitution preparation and analysis of long-chain alkyl ethers. Carbohydr Polym 27(1):53–62CrossRefGoogle Scholar
  80. 80.
    Keshipour S, Adak K (2017) Magnetic D-penicillamine-functionalized cellulose as a new heterogeneous support for cobalt(II) in green oxidation of ethylbenzene to acetophenone. Appl Organomet Chem 31(11):e337CrossRefGoogle Scholar
  81. 81.
    Keshipour S, Kalam Khalteh N (2016) Oxidation of ethylbenzene to styrene oxide in the presence of cellulose-supported Pd magnetic nanoparticles. Appl Organomet Chem 30(8):653–656CrossRefGoogle Scholar
  82. 82.
    Asandei N, Perju N, Nicolescu R, Ciovica S (1995) Some aspects concerning the synthesis and properties of hydroxypropyl cellulose. Cellul Chem Technol 29(3):261–271Google Scholar
  83. 83.
    Dautzenberg H, Fanter C, Fink HP, Philipp B (1980) Strukturelle anderungen in cellulose-pulver bei der vernetzung mit epichlorhydrin. Cellul Chem Technol 14:633–653Google Scholar
  84. 84.
    Diamantoglou M, Kuhne H (1988) Reaktionen von cellulose in homogener losung. Das Papier 42:690–696Google Scholar
  85. 85.
    Baker TJ, Schroeder LR, Johnson DC (1981) Formation of methylol cellulose and its dissolution in polar aprotic solvents. Cellul Chem Technol 15:311–320Google Scholar
  86. 86.
    Kinstle JF, Irving NM (1983) Homogenous chemical modification of cellulose: further studies on the DMSD-PF solvent system. Polym Sci Technol 27:221–227Google Scholar
  87. 87.
    Ikeda L, Kurata S, Suzuki K (1990) In: 33rd IUPAC international symposium on macromolecules, Montreal, AbstractsGoogle Scholar
  88. 88.
    Bikales NM (1974) Cyanoethylcellulose. Macromol Synth 5:35–38Google Scholar
  89. 89.
    Schleicher H, Lukanoff B, Philipp B (1974) Changes of cellulose accessibility to reactions in alkaline medium by activation with ammonia. Faserforsch Textiltech 47(1):251–260Google Scholar
  90. 90.
    Philipp B, Lukanoff B, Schleicher H, Wagenknecht WZ (1986) Homogene umsetzung an cellulose in organischen losemittelsystemen. Z Chem 26(2):50–58CrossRefGoogle Scholar
  91. 91.
    Englebretsen DR, Harding DRK (1992) Solid phase peptide synthesis on hydrophilic supports. Int J Pept Protein Res 40(6):487–496CrossRefPubMedGoogle Scholar
  92. 92.
    Kubota H, Shigehisa Y (1995) Introduction of amidoxime groups into cellulose and its ability to adsorb metal ions. J Appl Polym Sci 56(2):147–151CrossRefGoogle Scholar
  93. 93.
    Hartman RJ, Fujiwara EJ (1961) Catalytic aminoethylation of cellulose, cellulose derivatives or polyvinyl alcohol. US Patent US2972606 AGoogle Scholar
  94. 94.
    Courtenay JC, Johns MA, Galembeck F, Lanzoni CDEM, Costa CA, Scott JL, Sharma RI (2017) Surface modified cellulose scaffolds for tissue engineering. Cellulose 24(1):253–267CrossRefGoogle Scholar
  95. 95.
    Das G, Park BJ, Yoon HH (2016) A bionanocomposite based on 1,4-diazabicyclo-[2,2,2]-octane cellulose nanofiber cross-linked-quaternary polysulfone as an anion conducting membrane. J Mater Chem A 4(40):15554–15564CrossRefGoogle Scholar
  96. 96.
    Donia AM, Atia AA, Yousif SS (2013) Efficient adsorption of Cu(II) and Hg(II) from their aqueous solutions using amine functionalized cellulose. J Dispers Sci Technol 34(9):1230–1239CrossRefGoogle Scholar
  97. 97.
    Keshipour S, Shojaei S, Shaabani A (2013) Palladium nano-particles supported on ethylenediamine-functionalized cellulose as a novel and efficient catalyst for the Heck and Sonogashira couplings in water. Cellulose 20(2):973–980CrossRefGoogle Scholar
  98. 98.
    Keshipour S, Shaabani A (2014) Copper(I) and palladium nanoparticles supported on ethylenediamine-functionalized cellulose as an efficient catalyst for the 1,3-dipolar cycloaddition/direct arylation sequence. Appl Organomet Chem 28(2):116–119CrossRefGoogle Scholar
  99. 99.
    Shaabani A, Keshipour S, Hamidzad M, Seyyedhamzeh M (2014) Cobalt(II) supported on ethylenediamine-functionalized nanocellulose as an efficient catalyst for room temperature aerobic oxidation of alcohols. J Chem Sci 126(1):111–115CrossRefGoogle Scholar
  100. 100.
    Ahmar H, Keshipour S, Hosseini H, Fakhari AR, Shaabani A, Bagheri A (2013) Electrocatalytic oxidation of hydrazine at glassy carbon electrode modified with ethylenediamine cellulose immobilized palladium nanoparticles. J Electroanal Chem 690:96–103CrossRefGoogle Scholar
  101. 101.
    Yu A, Shang J, Cheng F, Paik BA, Kaplan JM, Andrade RB, Ratner DM (2012) Biofunctional paper via the covalent modification of cellulose. Langmuir 28(30):11265–11273CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Hu H, You J, Gan W, Zhou J, Zhang L (2015) Synthesis of allyl cellulose in NaOH/urea aqueous solutions and its thiol-ene click reactions. Polym Chem 6(18):3543–3548CrossRefGoogle Scholar
  103. 103.
    Tingaut P, Hauert R, Zimmermann T (2011) Highly efficient and straightforward functionalization of cellulose films with thiol-ene click chemistry. J Mater Chem 21(40):16066–16076CrossRefGoogle Scholar
  104. 104.
    Koenig HS, Roberts CW (1974) Vinylbenzyl ethers of cellulose preparation and polymerization. J Appl Polym Sci 18(3):651–666CrossRefGoogle Scholar
  105. 105.
    Frazier C, Glasser WG (1995) Intramolecular effects in cellulose mixed benzyl ethers blended with poly(ε-caprolactone). J Appl Polym Sci 58(6):1063–1075CrossRefGoogle Scholar
  106. 106.
    Harkness BR, Gray DG (1991) Chiroptical properties of 6-o-alpha-(1-naphthylmethyl)-2,3-di-o-pentylcellulose. Macromolecules 24(8):1800–1805CrossRefGoogle Scholar
  107. 107.
    Isogai A, Ishizu A, Nakano J (1985) Thermal and structural properties of tri-o-substituted cellulose ethers. J Appl Polym Sci 30(1):345–353CrossRefGoogle Scholar
  108. 108.
    Zhadanov YA, Aleksoeev YE, Alekseeva VG (1993) Chemical modification of cellulose in a superbase medium. Vysokomol Soedin A 3(9):1436–1441Google Scholar
  109. 109.
    Helfrich B, Koester H (1924) Ather des triphenyl-carbinols mit cellulose und starke. Ber Dtsch Chem Ges 57(3):587–591CrossRefGoogle Scholar
  110. 110.
    Hearon WM, Hiatt GD, Fordyce CR (1943) Cellulose trityl ether1a. Am Chem Soc 65(12):2449–2452CrossRefGoogle Scholar
  111. 111.
    Schuyten HA, Weaver JW, Reid JD, Jurgens JF (1948) Trimethylsilylcellulose. J Am Chem Soc 70(5):1919CrossRefPubMedGoogle Scholar
  112. 112.
    Petzold K, Koschella A, Klemm D, Heublein B (2003) Silylation of cellulose and starch – selectivity, structure analysis, and subsequent reactions. Cellulose 10(30):251–269CrossRefGoogle Scholar
  113. 113.
    Green JG (1983) Trimethylsilylation of cellulose. Patent US Patent 4390692AGoogle Scholar
  114. 114.
    Koga H, Kitaoka T, Isogai A (2011) In situ modification of cellulose paper with amino groups for catalytic applications. J Mater Chem 21(25):9356–9361CrossRefGoogle Scholar
  115. 115.
    Hassan ML, Moorefoeild CM, Elbatal HS, Newkome GR (2012) New metallo-supramolecular terpyridine-modified cellulose functional nanomaterials. J Macromol Sci A Pure Appl Chem 49(4):298–305CrossRefGoogle Scholar
  116. 116.
    Chen J, Lin N, Huang J, Dufresne A (2015) Highly alkynyl-functionalization of cellulose nanocrystals and advanced nanocomposites there of click chemistry. Polym Chem 6(24):4385–4395CrossRefGoogle Scholar
  117. 117.
    d’Halluin M, Rull-Barrull J, Le Grognec E, Jacquemin D, Felpin FX (2016) Writing and erasing hidden optical information on covalently modified cellulose paper. Chem Commun 52(49):7672–7675CrossRefGoogle Scholar
  118. 118.
    Eyleya S, Thielemans W (2011) Imidazolium grafted cellulose nanocrystals for ion exchange applications. Chem Commun 47(14):4177–4179CrossRefGoogle Scholar
  119. 119.
    Hettegger H, Beaumont M, Potthast A, Rosenau T (2016) Aqueous modification of nano- and microfibrillar cellulose with a click synthon. ChemSusChem 9(1):75–79CrossRefPubMedGoogle Scholar
  120. 120.
    Junka K, Filpponen I, Johansson LS, Kontturi E, Rojas OJ, Laine J (2014) A method for the heterogeneous modification of nanofibrillar cellulose in aqueous media. Carbohydr Polym 100:107–115CrossRefPubMedGoogle Scholar
  121. 121.
    Xie K, Liu H, Wang X (2009) Surface modification of cellulose with triazine derivative to improve printability with reactive dyes. Carbohydr Polym 78(3):538–542CrossRefGoogle Scholar
  122. 122.
    Shaabani A, Keshipour S, Hamidzad M, Shaabani S (2014) Cobalt(II) phthalocyanine anchored to cellulose as a recoverable and efficient catalyst for the aerobic oxidation of alkyl arenes and alcohols. J Mol Catal A Chem 395:494–499CrossRefGoogle Scholar
  123. 123.
    Keshipour S, Adak K (2016) Pd(0) supported on N-doped graphene quantum dot modified cellulose as an efficient catalyst for the green reduction of nitroaromatics. RSC Adv 6(92):89407–89412CrossRefGoogle Scholar
  124. 124.
    Hokkanen S, Repo E, Bhatnagar A, Tang WZ, Sillanpaa M (2014) Adsorption of hydrogen sulphide from aqueous solutions using modified nano/micro fibrillated cellulose. Environ Technol 35(18):2334–2346CrossRefPubMedGoogle Scholar
  125. 125.
    Brauncker WA, Matyjaszewski K (2007) Controlled/living polymerization: features, developments, and perspective. Prog Polym Sci 32(1):93–146CrossRefGoogle Scholar
  126. 126.
    Carlmark A, Malmström EE (2003) ATRP grafting from cellulose fibers to create block-copolymer grafts. Biomacromolecules 4(6):1740–1745CrossRefPubMedGoogle Scholar
  127. 127.
    Coskun M, Temuz MM (2005) Grafting studies onto cellulose by atom-transfer radical polymerization. Polym Int 54(2):342–347CrossRefGoogle Scholar
  128. 128.
    Ifuku S, Kadla JF (2008) Preparation of a thermosensitive highly regioselective cellulose/N-isopropylacrylamine copolymer through atom transfer radical polymerization. Biomacromolecules 9(11):3308–3313CrossRefPubMedGoogle Scholar
  129. 129.
    Hiltunen M, Siirila J, Aseyev V, Maunu SL (2012) Cellulose-g-PDMAam copolymers by controlled radical polymerization in homogeneous medium and their aqueous solution properties. Eur Polym J 48(1):136–145CrossRefGoogle Scholar
  130. 130.
    Hiltunen MS, Raula J, Maunu SL (2011) Tailoring of water-soluble cellulose-g-copolymers in homogeneous medium using single-electron-transfer living radical polymerization. Polym Int 60(9):1370–1379Google Scholar
  131. 131.
    Majoinen J, Walther A, McKee JR, Kontturi E, Aseyev V, Malho JM, Ruokolainen J, Ikkala O (2011) Polyelectrolyte brushes grafted from cellulose nanocrystals using Cu-mediated surface-initiated controlled radical polymerization. Biomacromolecules 12(8):2997–3006CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Sui XF, Yuan JY, Zhou M, Zhang J, Yang HJ, Yuan WZ (2008) Synthesis of cellulose-graft-poly(N,N-dimethylamino-2-ethyl methacrylate) copolymers via homogeneous ATRP and their aggregates in aqueous media. Biomacromolecules 9(10):2615–2620CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Meng T, Gao X, Zhang J, Yuan JY, Zhang YZ, He JS (2009) Graft copolymers prepared by atom transfer radical polymerization (ATRP) from cellulose. Polymer 50(2):447–454CrossRefGoogle Scholar
  134. 134.
    Yan LF, Ishihara K (2008) Graft copolymerization of 2-methacryloyloxyethyl phosphorylcholine to cellulose in homogeneous media using atom transfer radical polymerization for providing new hemocompatible coating materials. J Polym Sci Polym Chem 46(10):3306–3313CrossRefGoogle Scholar
  135. 135.
    Lin CX, Zhan HY, Liu MH, Fu SY, Zhang JJ (2009) Preparation of cellulose graft poly (methyl methacrylate) copolymers by atom transfer radical polymerization in an ionic liquid. Carbohydr Polym 78(3):432–438CrossRefGoogle Scholar
  136. 136.
    Chang FX, Yamabuki K, Onimura K, Oishi T (2008) Modification of cellulose by using atom transfer radical polymerization and ring-opening polymerization. Polym J 40(12):1170–1179CrossRefGoogle Scholar
  137. 137.
    Zhong JF, Chai XS, Fu SY (2012) Homogeneous grafting poly(methyl methacrylate) on cellulose by atom transfer radical polymerization. Carbohydr Polym 87(2):1869–1873CrossRefGoogle Scholar
  138. 138.
    Cui GH, Li YH, Shi TT, Gao ZG, Qiu NN, Satoh T (2013) Synthesis and characterization of Eu(III) complexes of modified cellulose and poly(N-isopropylacrylamide). Carbohydr Polym 94(1):77–81CrossRefPubMedGoogle Scholar
  139. 139.
    Xiao MM, Li SZ, Chanklin W, Zheng AN, Xiao HN (2011) Surface-initiated atom transfer radical polymerization of butyl acrylate on cellulose microfibrils. Carbohydr Polym 83(2):512–519CrossRefGoogle Scholar
  140. 140.
    Pan K, Zhang X, Ren R, Cao B (2010) Double stimuli-responsive membranes grafted with block copolymer by ATRP method. J Membr Sci 356(1–2):133–137CrossRefGoogle Scholar
  141. 141.
    Singh N, Chen Z, Tomer N, Wickramasinghe SR, Soice N, Husson SM (2008) Modification of regenerated cellulose ultrafiltration membranes by surface-initiated atom transfer radical polymerization. J Membr Sci 311(1–2):225–234CrossRefGoogle Scholar
  142. 142.
    Liu PS, Chen Q, Liu X, Yuan B, Wu SS, Shen J, Lin SC (2009) Grafting of zwitterion from cellulose membranes via ATRP for improving blood compatibility. Biomacromolecules 10(10):2809–2816CrossRefPubMedGoogle Scholar
  143. 143.
    Wei YT, Zheng YM, Chen JP (2011) Functionalization of regenerated cellulose membrane via surface initiated atom transfer radical polymerization for boron removal from aqueous solution. Langmuir 27(10):6018–6025CrossRefPubMedGoogle Scholar
  144. 144.
    Pan K, Zhang XW, Zhu J, Cao B (2011) Grafting of regenerated cellulose membrane by surface-initiated atom transfer radical polymerization and its pH-responsive behavior. Polym Adv Technol 22(12):1948–1952CrossRefGoogle Scholar
  145. 145.
    Wang M, Yuan J, Huang XB, Cai XM, Li L, Shen J (2013) Grafting of carboxybetaine brush onto cellulose membranes via surface-initiated ARGET-ATRP for improving blood compatibility. Colloids Surf B Biointerfaces 103:52–58CrossRefPubMedGoogle Scholar
  146. 146.
    Liu PS, Chen Q, Wu SS, Shen J, Lin SC (2010) Surface modification of cellulose membranes with zwitterionic polymers for resistance to protein adsorption and platelet adhesion. J Membr Sci 350(1):387–394CrossRefGoogle Scholar
  147. 147.
    Qian X, Fan H, Wang C, Wei Y (2013) Preparation of high-capacity, weak anion-exchange membranes by surface-initiated atom transfer radical polymerization of poly (glycidyl methacrylate) and subsequent derivatization with diethylamine. Appl Surf Sci 271:240–247CrossRefGoogle Scholar
  148. 148.
    Lindqvist J, Malmström E (2006) Surface modification of natural substrates by atom transferradical polymerization. J Appl Polym Sci 100(5):4155–4162CrossRefGoogle Scholar
  149. 149.
    Qiu XY, Ren XQ, Hu SW (2013) Fabrication of dual-responsive cellulose-based membrane via simplified surface-initiated ATRP. Carbohydr Polym 92(2):1887–1895CrossRefPubMedGoogle Scholar
  150. 150.
    Singh N, Wang J, Ulbricht M, Wickramasinghe SR, Husson SM (2008) Surface-initiated atom transfer radical polymerization: a new method for preparation of polymeric membrane adsorbers. J Membr Sci 309(1):64–72CrossRefGoogle Scholar
  151. 151.
    Jiang M, Wang J, Li L, Pan K, Cao B (2013) Poly (N, N-dimethylaminoethyl methacrylate) modification of a regenerated cellulose membrane using ATRP method for copper (II) ion removal. RSC Adv 3(43):20625–20632CrossRefGoogle Scholar
  152. 152.
    Bhut BV, Conrad KA, Husson SM (2012) Preparation of high-performance membrane adsorbers by surface-initiated AGET ATRP in the presence of dissolved oxygen and low catalyst concentration. J Membr Sci 390:43–47CrossRefGoogle Scholar
  153. 153.
    Wei Y, Ma J, Wang C (2013) Preparation of high-capacity strong cation exchange membrane for protein adsorption via surface-initiated atom transfer radical polymerization. J Membr Sci 427:197–206CrossRefGoogle Scholar
  154. 154.
    Yi J, Xu Q, Zhang X, Zhang H (2008) Chiral-nematic self-ordering of rodlike cellulose nanocrystals grafted with poly (styrene) in both thermotropic and lyotropic states. Polymer 49(20):4406–4412CrossRefGoogle Scholar
  155. 155.
    Hemraz UD, Lu A, Sunasee R, Boluk Y (2014) Structure of poly (N-isopropylacrylamide) brushes and steric stability of their grafted cellulose nanocrystal dispersions. J Colloid Interface Sci 430:157–165CrossRefPubMedGoogle Scholar
  156. 156.
    Yi J, Xu QX, Zhang XF, Zhang HL (2009) Temperature-induced chiral nematic phase changes of suspensions of poly (N, N-dimethylaminoethyl methacrylate)-grafted cellulose nanocrystals. Cellulose 16(6):989CrossRefGoogle Scholar
  157. 157.
    Hemraz UD, Campbell KA, Burdick JS, Ckless K, Boluk Y, Sunasee R (2014) Cationic poly (2-aminoethylmethacrylate) and poly (N-(2-aminoethylmethacrylamide)) modified cellulose nanocrystals: synthesis, characterization, and cytotoxicity. Biomacromolecules 16(1):319–325CrossRefPubMedGoogle Scholar
  158. 158.
    Morandi G, Heath L, Thielemans W (2009) Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP). Langmuir 25(14):8280–8286CrossRefPubMedGoogle Scholar
  159. 159.
    Yin Y, Tian X, Jiang X, Wang H, Gao W (2016) Modification of cellulose nanocrystal via SI-ATRP of styrene and the mechanism of its reinforcement of polymethylmethacrylate. Carbohydr Polym 142:206–212CrossRefPubMedGoogle Scholar
  160. 160.
    Wang Z, Zhang YQ, Jiang F, Fang HG, Wang ZG (2014) Synthesis and characterization of designed cellulose-graft-polyisoprene copolymers. Polym Chem 5(10):3379–3388CrossRefGoogle Scholar
  161. 161.
    Glaied O, Dube M, Chabot B, Daneault C (2009) Synthesis of cationic polymer-grafted cellulose by aqueous ATRP. J Colloid Interface Sci 333(1):145–151CrossRefPubMedGoogle Scholar
  162. 162.
    Castelvetro V, Geppi M, Giaiacopi S, Mollica G (2007) Cotton fibers encapsulated with homo-and block copolymers: synthesis by the atom transfer radical polymerization grafting-from technique and solid-state NMR dynamic investigations. Biomacromolecules 8(2):498–508CrossRefPubMedGoogle Scholar
  163. 163.
    Zheng Y, Deng SB, Niu L, Xu FJ, Chai MY, Yu G (2011) Functionalized cotton via surface-initiated atom transfer radical polymerization for enhanced sorption of Cu (II) and Pb (II). J Hazard Mater 192(3):1401–1408CrossRefPubMedGoogle Scholar
  164. 164.
    Hansson S, Ostmark E, Carlmark A, Malmstrom E (2009) ARGET ATRP for versatile grafting of cellulose using various monomers. ACS Appl Mater Interfaces 1(11):2651–2659CrossRefPubMedGoogle Scholar
  165. 165.
    Lindqvist J, Nystrom D, Ostmark E, Antoni P, Carlmark A, Johansson M, Hult A, Malmstrom E (2008) Intelligent dual-responsive cellulose surfaces via surface-initiated ATRP. Biomacromolecules 9(8):2139–2145CrossRefPubMedGoogle Scholar
  166. 166.
    Westlund R, Carlmark A, Hult A, Malmstrom E, Saez IM (2007) Grafting liquid crystalline polymers from cellulose substrates using atom transfer radical polymerization. Soft Matter 3(7):866–871CrossRefGoogle Scholar
  167. 167.
    Nyström D, Lindqvist J, Ostmark E, Hult A, Malmstrom E (2006) Superhydrophobic bio-fibre surfaces via tailored grafting architecture. Chem Commun (34):3594–3596Google Scholar
  168. 168.
    Tang F, Zhang LF, Zhang ZB, Cheng ZP, Zhu XL (2009) Cellulose filter paper with antibacterial activity from surface-initiated ATRP. J Macromol Sci 46(10):989–996CrossRefGoogle Scholar
  169. 169.
    Liu ZT, Sun C, Liu ZW, Lu J (2008) Adjustable wettability of methyl methacrylate modified ramie fiber. J Appl Polym 109(5):2888–2894CrossRefGoogle Scholar
  170. 170.
    Liu ZT, Sun CA, Liu ZW, Lu J (2009) Modification of ramie fiber with an amine-containing polymer via atom transfer radical polymerization. J Appl Polym 113(6):3612–3618CrossRefGoogle Scholar
  171. 171.
    Plackett D, Jankova K, Egsgaard H, Hvilsted S (2005) Modification of jute fibers with polystyrene via atom transfer radical polymerization. Biomacromolecules 6(5):2474–2484CrossRefPubMedGoogle Scholar
  172. 172.
    Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TPT, Mayadunne RTA, Meijs GF, Moad CL, Moad G, Rizzardo E, Thang SH (1998) Living free-radical polymerization by reversible addition − fragmentation chain transfer: the RAFT process. Macromolecules 31(16):5559–5562CrossRefGoogle Scholar
  173. 173.
    Charmot D, Corpart P, Adam H, Zard SZ, Biadatti T, Bouhadir G (2000) Controlled radical polymerization in dispersed media. Macromol Symp 150(1):23–32CrossRefGoogle Scholar
  174. 174.
    Goldmann AS, Tischer T, Barner L, Bruns M, Barner-Kowollik C (2011) Mild and modular surface modification of cellulose via Hetero Diels−Alder (HDA) cycloaddition. Biomacromolecules 12(4):1137–1145CrossRefPubMedGoogle Scholar
  175. 175.
    Barsbay M, Guven O, Davis TP, Barner-Kowollik C, Barner L (2009) RAFT-mediated polymerization and grafting of sodium 4-styrenesulfonate from cellulose initiated via γ-radiation. Polymer 50(4):973–982CrossRefGoogle Scholar
  176. 176.
    Roy D, Guthrie JT, Perrier S (2008) Synthesis of natural–synthetic hybrid materials from cellulose via the RAFT process. Soft Matter 4(1):145–155CrossRefGoogle Scholar
  177. 177.
    Roy D, Knapp JS, Guthrie JT, Perrier S (2007) Antibacterial cellulose fiber via RAFT surface graft polymerization. Biomacromolecules 9(1):91–99CrossRefPubMedGoogle Scholar
  178. 178.
    Barsbay M, Guven G, Stenzel MH, Davis TP, Barner-Kowollik C, Barner L (2007) Verification of controlled grafting of styrene from cellulose via radiation-induced RAFT polymerization. Macromolecules 40(20):7140–7147CrossRefGoogle Scholar
  179. 179.
    Barsbay M, Kodama Y, Güven O (2014) Functionalization of cellulose with epoxy groups via γ-initiated RAFT-mediated grafting of glycidyl methacrylate. Cellulose 21(6):4067–4079CrossRefGoogle Scholar
  180. 180.
    Roy D, Guthrie JT, Perrier S (2005) Graft polymerization: grafting poly (styrene) from cellulose via reversible addition−fragmentation chain transfer (RAFT) polymerization. Macromolecules 38(25):10363–10372CrossRefGoogle Scholar
  181. 181.
    Takolpuckdee P, Westwood J, Lewis DM, Perrier S (2004) Polymer architectures via reversible addition fragmentation chain transfer (RAFT) polymerization. Macromol Symp 216(1):23–35CrossRefGoogle Scholar
  182. 182.
    Perrier S, Takolpuckdee P, Westwood J, Lewis DM (2004) Versatile chain transfer agents for reversible addition fragmentation chain transfer (RAFT) polymerization to synthesize functional polymeric architectures. Macromolecules 37(8):2709–2717CrossRefGoogle Scholar
  183. 183.
    Chen J, Yi J, Sun P, Liu ZT, Liu ZW (2009) Grafting from ramie fiber with poly (MMA) or poly (MA) via reversible addition-fragmentation chain transfer polymerization. Cellulose 16(6):1133–1145CrossRefGoogle Scholar
  184. 184.
    Yi J, Chen J, Liu ZT, Liu ZW (2010) Grafting of polystyrene and poly (p-chlorostyrene) from the surface of ramie fiber via RAFT polymerization. J Appl Polym Sci 117(6):3551–3557Google Scholar
  185. 185.
    Liu X, Chen J, Sun P, Liu ZW, Liu ZT (2010) Grafting modification of ramie fibers with poly (2, 2, 2-trifluoroethyl methacrylate) via reversible addition–fragmentation chain transfer (RAFT) polymerization in supercritical carbon dioxide. React Funct Polym 70(12):972–979CrossRefGoogle Scholar
  186. 186.
    Tastet D, Save M, Charrier F, Charrier B, Ledeuil JB, Dupin JC, Billon L (2011) Functional biohybrid materials synthesized via surface-initiated MADIX/RAFT polymerization from renewable natural woodfiber: grafting of polymer as non leaching preservative. Polymer 52(3):606–616CrossRefGoogle Scholar
  187. 187.
    Demirci S, Celebioglu A, Uyar T (2014) Surface modification of electrospun cellulose acetate nanofibers via RAFT polymerization for DNA adsorption. Carbohydr Polym 113:200–207CrossRefPubMedGoogle Scholar
  188. 188.
    Zeinali E, Haddadi-Asl V, Roghani-Mamaqani H (2014) Nanocrystalline cellulose grafted random copolymers of N-isopropylacrylamide and acrylic acid synthesized by RAFT polymerization: effect of different acrylic acid contents on LCST behavior. RSC Adv 4(59):31428–31442CrossRefGoogle Scholar
  189. 189.
    Liu P, Huang XB, Li PF, Li L, Shen J (2014) Anti-biofouling ability and cytocompatibility of the zwitterionic brushes-modified cellulose membrane. Polym Chem 2(41):7222–7231Google Scholar
  190. 190.
    Stenzel MH, Davis TP, Fane AG (2003) Honeycomb structured porous films prepared from carbohydrate based polymers synthesized via the RAFT process. J Mater Chem 13(9):2090–2097CrossRefGoogle Scholar
  191. 191.
    Hernández-Guerrero M, Davis TP, Barner-Kowollik C, Stenzel MH (2005) Polystyrene comb polymers built on cellulose or poly (styrene-co-2-hydroxyethylmethacrylate) backbones as substrates for the preparation of structured honeycomb films. Eur Polym J 41(10):2264–2277CrossRefGoogle Scholar
  192. 192.
    Fleet R, McLeary JB, Grumel V, Weber WG, Matahwa H, Sanderson RD (2008) RAFT mediated polysaccharide copolymers. Eur Polym J 44(9):2899–2911CrossRefGoogle Scholar
  193. 193.
    Semsarilar M, Ladmiral V, Perrier S (2010) Synthesis of a cellulose supported chain transfer agent and its application to RAFT polymerization. J Polym Sci Polym Phys 48(19):4361–4365CrossRefGoogle Scholar
  194. 194.
    Liu Y, Ladmiral V, Perrier S (2015) Self-assembly and chiroptical property of poly (N-acryloyl-l-amino acid) grafted celluloses synthesized by RAFT polymerization. J Polym Sci Polym Chem 117:312–318Google Scholar
  195. 195.
    Lin C, Jin XS, Zhang XS, Han MM, Ji SX (2013) RAFT synthesis of cellulose-g-polymethylmethacrylate copolymer in an ionic liquid. Carbohydr Polym 127(6):4840–4849Google Scholar
  196. 196.
    Hufendiek A, Zhan HY, Liu MH, Habibi Y, Fu SY, Lucia LA (2014) Temperature responsive cellulose-graft-copolymers via cellulose functionalization in an ionic liquid and RAFT polymerization. J Appl Polym Sci 15(7):2563–2572Google Scholar
  197. 197.
    Hufendiek A, Trouillet V, Meier MA, Barner-Kowollik C (2014) Temperature responsive cellulose-graft-copolymers via cellulose functionalization in an ionic liquid and RAFT polymerization. Biomacromolecules 15:2563–2572CrossRefPubMedGoogle Scholar
  198. 198.
    Hawker CJ, Bosman AW, Harth E (2001) New polymer synthesis by nitroxide mediated living radical polymerizations. Chem Rev 101(12):3661–3688CrossRefPubMedPubMedCentralGoogle Scholar
  199. 199.
    Daly WH, Evenson TS, Iacono ST, Jones RW (2001) Recent developments in cellulose grafting chemistry utilizing Barton ester intermediates and nitroxide mediation. Macromol Symp 174:155–163CrossRefGoogle Scholar
  200. 200.
    Karaj-Abad SG, Abbasian M, Jaymand M (2016) Grafting of poly [(methyl methacrylate)-block-styrene] onto cellulose via nitroxide-mediated polymerization, and its polymer/clay nanocomposite. Carbohydr Polym 152:297–305CrossRefPubMedGoogle Scholar
  201. 201.
    Soman S, Chacko AS, Prasad VS (2017) Semi-interpenetrating network composites of poly (lactic acid) with cis-9-octadecenylamine modified cellulose-nanofibers from Areca catechu husk. Compos Sci Technol 141:65–73CrossRefGoogle Scholar
  202. 202.
    Roeder RD, Garcia-Valdez O, Whitney RA, Champagne P, Cunningham MF (2016) Graft modification of cellulose nanocrystals via nitroxide-mediated polymerisation. Polym Chem 7(41):6383–6390CrossRefGoogle Scholar
  203. 203.
    Rosen BM, Percec V (2009) Single-electron transfer and single-electron transfer degenerative chain transfer living radical polymerization. Chem Rev 109(11):5069–5119CrossRefPubMedGoogle Scholar
  204. 204.
    Rosen BM, Jiang X, Wilson CJ, Nguyen NH, Monteiro MJ, Percec V (2009) The disproportionation of Cu (I) X mediated by ligand and solvent into Cu (0) and Cu (II) X2 and its implications for SET-LRP. J Polym Sci Polym Chem 47(21):5606–5628CrossRefGoogle Scholar
  205. 205.
    Kang HL, Liu RG, Huang Y (2013) Synthesis of ethyl cellulose grafted poly(N-isopropylacrylamide) copolymer and its micellization. Acta Chim Sin 71:114–120CrossRefGoogle Scholar
  206. 206.
    Jiang X, Rosen BM, Percec V (2010) Mimicking “nascent” Cu(0) mediated SET-LRP of methyl acrylate in DMSO leads to complete conversion in several minutes. J Polym Sci Polym Chem 48(2):403–409CrossRefGoogle Scholar
  207. 207.
    Hiltunen MS, Raula J, Maunu SL (2011) Tailoring of water-soluble cellulose-g-copolymers inhomogeneous medium using single-electron-transfer living radical polymerization. Polym Int 60(9):1370–1379Google Scholar
  208. 208.
    Zoppe JO, Habibi Y, Rojas OJ, Venditti RA, Johansson LS, Efimenko K, Osterberg M, Laine J (2010) Poly (N-isopropylacrylamide) brushes grafted from cellulose nanocrystals via surface-initiated single-electron transfer living radical polymerization. Biomacromolecules 11(10):2683–2691CrossRefPubMedGoogle Scholar
  209. 209.
    Vlcek P, Raus V, Janata M, Kriz J, Sikora A (2011) Controlled grafting of cellulose esters using SET-LRP process. J Polym Sci Polym Chem 49(1):164–173CrossRefGoogle Scholar
  210. 210.
    Zhang YW, Jiang M (2005) New approaches to stimuli-responsive polymeric micelles and hollow spheres. Acta Polym Sin 5:650–654Google Scholar
  211. 211.
    Girouard NM, Xu S, Schueneman GT, Shofner ML, Meredith JC (2016) Site-selective modification of cellulose nanocrystals with isophorone diisocyanate and formation of polyurethane-CNC composites. ACS Appl Mater Interfaces 8(2):1458–1467CrossRefPubMedGoogle Scholar
  212. 212.
    Habibi Y, Goffin AL, Schiltz N, Duquesne E, Dubois P, Dufresne A (2008) Bionanocomposites based on poly (ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J Mater Chem 18(41):5002–5010CrossRefGoogle Scholar
  213. 213.
    Hou L, Bian H, Wang Q, Zhang N, Liang Y, Dong D (2016) Direct functionalization of cellulose nanocrystals with polymer brushes via UV-induced polymerization: access to novel heterogeneous visible-light photocatalysts. RSC Adv 6(58):53062–53068CrossRefGoogle Scholar
  214. 214.
    Golshan M, Salami-Kalajahi M, Roghani-Mamaqani H, Mohammadi M (2017) Poly (propylene imine) dendrimer-grafted nanocrystalline cellulose: doxorubicin loading and release behavior. Polymer 117:287–294CrossRefGoogle Scholar
  215. 215.
    Dan-hui L, Wei L, Yu-zhen W, Chun-xiang L, Chao-yang D, Ming-hua L (2015) Preparation of cellulose graft copolymer based on the combination of ionic liquids and microwave heating. Mater Res Innov 19:566–569CrossRefGoogle Scholar
  216. 216.
    Tsubokawa N, Iida T, Takayama T (2000) Modification of cellulose powder surface by grafting of polymers with controlled molecular weight and narrow molecular weight distribution. J Appl Polym Sci 75(4):515–522CrossRefGoogle Scholar
  217. 217.
    Zhao J, Li Q, Zhang X, Xiao M, Zhang W, Lu C (2017) Grafting of polyethylenimine onto cellulose nanofibers for interfacial enhancement in their epoxy nanocomposites. Carbohydr Polym 157:1419–1425CrossRefPubMedGoogle Scholar
  218. 218.
    Qu P, Zhou Y, Zhang X, Yao S, Zhang L (2012) Surface modification of cellulose nanofibrils for poly (lacticacid) composite application. J Appl Polym Sci 125(4):3084–3091CrossRefGoogle Scholar
  219. 219.
    Peltzer M, Pei A, Zhou Q, Berglund L, Jimenez A (2014) Surface modification of cellulose nanocrystals by grafting with poly (lactic acid). Polym Int 63(6):1056–1062CrossRefGoogle Scholar
  220. 220.
    Mulyadi A, Deng Y (2016) Surface modification of cellulose nanofibrils by maleated styrene block copolymer and their composite reinforcement application. Cellulose 23(1):519–528CrossRefGoogle Scholar
  221. 221.
    Li W, Wu Y, Liang W, Li B, Liu S (2014) Reduction of the water wettability of cellulose film through controlled heterogeneous modification. ACS Appl Mater Interfaces 6(8):5726–5734CrossRefPubMedGoogle Scholar
  222. 222.
    Motokawa T, Makino M, Enomoto-Rogers Y, Kawaguchi T, Ohura T, Iwata T, Sakaguchi M (2015) Novel method of the surface modification of the microcrystalline cellulose powder with poly (isobutyl vinyl ether) using mechanochemical polymerization. Adv Powder Technol 26(5):1383–1390CrossRefGoogle Scholar
  223. 223.
    Chen DH, Hsieh CH (2002) Synthesis of nickel nanoparticles in aqueous cationic surfactant solutions. J Mater Chem 12(8):2412–2415CrossRefGoogle Scholar
  224. 224.
    Bell AT (2003) The impact of nanoscience on heterogeneous catalysis. Science 299(5613):1688–1691CrossRefPubMedGoogle Scholar
  225. 225.
    Cheong S, Watt JD, Tilley RD (2010) Shape control of platinum and palladium nanoparticles for catalysis. Nanoscale 2(10):2045–2053CrossRefPubMedGoogle Scholar
  226. 226.
    Mubeen S, Zhang T, Yoo B, Deshusses MA, Myung NV (2007) Palladium nanoparticles decorated single-walled carbon nanotube hydrogen sensor. J Phys Chem C111(17):6321–6327Google Scholar
  227. 227.
    Islam MS, Rahman ML, Yusoff MM, Sarkar SM (2017) Highly active bio-waste cellulose supported poly (amidoxime) palladium (II) complex for Heck reactions. J Clean Prod 149:1045–1050CrossRefGoogle Scholar
  228. 228.
    Kale D, Rashinkar G, Kumbhar A, Salunkhe R (2017) Facile Suzuki-Miyaura cross coupling using ferrocene tethered N-heterocyclic carbene-Pd complex anchored on cellulose. React Funct Polym 116:9–16CrossRefGoogle Scholar
  229. 229.
    Maleki A, Ravaghi P, Aghaei M, Movahed H (2017) A novel magnetically recyclable silver-loaded cellulose-based bionanocomposite catalyst for green synthesis of tetrazolo [1, 5-a] pyrimidines. Res Chem Intermed 43(10):5485–5494.  https://doi.org/10.1007/s11164-017-2941-4CrossRefGoogle Scholar
  230. 230.
    Tian J, Peng D, Wu X, Li W, Deng H, Liu S (2017) Electrodeposition of Ag nanoparticles on conductive polyaniline/cellulose aerogels with increased synergistic effect for energy storage. Carbohydr Polym 156:19–25CrossRefPubMedGoogle Scholar
  231. 231.
    Yao Q, Fan B, Xiong Y, Wang C, Wang H, Jin C, Sun Q (2017) Stress sensitive electricity based on Ag/cellulose nanofiber aerogel for self-reporting. Carbohydr Polym 168:265–273CrossRefPubMedGoogle Scholar
  232. 232.
    Wang Y, Zhang X, Zhang X, Zhao J, Zhang W, Lu C (2015) Water repellent Ag/Ag2O@bamboo cellulose fiber membrane as bioinspired cargo carriers. Carbohydr Polym 133:493–496CrossRefPubMedGoogle Scholar
  233. 233.
    Xiao W, Xu J, Liu X, Hu Q, Huang J (2013) Antibacterial hybrid materials fabricated by nanocoating of microfibril bundles of cellulose substance with titania/chitosan/silver-nanoparticle composite films. J Mater Chem B 1(28):3477–3485CrossRefGoogle Scholar
  234. 234.
    Vosmanská V, Kolářová K, Rimpelová S, Kolská Z, Švorčík V (2015) Antibacterial wound dressing: plasma treatment effect on chitosan impregnation and in situ synthesis of silver chloride on cellulose surface. RSC Adv 5(23):17690–17699CrossRefGoogle Scholar
  235. 235.
    Maleki A, Movahed H, Paydar R (2016) Design and development of a novel cellulose/γ-Fe2O3/Ag nanocomposite: a potential green catalyst and antibacterial agent. RSC Adv 6(17):13657–13665CrossRefGoogle Scholar
  236. 236.
    Ashraf S, Sher F, Khalid ZM, Mehmood M, Hussain I (2014) Synthesis of cellulose–metal nanoparticle composites: development and comparison of different protocols. Cellulose 21(1):395–405CrossRefGoogle Scholar
  237. 237.
    Gopiraman M, Bang H, Yuan G, Yin C, Song KH, Lee JS, Chung IM, Karvembu R, Kim IS (2015) Noble metal/functionalized cellulose nanofiber composites for catalytic applications. Carbohydr Polym 132:554–564CrossRefPubMedGoogle Scholar
  238. 238.
    Maleki A, Jafari AA, Yousefi S (2017) Green cellulose-based nanocomposite catalyst: design and facile performance in aqueous synthesis of pyranopyrimidines and pyrazolopyranopyrimidines. Carbohydr Polym 175:409–416CrossRefPubMedGoogle Scholar
  239. 239.
    Maleki A, Kamalzare M (2014) Fe3O4@cellulose composite nanocatalyst: preparation, characterization and application in the synthesis of benzodiazepines. Catal Commun 53:67–71CrossRefGoogle Scholar
  240. 240.
    Xiong R, Wang Y, Zhang X, Lu C, Lan L (2014) In situ growth of gold nanoparticles on magnetic γ-Fe2O3@ cellulose nanocomposites: a highly active and recyclable catalyst for reduction of 4-nitrophenol. RSC Adv 4(13):6454–6462CrossRefGoogle Scholar
  241. 241.
    Maleki A, Akhlaghi E, Paydar R (2016) Design, synthesis, characterization and catalytic performance of a new cellulose-based magnetic nanocomposite in the one-pot three-component synthesis of α-aminonitriles. Appl Organomet Chem 30(6):382–386CrossRefGoogle Scholar
  242. 242.
    Maleki A, Nooraie Yeganeh N (2017) Facile one-pot synthesis of a series of 7-aryl-8H-benzo [h] indeno [1,2-b] quinoline-8-one derivatives catalyzed by cellulose-based magnetic nanocomposite. Appl Organomet Chem 31(12):e3814.  https://doi.org/10.1002/aoc.3814
  243. 243.
    El-Nahas AM, Salaheldin TA, Zaki T, El-Maghrabi HH, Marie AM, Morsy SM, Allam NK (2017) Functionalized cellulose-magnetite nanocomposite catalysts for efficient biodiesel production. Chem Eng J 322:167–180CrossRefGoogle Scholar
  244. 244.
    Bhardwaj M, Sharma H, Paul S, Clark JH (2016) Fe3O4@SiO2/EDAC–Pd (0) as a novel and efficient inorganic/organic magnetic composite: sustainable catalyst for the benzylic C–H bond oxidation and reductive amination under mild conditions. New J Chem 40(6):4952–4961CrossRefGoogle Scholar
  245. 245.
    Malakootikhah J, Rezayan AH, Negahdari B, Nasseri S, Rastegar H (2017) Glucose reinforced Fe3O4@cellulose mediated amino acid: reusable magnetic glyconanoparticles with enhanced bacteria capture efficiency. Carbohydr Polym 170:190–197CrossRefPubMedGoogle Scholar
  246. 246.
    Cui G, Liu M, Chen Y, Zhang W, Zhao J (2016) Synthesis of a ferric hydroxide-coated cellulose nanofiber hybrid for effective removal of phosphate from wastewater. Carbohydr Polym 154:40–47CrossRefPubMedGoogle Scholar
  247. 247.
    Bajpai S, Chand N, Chaurasia V (2010) Investigation of water vapor permeability and antimicrobial property of zinc oxide nanoparticles-loaded chitosan-based edible film. J Appl Polym Sci 115(2):674–683CrossRefGoogle Scholar
  248. 248.
    Nafchi AM, Alias AK, Mahmud S, Robal M (2012) Antimicrobial, rheological, and physicochemical properties of sago starch films filled with nanorod-rich zinc oxide. J Food Eng 113(4):511–519CrossRefGoogle Scholar
  249. 249.
    Pantani R, Gorrasi G, Vigliotta G, Murariu M, Dubois P (2013) PLA-ZnO nanocomposite films: water vapor barrier properties and specific end-use characteristics. Eur Polym J 49(11):3471–3482CrossRefGoogle Scholar
  250. 250.
    Sanuja S, Agalya A, Umapathym MJ (2015) Synthesis and characterization of zinc oxide–neem oil–chitosan bionanocomposite for food packaging application. Int J Biol Macromol 74:76–84CrossRefPubMedGoogle Scholar
  251. 251.
    Raguvaran R, Manuja BK, Chopra Thakur MR, Anand T, Kalia A, Manuja A (2017) Sodium alginate and gum acacia hydrogels of ZnO nanoparticles show wound healing effect on fibroblast cells. Int J Biol Macromol 96:185–191CrossRefPubMedGoogle Scholar
  252. 252.
    Emamifar A, Kadivar M, Shahedi M, Soleimanian-Zad S (2011) Effectof nanocomposite packaging containing Ag and ZnO on inactivation of Lactobacillus plantarum in orange juice. Food Control 22(3):408–413CrossRefGoogle Scholar
  253. 253.
    Noshirvani N, Ghanbarzadeh B, Mokarram RR, Hashemi M, Coma V (2017) Preparation and characterization of active emulsified films based on chitosan-carboxymethyl cellulose containing zinc oxide nano particles. Int J Biol Macromol 99:530–538CrossRefPubMedGoogle Scholar
  254. 254.
    Janpetch N, Saito N, Rujiravanit R (2016) Fabrication of bacterial cellulose-ZnO composite via solution plasma process for antibacterial applications. Carbohydr Polym 148:335–344CrossRefPubMedGoogle Scholar
  255. 255.
    Balos S, Sidjanin L, Dramicanin M, Labus D, Pilic B, Jovicic M (2016) Modification of cellulose and rutile welding electrode coating by infiltrated TiO2 nanoparticles. Met Mater Int 22(3):509–518CrossRefGoogle Scholar
  256. 256.
    Ahmadizadegan H (2017) Surface modification of TiO2 nanoparticles with biodegradable nanocellolose and synthesis of novel polyimide/cellulose/TiO2 membrane. J Colloid Interface Sci 491:390–400CrossRefPubMedPubMedCentralGoogle Scholar
  257. 257.
    Galkina O, Ivanov VK, Agafonov AV, Seisenbaeva GA, Kessler VG (2015) Cellulose nanofiber–titania nanocomposites as potential drug delivery systems for dermal applications. J Mater Chem B 3(8):1688–1698CrossRefGoogle Scholar
  258. 258.
    Nozawa K, Gailhanou H, Raison L, Panizza P, Ushiki H, Sellier E, Delville J, Delville M (2005) Smart control of monodisperse Stöber silica particles: effect of reactant addition rate on growth process. Langmuir 21(4):1516–1523CrossRefPubMedGoogle Scholar
  259. 259.
    Awual MR, Yaita T, Shiwaku H (2013) Design a novel optical adsorbent for simultaneous ultra-trace cerium (III) detection, sorption and recovery. Chem Eng J 228:327–335CrossRefGoogle Scholar
  260. 260.
    Awual MR (2017) New type mesoporous conjugate material for selective optical copper (II) ions monitoring & removal from polluted waters. Chem Eng J 307:85–94CrossRefGoogle Scholar
  261. 261.
    Iftekhar S, Srivastava V, Sillanpää M (2017) Enrichment of lanthanides in aqueous system by cellulose based silica nanocomposite. Chem Eng J 320:151–159CrossRefGoogle Scholar
  262. 262.
    Nasir M, Subhan A, Prihandoko B, Lestariningsih T (2017) Nanostructure and property of electrospun SiO2-cellulose acetate nanofiber composite by electrospinning. Energy Procedia 107:227–231CrossRefGoogle Scholar
  263. 263.
    Sankaran KJ, Kunuku S, Sundaravel B, Hsieh PY, Chen HC, Leou KC, Tai NH, Lin IN (2015) Gold nanoparticle–ultrananocrystalline diamond hybrid structured materials for high-performance optoelectronic device applications. Nanoscale 7(10):4377–4385CrossRefPubMedGoogle Scholar
  264. 264.
    Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779CrossRefPubMedPubMedCentralGoogle Scholar
  265. 265.
    Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41(7):2740–2779CrossRefPubMedGoogle Scholar
  266. 266.
    Wolfbeis OS (2015) An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev 44(14):4743–4768CrossRefGoogle Scholar
  267. 267.
    Qiu J, Kong L, Cao X, Li A, Tan H, Shi X (2016) Dendrimer-entrapped gold nanoparticles modified with β-cyclodextrin for enhanced gene delivery applications. RSC Adv 6(31):25633–25640CrossRefGoogle Scholar
  268. 268.
    Keshipour S, Khezerloo M (2017) Gold nanoparticles supported on cellulose aerogel as a new efficient catalyst for epoxidation of styrene. J Iran Chem Soc 14(5):1107–1112CrossRefGoogle Scholar
  269. 269.
    Stratakis M, Garcia H (2012) Catalysis by supported gold nanoparticles: beyond aerobic oxidative processes. Chem Rev 112(8):4469–4506CrossRefPubMedGoogle Scholar
  270. 270.
    Zhao P, Feng X, Huang D, Yang G, Astruc D (2015) Basic concepts and recent advances in nitrophenol reduction by gold-and other transition metal nanoparticles. Chem Rev 287:114–136Google Scholar
  271. 271.
    Chen Y, Chen S, Wang B, Yao J, Wang H (2017) TEMPO-oxidized bacterial cellulose nanofibers-supported gold nanoparticles with superior catalytic properties. Carbohydr Polym 160:34–42CrossRefPubMedGoogle Scholar
  272. 272.
    Niu T, Xu J, Xiao W, Huang J (2014) Cellulose-based catalytic membranes fabricated by deposition of gold nanoparticles on natural cellulose nanofibres. RSC Adv 4(10):4901–4904CrossRefGoogle Scholar
  273. 273.
    Xiang S, He Y, Zhang Z, Wu H, Zhou W, Krishna R, Chen B (2012) Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions. Nat Commun 3:954–956CrossRefPubMedGoogle Scholar
  274. 274.
    Na K, Choi KM, Yaghi OM, Somorjai GA (2014) Metal nanocrystals embedded in single nanocrystals of MOFs give unusual selectivity as heterogeneous catalysts. Nano Lett 14(10):5979–5983CrossRefPubMedGoogle Scholar
  275. 275.
    Zhang JW, Zhang HT, Du ZY, Wang X, Yu SH, Jiang HL (2014) Water-stable metal–organic frameworks with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform. Chem Commun 50(9):1092–1094CrossRefGoogle Scholar
  276. 276.
    Torad NL, Li Y, Ishihara S, Ariga K, Kamachi Y, Lian HY, Hamoudi H, Sakka Y, Chaikittisilp W, Wu KCW, Yamauchi Y (2014) MOF-derived nanoporous carbon as intracellular drug delivery carriers. Chem Lett 43(5):717–719CrossRefGoogle Scholar
  277. 277.
    Küsgens P, Siegle S, Kaskel S (2009) Crystal growth of the metal-organic framework Cu3(BTC)2 on the surface of pulp fibers. Adv Eng Mater 11(1–2):93–95CrossRefGoogle Scholar
  278. 278.
    Liang X, Zhang F, Zhao H, Ye W, Long L, Zhu G (2014) A proton-conducting lanthanide metal–organic framework integrated with a dielectric anomaly and second-order nonlinear optical effect. Chem Commun 50(49):6513–6516CrossRefGoogle Scholar
  279. 279.
    Cook TR, Zheng YR, Stang PJ (2013) Metal–organic frameworks and self-assembled supramolecular coordination complexes: comparing andcontrasting the design, synthesis, and functionality of metal–organic materials. J Chem Rev 113(1):734–777CrossRefGoogle Scholar
  280. 280.
    Yang Q, Zhang M, Song S, Yang B (2017) Surface modification of PCC filled cellulose paper by MOF-5 (Zn3(BDC)2) metal–organic frameworks for use as soft gas adsorption composite materials. Cellulose 24(7):3051–3060CrossRefGoogle Scholar
  281. 281.
    Mandal BH, Rahman ML, Yusoff MM, Chong KF, Sarkar SM (2017) Bio-waste corn-cob cellulose supported poly (hydroxamic acid) copper complex for Huisgen reaction: waste to wealth approach. Carbohydr Polym 156:175–181CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Nanochemistry, Nanotechnology Research CentreUrmia UniversityUrmiaIran
  2. 2.Catalysts and Organic Synthesis Research Laboratory, Department of ChemistryIran University of Science and TechnologyTehranIran

Personalised recommendations