Massive Transfusion Protocols (MTPs) in Cancer Patients

  • Adriana Maria Knopfelmacher
  • Fernando Martinez
Reference work entry


The management of soldiers with massive injury in the battleground and the blood support needed for these patients is an area of constant progress and led to the development of protocols to correct the rapid changes leading to death after the battle trauma. As a result there has been a standardization and timely release of blood components in defined ratios which are called massive transfusion protocols (MTPs). The civilian hospitals learned from the military experience, and MTPs are currently used in the emergency centers and operating rooms of hospitals. However, not all MTPs are created equal, and there is institutional variation, according to the type of patients requiring MTPs. There is still controversy around the ratios of blood components to be used and what population of patients benefit from the activation of MTPs.


Massive bleeding Massive transfusion Massive transfusion protocols 


  1. 1.
    Bergamin FS, Almeida JP, Landoni G, et al. Liberal versus restrictive transfusion strategy in critically ill oncologic patients: the transfusion requirements in critically ill oncologic patients randomized controlled trial. Crit Care Med. 2017;45:766–73. Scholar
  2. 2.
    Borgman MA, Spinella PC, Perkins JG, Grathwohl KW, Repine T, Beekley AC, Sebesta J, Jenkins D, Wade CE, Holcomb JB. The ratio of blood products transfused affects mortality in patients receiving massive transfusions at a combat support hospital. J Trauma. 2007;63:805–13.CrossRefGoogle Scholar
  3. 3.
    Cata JP, Gottumukkala V. Blood loss and massive transfusion in patients undergoing major oncological surgery: what do we know? ISRN Anesthesiol. 2012;2012:918938, 11 pages. Scholar
  4. 4.
    Cata JP, Gottumukkala V. Blood transfusion practices in cancer surgery. Indian J Anaesth. 2014;58(5):637–42. Scholar
  5. 5.
    Cohn EJ, Oncley JL, Strong LE, Hughes WL, Armstrong SH. Chemical, clinical, and immunological studies on the products of human plasma fractionation. I. The characterization of the protein fractions of human plasma. J Clin Invest. 1944;23:417–32.CrossRefGoogle Scholar
  6. 6.
    Collins JA. Problems associated with the massive transfusion of stored blood. Surgery. 1974;75:274–95.PubMedGoogle Scholar
  7. 7.
    Counts RB, Haisch C, Simon TL, Maxwell NG, Heimbach DM, Carrico CJ. Hemostasis in massively transfused trauma patients. Ann Surg. 1979;190:91–9.CrossRefGoogle Scholar
  8. 8.
    Da Luz LT, Nascimento B, Shankarakutty AK, Rizoli S, Adhikari NK. Effect of thromboelastography (TEG(R)) and rotational thromboelastometry (ROTEM(R)) on diagnosis of coagulopathy, transfusion guidance and mortality in trauma: descriptive systematic review. Crit Care. 2014;18:518.CrossRefGoogle Scholar
  9. 9.
    Duchesne JC, Holcomb JB. Damage control resuscitation: addressing trauma-induced coagulopathy. Br J Hosp Med (Lond). 2009;70:22–5.CrossRefGoogle Scholar
  10. 10.
    Einersen PM, Moore EE, Chapman MP, Moore HB, Gonzalez E, Silliman CC, Banerjee A, Sauaia A. Rapid thrombelastography thresholds for goal-directed resuscitation of patients at risk for massive transfusion. J Trauma Acute Care Surg. 2017;82:114–9.CrossRefGoogle Scholar
  11. 11.
    Etchill EW, Myers SP, Mcdaniel LM, Rosengart MR, Raval JS, Triulzi DJ, Peitzman AB, Sperry JL, Neal MD. Should all massively transfused patients be treated equally? An analysis of massive transfusion ratios in the nontrauma setting. Crit Care Med. 2017;45:1311–6.CrossRefGoogle Scholar
  12. 12.
    Hanke AA, Horstmann H, Wilhelmi M. Point-of-care monitoring for the management of trauma-induced bleeding. Curr Opin Anaesthesiol. 2017;30:250–6.CrossRefGoogle Scholar
  13. 13.
    Holcomb JB, Del Junco DJ, Fox EE, Wade CE, Cohen MJ, Schreiber MA, Alarcon LH, Bai Y, Brasel KJ, Bulger EM, Cotton BA, Matijevic N, Muskat P, Myers JG, Phelan HA, White CE, Zhang J, Rahbar MH, Group PS. The prospective, observational, multicenter, major trauma transfusion (PROMMTT) study: comparative effectiveness of a time-varying treatment with competing risks. JAMA Surg. 2013;148:127–36.CrossRefGoogle Scholar
  14. 14.
    Holcomb JB, Tilley BC, Baraniuk S, Fox EE, Wade CE, Podbielski JM, Del Junco DJ, Brasel KJ, Bulger EM, Callcut RA, Cohen MJ, Cotton BA, Fabian TC, Inaba K, Kerby JD, Muskat P, O’Keeffe T, Rizoli S, Robinson BR, Scalea TM, Schreiber MA, Stein DM, Weinberg JA, Callum JL, Hess JR, Matijevic N, Miller CN, Pittet JF, Hoyt DB, Pearson GD, Leroux B, Van Belle G, Group PS. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA. 2015;313:471–82.CrossRefGoogle Scholar
  15. 15.
    Johansson PI, Stensballe J. Hemostatic resuscitation for massive bleeding: the paradigm of plasma and platelets – a review of the current literature. Transfusion. 2010;50:701–10.CrossRefGoogle Scholar
  16. 16.
    Kutcher ME, Kornblith LZ, Narayan R, Curd V, Daley AT, Redick BJ, Nelson MF, Fiebig EW, Cohen MJ. A paradigm shift in trauma resuscitation: evaluation of evolving massive transfusion practices. JAMA Surg. 2013;148:834–40.CrossRefGoogle Scholar
  17. 17.
    Leslie SD, Toy PT. Laboratory hemostatic abnormalities in massively transfused patients given red blood cells and crystalloid. Am J Clin Pathol. 1991;96:770–3.CrossRefGoogle Scholar
  18. 18.
    Mcdaniel LM, Neal MD, Sperry JL, Alarcon LH, Forsythe RM, Triulzi D, Peitzman AB, Raval JS. Use of a massive transfusion protocol in nontrauma patients: activate away. J Am Coll Surg. 2013;216:1103–9.CrossRefGoogle Scholar
  19. 19.
    Mcquilten ZK, Crighton G, Brunskill S, Morison JK, Richter TH, Waters N, Murphy MF, Wood EM. Optimal dose, timing and ratio of blood products in massive transfusion: results from a systematic review. Transfus Med Rev. 2018;32:6–15.CrossRefGoogle Scholar
  20. 20.
    Mercadante S, Gebbia V, Marrazzo A, Filosto S. Anaemia in cancer: pathophysiology and treatment. Cancer Treat Rev. 2000;26(4):303–11. Review.CrossRefGoogle Scholar
  21. 21.
    Mesar T, Larentzakis A, Dzik W, Chang Y, Velmahos G, Yeh DD. Association between ratio of fresh frozen plasma to red blood cells during massive transfusion and survival among patients without traumatic injury. JAMA Surg. 2017;152:574–80.CrossRefGoogle Scholar
  22. 22.
    Meyer DE, Vincent LE, Fox EE, O’Keeffe T, Inaba K, Bulger E, Holcomb JB, Cotton BA. Every minute counts: time to delivery of initial massive transfusion cooler and its impact on mortality. J Trauma Acute Care Surg. 2017;83:19–24.CrossRefGoogle Scholar
  23. 23.
    Montange F, Salm B, Godfrin PY, Dartois D, Carolus J. Massive transfusion in cancer surgery. A study of the survival of 21 patients. Cah Anesthesiol. 1996;44(2):111–3. French.PubMedGoogle Scholar
  24. 24.
    Moren AM, Hamptom D, Diggs B, Kiraly L, Fox EE, Holcomb JB, Rahbar MH, Brasel KJ, Cohen MJ, Bulger EM, Schreiber MA, Group PS. Recursive partitioning identifies greater than 4 U of packed red blood cells per hour as an improved massive transfusion definition. J Trauma Acute Care Surg. 2015;79:920–4.CrossRefGoogle Scholar
  25. 25.
    Odell DD, Bilimoria KY. Evaluating appropriate blood transfusion in cancer surgery. JAMA Surg. 2016;151(6):525–6. Scholar
  26. 26.
    Ojima T, Iwahashi M, Nakamori M, et al. Anaemia in cancer: pathophysiology and treatment. J Gastrointest Surg. 2009;13:1821.CrossRefGoogle Scholar
  27. 27.
    Primrose A, Ryerson ES. The direct transfusion of blood: its value in haemorrhage and shock in the treatment of the wounded in war. Br Med J. 1916;2:384–6.CrossRefGoogle Scholar
  28. 28.
    Raymer JM, Flynn LM, Martin RF. Massive transfusion of blood in the surgical patient. Surg Clin North Am. 2012;92:221–34, vii.CrossRefGoogle Scholar
  29. 29.
    Vincent J-L, Lelubre C. The sicker the patient, the more likely that transfusion will be beneficial. J Thorac Dis. 2017;9(12):4912–4. Scholar
  30. 30.
    Wilson RF, Binkley LE, Sabo FM Jr, Wilson JA, Munkarah MM, Dulchavsky SA, Diebel LN. Electrolyte and acid-base changes with massive blood transfusions. Am Surg. 1992;58:535–44; discussion 544–5.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Adriana Maria Knopfelmacher
    • 1
  • Fernando Martinez
    • 1
  1. 1.Department of Laboratory MedicineThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations