Advertisement

Preparation, Characterization, and Heavy Metal Ion Adsorption Property of APTES-Modified Kaolin: Comparative Study with Original Clay

  • Bahia Meroufel
  • Mohamed Amine Zenasni
Reference work entry

Abstract

Surface modification of clay minerals has become increasingly important for improving the practical applications of clays such as fillers and adsorbents. In this study, we developed an effective adsorbent for retention of Co(II), Ni(II), Cu(II), and Zn (II) by modifying kaolin clay with an amino-terminated organosilicon (3-aminopropyltriethoxysilane, APTES). The lamellar filler (original clay) used is the kaolin (K08) from Bechar–Algeria region. Characterization of modified clay material and original clay was carried out by different methods XRD, FTIR, TGA, and SEM to establish the link between syntheses, structures, and properties. The adsorption of heavy metal ions onto APTES-modified kaolin showed greater efficiency than original kaolin. These results indicate that the APTES-modified kaolin may be used as very effective adsorbent for removal of heavy metals from aqueous media.

Keywords

Clay Kaolin Modified kaolin Heavy metal Adsorption 

Abbreviations

APTES

3-Aminopropyltriethoxysilane

K08

Kaolin of Bechar

KS

Modified kaolin by 3-aminopropyltriethoxysilane

Notes

Acknowledgments

The authors gratefully acknowledge Dr. Yves Pillet (Faculty of Sciences and Technology, group PGCM, University of Lorraine, Nancy, France) because of his contribution to our study and are thankful for Joint Service Electronic Microscopy and Microanalysis at the University Henri Poincare of Nancy for MEB-EDS analysis.

References

  1. Babel S, Kurniawan TA (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater B97:219CrossRefGoogle Scholar
  2. Castaldi P, Santona L, Enzo S, Melis P (2008) Sorption processes and XRD analysis of a natural zeolite exchanged with Pb(2+), Cd(2+) and Zn(2+) cations. J Hazard Mater 156(1–3):428–434CrossRefGoogle Scholar
  3. Chen J, Anandarajah A, Inyang H (2000) Pore fluid properties and compressibility of kaolinite. J Geotech Geoenviron Eng 126:798CrossRefGoogle Scholar
  4. Cristóbal AGS, Castelló R, Luengo MAM, Vizcayno C (2010) Zeolites prepared from calcined and mechanically modified Kaolins: a comparative study. Appl Clay Sci 49(3):239–246CrossRefGoogle Scholar
  5. Deer WA, Howie RA, Zussman J (1985) An introduction to the rock-forming minerals. ELBS Longman, Essex, pp 260–263Google Scholar
  6. Demirbas A (2008) Heavy metal adsorption onto agro-based waste materials: a review. J Hazard Mater 157(2–3):220–229CrossRefGoogle Scholar
  7. Ekosse G (2000) The Makoro kaolin deposit, southeastern Botswana: its genesis and possible industrial applications. Appl Clay Sci 16:301–320CrossRefGoogle Scholar
  8. Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:385–470Google Scholar
  9. Galan E, Aparicio P, Miras A, Michailidis K, Tsirambides A (1996) Technical properties of compounded kaolin sample from Griva (Macedonia, Greece). Appl Clay Sci 10(6):477–490CrossRefGoogle Scholar
  10. Huang CP, Huang CP, Morehart AL (1990) The removal of Cu (II) from dilute aqueous solutions by Saccharomyces cerevisiae. Water Res 24(4):433–439CrossRefGoogle Scholar
  11. Ijagbemi CO, Baek MH, Kim DS (2009) Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions. J Hazard Mater 166(1):538–546CrossRefGoogle Scholar
  12. Jenne E (2007) Adsorption of metals by geomedia variables, mechanisms, and model applications. Elsevier, Washington, DCGoogle Scholar
  13. Karapinar N, Donat R (2009) Adsorption behaviour of Cu2+ and Cd2+ onto natural bentonite. Desalination 249(1):123–129CrossRefGoogle Scholar
  14. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403CrossRefGoogle Scholar
  15. Le Pluart L (2002) Nanocomposites epoxy/amine/montmorillonite: role of interactions on formation, morphology at different scale levels and mechanical properties of networks. Doctoral thesis of the National Institute of Applied Sciences of LyonGoogle Scholar
  16. Martinez-Ramirez (2007) Alkali activation of metakaolins: parameters affecting mechanical, structural and microstructural properties. J Mater Sci 42(9):2934–2943CrossRefGoogle Scholar
  17. Meroufel B, Benali O, Benyahia M, Benmoussa Y, Zenasni MA (2013) Adsorptive removal of anionic dye from aqueous solutions by Algerian kaolin: characteristics, isotherm, kinetic and thermodynamic studies. J Mater Environ Sci 4(3):482–491Google Scholar
  18. Mohamad Ibrahim MN,Wan Ngah WS, Norliyana MS,Wan Daud WR, Rafatullah M, Sulaiman O, Hashim R (2010) A novel agricultural waste adsorbent for the removal of lead (II) ions from aqueous solutions. Hazard. J Mater 182(1–3):377–385CrossRefGoogle Scholar
  19. Mohanty K, Das D, Biswas MN (2006) Preparation and characterization of activated carbons from Sterculiaalata nutshell by chemical activation with zinc chloride to remove phenol from wastewater. Adsorption 12:119CrossRefGoogle Scholar
  20. Mureseanu M, Cioatera N, Trandafir I, Georgescu I, Fajula F, Galarneau A (2011) Selective Cu2+ adsorption and recovery from contaminated water using mesoporous hybrid silica bio-adsorbents. Microporous Mesoporous Mater 146:141–150CrossRefGoogle Scholar
  21. Pauling L (1930) The structure of chlorites. Proc Natl Acad Sci U S A 16:578CrossRefGoogle Scholar
  22. Pinnavaia TJ (1983) Intercalated clay catalysts. Science 220:365CrossRefGoogle Scholar
  23. Schoonheydt RA, Johnston CT (2006) Surface and interface chemistry of clay minerals. Develop. Clay Sci 1:87CrossRefGoogle Scholar
  24. Tanabe K (1981) Solid acid and base catalysis. In: Anderson JR, Boudart M (eds) Catalysis-science and technology. Springer, New York, p 231CrossRefGoogle Scholar
  25. Theng BKG (1979) Formation and properties of clay polymer complexes, vol 551. Elsevier, New York, pp 1–12Google Scholar
  26. Tran HH, Roddick FA, O’Donnell JA (1999) Comparison of chromatography and desiccant silica gels for the adsorption of metal ions − I. Adsorption and kinetics. Water Res 33:2992Google Scholar
  27. Tunali S, Akar T, Özcan AS, Kiran I, Özcan Sep A (2006) Equilibrium and kinetics of biosorption of lead(II) from aqueous solutions by Cephalosporium aphidicola. Purif Technol 47(3):105–112CrossRefGoogle Scholar
  28. Ucun H, Bayhan YK, Kaya Y, Cakici A, Algur OF (2003) Biosorption of lead(II) from aqueous solution by cone biomass of Pinus sylvestris. Desalination 154(3):233–238CrossRefGoogle Scholar
  29. Van Olphen H (1977) An introduction to clay colloid chemistry. Wiley Interscience, New York, p 187Google Scholar
  30. Xue A, Zhou S, Zhao Y, Lu X, Han P (2011) Effective NH2-grafting on attapulgite surfaces for adsorption of reactive dyes. J Hazard Mater 194:7–14CrossRefGoogle Scholar
  31. Zafar MN, Nadeem R, Hanif MA (2006) Biosorption of nickel from protonated Rice bran. J Hazard Mater 143:478–485CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Bahia Meroufel
    • 1
  • Mohamed Amine Zenasni
    • 1
  1. 1.Faculty of TechnologyUniversity Abou Bekr Belkaïd of TlemcenTlemcenAlgeria

Section editors and affiliations

  • Chaudhery Mustansar Hussain
    • 1
  1. 1.Department of Chemistry and Environmental SciencesNew Jersey Institute of TechnologyNewarkUSA

Personalised recommendations