Modern Environmental Materials, Pollution Prevention, Sustainability, and Green World

  • Mohammed Hussein Rafeq Khudhair
  • Bouchra El Hilal
  • M. S. Elyoubi
  • Ahmed Elharfi
Reference work entry


Cement is made from a carefully proportioned mixture of materials, such as limestone and clay, after cooking at very high temperatures (1500 °C), where the mixture is transformed into clinker. The production of one ton of cement requires about 1.5–1.7 tons of raw materials and about 60 to 130 kg of fuel oil, knowing that 59% of these materials turn into clinker, the rest turns into gaseous or solid waste. The cement plant is responsible for a release about of 7% of CO2 and energy consumption of around 3GJ.

Intelligent solutions have been explored in this work to minimize the greenhouse gases emissions into atmosphere, in particular carbon dioxide (CO2) emitted by the cement plant, while limiting the energy and raw materials consumption during the fabrication of clinker, reducing production costs and subsequently producing a new ecological and sustainable binders with improving physical and mechanical properties. These are by the partial substitution of clinker by mineral additions at different percentages en weight of cement in the presence of superplasticizers on one hand, and another hand is by the partial replacement of the clinker by combining between the mineral additions with a superplasticizers.

The obtained results from the various formulations elaborated show that we have succeeded in contributing to the minimization of the greenhouse gas emissions, to the dimension production cost, to the fabrication of modern ecologically sustainable hydraulic binders while improving the physical and mechanical properties of these binders in the fresh and hardened state.


Modern environmental Modern materials Materials management Pollution prevention Sustainable materials Green world Manufacture Limestone fillers Clinker Cement Solid waste Greenhouse gases Carbon dioxide (CO2Production costs New ecological Mineral additions Limestone additions Silica fume Fly ash Natural pozzolan Blast furnace slag, superplasticizerse admixtures Poly-naphthalene sulfonates Poly-melamine sulfonates Lignosulfonate Polycarboxylate Acceleration hydration process Decelerating hydration processor Modern ccologically Hydraulic binders Cementitious materials, Civil engineering Granular effect Physical-chemical and microreactors effects, Chemical effect Water requirement Water/cement ratio Rheology Slump Shear threshold Plastic viscosity Compressive strength 


  1. Adekunle S, Ahmad S, Maslehuddin M, Al-Gahtani HJ (2015) Properties of SCC prepared using natural pozzolana and industrial wastes as mineral fillers. Cem Concr Compos 62:125–133CrossRefGoogle Scholar
  2. Adjoudj M, Ezziane K, Kadri E-H (2013) Effet de l’élévation de la température sur l’efficacité d’un superplastifiant à base de naphtalène sulfonâte en présence d’un ciment composé. Nat Technol 35–40Google Scholar
  3. Alujas A, Fernández R, Quintana R, Scrivener KL, Martirena F (2015) Pozzolanic reactivity of low-grade kaolinitic clays: influence of calcination temperature and impact of calcination products on OPC hydration. Appl Clay Sci 108:94–101CrossRefGoogle Scholar
  4. Andersen PJ, Roy DM, Gaidis JM, Grace WR et al (1987) The effects of adsorption of superplasticizers on the surface of the cement. Cem Concr Res 17:805–813CrossRefGoogle Scholar
  5. Badreddine-Bessa A (2004) Etude de la contribution des additions minérales aux propriétés physiques, mécaniques et de durabilité des mortiers. Université de Cergy-PontoiseGoogle Scholar
  6. Baron J, Ollivier JP (1997) Les bétons bases et données pour leur formulation Edition Eyrolles. Deux. Tirage. ISBN: 2-212-01316-7Google Scholar
  7. Benabed B, Soualhi H, Belaidi ASE, Azzouz L, Kenai S et al (2016) Effect of limestone powder as a partial replacement of crushed quarry sand on properties of self-compacting repair mortars. J Build Mater Struct 3:15–30Google Scholar
  8. Benezet JC, Benhassaine A (1999) The influence of particle size on the pozzolanic reactivity of quartz powder. Powder Technol 103:26–29CrossRefGoogle Scholar
  9. Berodier E, Scrivener K (2014) Understanding the filler effect on the nucleation and growth of C-S-H. J Am Ceram Soc 97:3764–3773CrossRefGoogle Scholar
  10. Bingöl AF, Tohumcu İ (2013) Effects of different curing regimes on the compressive strength properties of self compacting concrete incorporating fly ash and silica fume. Mater Des 51:12–18CrossRefGoogle Scholar
  11. Chiocchio G, Paolini AE (1985) Optimum time for adding superplasticizer to Portland cement pastes. Cem Concr Res 15:901–908CrossRefGoogle Scholar
  12. Chloup-Bondant M (1996) Etude des mécanismes réactionnels dans l’hydratation des silicates et aluminates tricalciques en présence d’un filler calcaire. Université de Nancy I. Faculté des sciencesGoogle Scholar
  13. Chuah S, Pan Z, Sanjayan JG, Wang CM, Duan WH (2014) Nano reinforced cement and concrete composites and new perspective from graphene oxide. Constr Build Mater 73:113–124CrossRefGoogle Scholar
  14. Çolak A (2003) Characteristics of pastes from a Portland cement containing different amounts of natural pozzolan. Cem Concr Res 33:585–593CrossRefGoogle Scholar
  15. Colangelo F, Messina F, Cioffi R (2015) Recycling of MSWI fly ash by means of cementitious double step cold bonding pelletization: technological assessment for the production of lightweight artificial aggregates. J Hazard Mater 299:181–191CrossRefGoogle Scholar
  16. Collins F, Sanjayan JG (1999) Effects of ultra-fine materials on workability and strength of concrete containing alkali-activated slag as the binder. Cem Concr Res 29:459–462CrossRefGoogle Scholar
  17. Cyr M, Lawrence P, Ringot E (2005) Mineral admixtures in mortars: quantification of the physical effects of inert materials on short-term hydration. Cem Concr Res 35:719–730Google Scholar
  18. Cyr M, Lawrence P, Ringot E (2006) Efficiency of mineral admixtures in mortars: quantification of the physical and chemical effects of fine admixtures in relation with compressive strength. Cem Concr Res 36:264–277CrossRefGoogle Scholar
  19. De Larrard F, Moreau A, Buil M, Paillere AM (1986) Improvement of mortars and concretes really attributable to condensed silica fume, in 2nd international conference on fly ash, silica fume, slag and natural pozzolans 2:959–971Google Scholar
  20. Demirboǧa R (2003) Influence of mineral admixtures on thermal conductivity and compressive strength of mortar. Energ Buildings 35:189–192CrossRefGoogle Scholar
  21. Falikman VR, Sorokin YV, Vainer AY, Bashlykov NF (2005) New high performance polycarboxilate superplasticizers based on derivative copolymers of maleinic acid. In: Admixtures-enhancing concrete performance: proceedings of the international conference held at the University of Dundee, Scotland, 6 July 2005, Thomas Telford Publishing, pp 41–46Google Scholar
  22. Fernández Á, Alonso MC, García-Calvo JL, Lothenbach B (2016) Influence of the synergy between mineral additions and Portland cement in the physical-mechanical properties of ternary binders. Mater Constr 66:097CrossRefGoogle Scholar
  23. Flatt RJ, Houst YF (2001) A simplified view on chemical effects perturbing the action of superplasticizers. Cem Concr Res 31:1169–1176CrossRefGoogle Scholar
  24. Gallias JL, Kara-Ali R, Bigas JP (2000) The effect of fine mineral admixtures on water requirement of cement pastes. Cem Concr Res 30:1543–1549CrossRefGoogle Scholar
  25. Golaszewski J, Szwabowski J (2004) Influence of superplasticizers on rheological behaviour of fresh cement mortars. Cem Concr Res 34:235–248CrossRefGoogle Scholar
  26. Grzeszczyk S, Janowska-Renkas E (2012) The influence of small particle on the fluidity of blast furnace slag cement paste containing superplasticizers. Constr Build Mater 26:411–415CrossRefGoogle Scholar
  27. Hanna B (1987) Contribution à l’étude de la structuration des mortiers de ciment portland contenant des particules ultra-fines. Toulouse, INSAGoogle Scholar
  28. Hanna E, Luke K, Perraton D, Aitcin P-C (1989) Rheological behavior of Portland cement in the presence of a super plasticizer. Am Concr Inst, Spec Publ 119:171–188Google Scholar
  29. Hemalatha T, Mapa M, George N, Sasmal S (2016) Physico-chemical and mechanical characterization of high volume fly ash incorporated and engineered cement system towards developing greener cement. J Clean Prod 125:268–281CrossRefGoogle Scholar
  30. Hinrichs W, Odler I (1989) Investigation of the hydration of Portland blastfurnace slag cement: hydration kinetics. Adv Cem Res 2:9–13CrossRefGoogle Scholar
  31. Hu C (1995) Rhéologie des bétons fluides. Ecole Nationale des Ponts et ChausséesGoogle Scholar
  32. Husson S (1991) Etude physicochimique et mécanique des interactions ciment-fillers. Application aux mortiers. Ecole Nationale Supérieure des Mines de Saint-EtienneGoogle Scholar
  33. Huynh HT (1996) La compatibilité ciment-superplastifiant dans les bétons a hautes performances. Bull Lab Ponts Chaussées 206:63–73Google Scholar
  34. Jiang S, Van Damme H (1996) Influence de fillers de nature différente sur l’hydratation et la texture des pâtes de C3S. Univ. D’Orléan CNRS Rapp. CRMD-ATILHGoogle Scholar
  35. Kadri E (1998) Contribution a l’etude de l’influence de la fumee de silice sur les caracteristiques des betons a hautes performances (B. H. P.)Google Scholar
  36. Kara-Ali R (2002) Influence des additions minérales sur le besoin en eau et les résistances mécaniques des mélanges cimentaires. Université de Cergy-PontoiseGoogle Scholar
  37. Khalil SM, Ward MA (1980) Effect of sulphate content of cement upon heat evolution and slump loss of concretes containing high-range water-reducers (superplasticizers). Mag Concr Res 32:28–38CrossRefGoogle Scholar
  38. Khayat KH (1998) Viscosity-enhancing admixtures for cement-based materials – an overview. Cem Concr Compos 20:171–188CrossRefGoogle Scholar
  39. Khudhair MH, Elharfi A (2016) Formulation of the cement kiln dust (CKD) in concrete: studies of the physical-chemical and mechanical properties. Int J ChemTech Res 9:695–704Google Scholar
  40. Khudhair M, Elyoubi MS, Elharfi A (2017a) Development of a new hydraulic binder (composite cement) based on a mixture of natural Pozzolan active ‘PN’and pure Limestone ‘P, lime’: study of the physical-chemical and mechanical properties. J Mater Environ Sci 8(3):902–910Google Scholar
  41. Khudhair MH, Elyoubi MS, Elharfi A (2017b) Formulation and characterization of a new ecolog-ical cementitious material at base of different percentage of limestone fillers: study of physical-chemical and mechanical properties. J Mater Environ Sci 8:3973–3985Google Scholar
  42. Khudhair MH, Elyoubi MS, Elharfi A (2017c) Effect of substitution partial of clinker by pure limestone: study of its influence on the physical-chemical properties and the mechanical performance. Moroc J Chem 5:153–163Google Scholar
  43. Khudhair MHR, El Hilal B, Elyoubi MS, Elharfi A (2017d) Development of a new cementations material eco-friendly of the environment: study of physical and mechanical properties. J Mater Environ Sci 8:2302–2310Google Scholar
  44. Khudhair MH, El Hilal B, El Youbi MS, El Harfi A (2017e) Development and study of physical, chemical and mechanical properties of a new formulation of cement of a varying percentage of natural pozzolan. J Chem Technol Metall 52:873–884Google Scholar
  45. Khudhair MHR, Elyoubi MS, Elharfi A (2017f) Study of the influence of water reducing and setting retarder admixtures of polycarboxylate ‘superplasticizers’ on physical and mechanical properties of mortar and concrete. J Mater Environ Sci 9:56–65Google Scholar
  46. Khudhair MH, Elyoubi MS, Elharfi Ahmed A (2017g) Study of the influence of a high water-reducing super plasticizer and accelerator of setting time on the physical properties and mechanical performance of mortars and concretes. Res J Pharm Biol Chem Sci 8:1698–1712Google Scholar
  47. Khudhair MH, El Youbi MS, Elharfi A (2017h) Comparative study of the influence of inorganic additions on the physical-chemical properties and mechanical performance of mortar and/or concrete. Moroc J Chem 5:493–504Google Scholar
  48. Kim B-G, Jiang S, Jolicoeur C, Aıtcin P-C (2000) The adsorption behavior of PNS superplasticizer and its relation to fluidity of cement paste. Cem Concr Res 30:887–893CrossRefGoogle Scholar
  49. Kronlöf A (1994) Effect of very fine aggregate on concrete strength. Mater Struct 27:15–25CrossRefGoogle Scholar
  50. Kwan AK (2000) Use of condensed silica fume for making high-strength, self-consolidating concrete. Can J Civ Eng 27:620–627CrossRefGoogle Scholar
  51. Lachemi M, Hossain KMA, Lambros V, Nkinamubanzi P-C, Bouzoubaa N (2004) Performance of new viscosity modifying admixtures in enhancing the rheological properties of cement paste. Cem Concr Res 34:185–193CrossRefGoogle Scholar
  52. Lange F, Mörtel H, Rudert V (1997) Dense packing of cement pastes and resulting consequences on mortar properties. Cem Concr Res 27:1481–1488CrossRefGoogle Scholar
  53. Lawrence P (2000) Sur l’activité des cendres volantes et des additions minérales chimiquement inertes dans les matériaux cimentaires. PhD thesis, UPS ToulouseGoogle Scholar
  54. Lawrence P, Cyr M, Ringot E (2005) Mineral admixtures in mortars effect of type, amount and fineness of fine constituents on compressive strength. Cem Concr Res 35:1092–1105CrossRefGoogle Scholar
  55. Lewandowski R (1983) Versuchsreihe mit Flugasche-Einfluss von Flugasche-Stäuben unterschiedlicher Qualität auf die betoneigen schafften. BaugewerbeGoogle Scholar
  56. Lilkov V, Dimitrova E, Petrov OE (1997) Hydration process of cement containing fly ash and silica fume: the first 24 hours. Cem Concr Res 27:577–588CrossRefGoogle Scholar
  57. Liu B, Xie Y, Zhou S, Yuan Q (2000) Influence of ultrafine fly ash composite on the fluidity and compressive strength of concrete. Cem Concr Res 30:1489–1493CrossRefGoogle Scholar
  58. Luo FJ, He L, Pan Z, Duan WH, Zhao XL, Collins F (2013) Effect of very fine particles on workability and strength of concrete made with dune sand. Constr Build Mater 47:131–137CrossRefGoogle Scholar
  59. Malhotra VM, Malanka D (2004) Performance of superplasticizers in concrete: laboratory investigation. Part I. Concr Int 26:96–114Google Scholar
  60. Mardani-Aghabaglou A, Boyacı OC, Hosseinnezhad H, Felekoğlu B, Ramyar K (2016) Effect of gypsum type on properties of cementitious materials containing high range water reducing admixture. Cem Concr Compos 68:15–26CrossRefGoogle Scholar
  61. Nalet C, Nonat A (2016) Retarding effectiveness of hexitols on the hydration of the silicate phases of cement: interaction with the aluminate and sulfate phases. Cem Concr Res 90:137–143CrossRefGoogle Scholar
  62. Nécira B, Guettala A, Guettala S (2017) Study of the combined effect of different types of sand on the characteristics of high performance self-compacting concrete. J Adhes Sci Technol:1–17Google Scholar
  63. Özbay E, Erdemir M, Durmuş Hİ (2016) Utilization and efficiency of ground granulated blast furnace slag on concrete properties – a review. Constr Build Mater 105:423–434CrossRefGoogle Scholar
  64. Paillere A-M, Briquet P (1982) Influence des résines de synthèse fluidifiantes sur la rhéologie et la déformation des pâtes de ciment avant et en cours de prise. Bull Liaison Lab Ponts Chaussees 1982:71–76Google Scholar
  65. Park CK, Noh MH, Park TH (2005) Rheological properties of cementitious materials containing mineral admixtures. Cem Concr Res 35:842–849CrossRefGoogle Scholar
  66. Ramachandran VS (1987) Uso dei superfluidificanti nel calcestruzzo, Il Cemento 84(3):98–273. ISSN : 0008-8900Google Scholar
  67. Ramachandran VS, Malhotra VM, Jolicoeur C, Spiratos N (1998) Superplasticizers: properties and applications in concrete, CANMET Publication MTL, Ottawa, pp 97–14. ACI InternationalGoogle Scholar
  68. Ramezanianpour AA (2014) Fly ash. In: Cement replacement materials. Springer, New York, pp 47–156CrossRefGoogle Scholar
  69. Ramlochan T, Zacarias P, Thomas MDA, Hooton RD (2003) The effect of pozzolans and slag on the expansion of mortars cured at elevated temperature: Part I: Expansive behaviour. Cem Concr Res 33:807–814CrossRefGoogle Scholar
  70. Rao GA (2001) Development of strength with age of mortars containing silica fume. Cem Concr Res 31:1141–1146CrossRefGoogle Scholar
  71. Saada R, Barrioulet M, Legrand C (1990) Influence des fluidifiants sur les caracteristiques rheologiques des pates de ciments fillerises. In: Admixtures for concrete-improvement of properties: proceedings of the international RILEM symposium. CRC Press, p 90Google Scholar
  72. Şahmaran M, Özkan N, Keskin SB, Uzal B, Yaman İÖ, Erdem TK (2008) Evaluation of natural zeolite as a viscosity-modifying agent for cement-based grouts. Cem Concr Res 38:930–937CrossRefGoogle Scholar
  73. Saric-Coric M, Aïtcin P-C (2003) Bétons à haute performance à base de ciments composés contenant du laitier et de la fumée de silice. Can J Civ Eng 30:414–428CrossRefGoogle Scholar
  74. Senhadji Y, Escadeillas G, Mouli M, Khelafi H et al (2014) Influence of natural pozzolan, silica fume and limestone fine on strength, acid resistance and microstructure of mortar. Powder Technol 254:314–323CrossRefGoogle Scholar
  75. Sheinn AMM, Ho DWS, Tam CT (2003) Effect of particle shape on paste rheology of SCC. In: International RILEM symposium on self-compacting concrete. RILEM Publications SARL, pp 232–239Google Scholar
  76. Shi Y, Tanigawa Y, Mori H, Kurokawa Y (1999) A study on effect of superfine powders on fluidity of cement paste. Trans Jpn Concr Inst 20:9–14Google Scholar
  77. Shindoh T, Matsuoka Y (2003) Development of combination-type self-compacting concrete and evaluation test methods. J Adv Concr Technol 1:26–36CrossRefGoogle Scholar
  78. Soroka I, Stern N (1976) Calcareous fillers and the compressive strength of Portland cement. Cem Concr Res 6:367–376CrossRefGoogle Scholar
  79. Sugamata T, Hibino M, Ouchi M, Okamura H (2000) A study of the particle dispersion effect of polycarboxylate-based superplasticizers. Trans Jpn Concr Inst 21:7–14Google Scholar
  80. Svatovskaya LB, Sychova AM, Soloviova VY, Maslennikova LL, Sychov MM (2016) Absorptive properties of hydrate silicate building materials and products for quality and geoecoprotection improvement. Indian J Sci Technol 9(42).
  81. Termkhajornkit P, Nawa T (2004) The fluidity of fly ash–cement paste containing naphthalene sulfonate superplasticizer. Cem Concr Res 34:1017–1024CrossRefGoogle Scholar
  82. Uchikawa H (1994) Conference in tribute to Reogurd MM. Importance recent microstructure development in cement and concrete, Sherbrooke, pp 63–118Google Scholar
  83. Uchikawa H, Uchida S, Hanehara S (1987) Flocculation structure of fresh cement paste determined by sample freezing-back scattered electron image method. Il Cemento 84:3–21Google Scholar
  84. Uchikawa H, Hanehara S, Shirasaka T, Sawaki D (1992) Effect of admixture on hydration of cement, adsorptive behavior of admixture and fluidity and setting of fresh cement paste. Cem Concr Res 22:1115–1129CrossRefGoogle Scholar
  85. Wang Q, Wang J, Lu C, Liu B, Zhang K, Li C (2015) Influence of graphene oxide additions on the microstructure and mechanical strength of cement. New Carbon Mater 30:349–356CrossRefGoogle Scholar
  86. Yeh I-C (1998) Modeling of strength of high-performance concrete using artificial neural networks. Cem Concr Res 28:1797–1808CrossRefGoogle Scholar
  87. Yen T, Tang C-W, Chang C-S, Chen K-H (1999) Flow behaviour of high strength high-performance concrete. Cem Concr Compos 21:413–424CrossRefGoogle Scholar
  88. Yijin L, Shiqiong Z, Jian Y, Yingli G (2004) The effect of fly ash on the fluidity of cement paste, mortar, and concrete. In: Proceedings of the international workshop on sustainable development and concrete technology, Beijing, pp 339–345Google Scholar
  89. Zhang X, Han J (2000) The effect of ultra-fine admixture on the rheological property of cement paste. Cem Concr Res 30:827–830CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mohammed Hussein Rafeq Khudhair
    • 1
    • 2
    • 3
  • Bouchra El Hilal
    • 1
    • 4
  • M. S. Elyoubi
    • 3
  • Ahmed Elharfi
    • 1
  1. 1.Laboratory of Agro resources Polymers and Process engineering (LAPPE), Team of Macromolecular and Organic Chemistry, Faculty of sciencesIbn Tofail UniversityKenitraMorocco
  2. 2.Laboratory of Cement and Quality Control of Amran Cement Plant of YemenAmranYemen
  3. 3.Laboratory of Chemistry of Solid State, Faculty of ScienceIbn Tofail UniversityKenitraMorocco
  4. 4.Operation Unit of the Radioactive WasteCenter of Nuclear Studies of Maamora (CENM) (CNESTEN)KenitraMorocco

Section editors and affiliations

  • Chaudhery Mustansar Hussain
    • 1
  1. 1.Department of Chemistry and Environmental SciencesNew Jersey Institute of TechnologyNewarkUSA

Personalised recommendations