Advertisement

New Generation Ceramic Coatings for High-Temperature Applications by Liquid Feedstock Plasma Spraying

  • S. JoshiEmail author
  • N. Markocsan
  • P. Nylén
  • G. Sivakumar
Living reference work entry
  • 11 Downloads

Abstract

Plasma spraying with liquid feedstock offers an exciting opportunity to obtain coatings with characteristics that are vastly different from those produced using conventional spray-grade powders. The two extensively investigated variants of this technique are suspension plasma spraying (SPS), which utilizes a suspension of fine powders in an appropriate medium, and solution precursor plasma spraying (SPPS), which involves use of a suitable solution precursor that can form the desired particles in situ. The advent of axial injection plasma spray systems in recent times has also eliminated concerns regarding low deposition rates/efficiencies associated with liquid feedstock. The 10–100 μm size particles that constitute conventional spray powders lead to individual splats that are more than an order of magnitude larger compared to those resulting from the fine (approximately 100 nm–2 μm in size) particles already present in suspensions in SPS or formed in situ in SPPS. The distinct characteristics of the resulting coatings are directly attributable to the above very dissimilar splats (“building blocks” for coatings) responsible for their formation. This chapter discusses the salient features associated with SPS and SPPS processing, highlights their versatility for depositing a vast range of ceramic coatings with diverse functional attributes, and discusses their utility, particularly for high-temperature applications through some illustrative examples. A further extension of liquid feedstock plasma processing to enable use of hybrid powder-liquid combinations for plasma spraying is also discussed. This presents a novel approach to explore new material combinations, create various function-dependent coating architectures with multi-scale features, and enable convenient realization of layered, composite, and graded coatings as demonstrated through specific examples.

Keywords

Liquid feedstock Plasma spray Suspension Solution precursor Coatings Layered Composite Functionally graded 

References

  1. 1.
    Pawlowski L (1995) The science and engineering of thermal spray coatings. Wiley, Chichester/New YorkGoogle Scholar
  2. 2.
    Schneider KE, Belashchenko V, Dratwinski M, Siegmann S, Zagorski A (2006) Thermal spraying for power generation components. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimCrossRefGoogle Scholar
  3. 3.
    Markocsan N, Gupta M, Joshi S, Nylén P, Li XH, Wigren J (2017) Liquid feedstock plasma spraying: an emerging process for advanced thermal barrier coatings. J Therm Spray Technol 26(6):1104–1114. Springer New York LLCCrossRefGoogle Scholar
  4. 4.
    Fauchais P, Etchart-Salas R, Rat V, Coudert JF, Caron N, Wittmann-Ténèze K (2008) Parameters controlling liquid plasma spraying: solutions, sols, or suspensions. J Therm Spray Technol 17(1):31–59CrossRefGoogle Scholar
  5. 5.
    Karthikeyan J, Berndt CC, Reddy S, Wang J-Y, King AH, Herman H (2005) Nanomaterial deposits formed by DC plasma spraying of liquid feedstocks. J Am Ceram Soc 81(1):121–128CrossRefGoogle Scholar
  6. 6.
    Pawlowski L (2009) Suspension and solution thermal spray coatings. Surf Coat Technol 203(19):2807–2829CrossRefGoogle Scholar
  7. 7.
    Lima RS, Marple BR (2007) Thermal spray coatings engineered from nanostructured ceramic agglomerated powders for structural, thermal barrier and biomedical applications: a review. J Therm Spray Technol 16(1):40–63CrossRefGoogle Scholar
  8. 8.
    Qiao Y, Fischer TE, Dent A (2003) The effects of fuel chemistry and feedstock powder structure on the mechanical and tribological properties of HVOF thermal-sprayed WC-Co coatings with very fine structures. Surf Coat Technol 172(1):24–41CrossRefGoogle Scholar
  9. 9.
    Govindarajan S, Dusane RO, Joshi SV (2011) In situ particle generation and splat formation during solution precursor plasma spraying of Yttria-stabilized zirconia coatings. J Am Ceram Soc 94(12):4191–4199CrossRefGoogle Scholar
  10. 10.
    Mahade S, Narayan K, Govindarajan S, Björklund S, Curry N, Joshi S (2019) Exploiting suspension plasma spraying to deposit wear-resistant carbide coatings. Materials 12(15):2344CrossRefGoogle Scholar
  11. 11.
    Fauchais P et al (2013) Suspension and solution plasma spraying. J Phys D Appl Phys 46(22)CrossRefGoogle Scholar
  12. 12.
    Fauchais P, Montavon G, Lima RS, Marple BR (2011) Engineering a new class of thermal spray nano-based microstructures from agglomerated nanostructured particles, suspensions and solutions: an invited review. J Phys D Appl Phys 44(9):093001CrossRefGoogle Scholar
  13. 13.
    Fauchais P, Montavon G (2010) Latest developments in suspension and liquid precursor thermal spraying. J Therm Spray Technol 19(1–2):226–239CrossRefGoogle Scholar
  14. 14.
    Tesar T, Musalek R, Medricky J, Cizek J (2019) On growth of suspension plasma-sprayed coatings deposited by high-enthalpy plasma torch. Surf Coat Technol 371:333–343CrossRefGoogle Scholar
  15. 15.
    Zhou D, Guillon O, Vaßen R (2017) Development of YSZ thermal barrier coatings using axial suspension plasma spraying. Coatings 7(8):120CrossRefGoogle Scholar
  16. 16.
    Bai M, Maher H, Pala Z, Hussain T (2018) Microstructure and phase stability of suspension high velocity oxy-fuel sprayed yttria stabilised zirconia coatings from aqueous and ethanol based suspensions. J Eur Ceram Soc 38(4):1878–1887CrossRefGoogle Scholar
  17. 17.
    Karthikeyan J, Berndt CC, Tikkanen J, Wang JY, King AH, Herman H (1997) Nanomaterial powders and deposits prepared by flame spray processing of liquid precursors. Nanostructured Mater 8(1):61–74CrossRefGoogle Scholar
  18. 18.
    Gell M et al (2008) Thermal barrier coatings made by the solution precursor plasma spray process. J Therm Spray Technol 17(1):124–135CrossRefGoogle Scholar
  19. 19.
    Coyle TW, Wang Y (2007) Solution precursor plasma spray (SPPS) of Ni-YSZ SOFC anode coatings. In: Thermal spray 2007: global coating solutions, pp 699–704Google Scholar
  20. 20.
    Jordan EH, Gell M, Jiang C, Wang J, Nair B (2014) High temperature thermal barrier coating made by the solution precursor plasma spray process. In: Volume 6: ceramics; controls, diagnostics and instrumentation; education; manufacturing materials and metallurgyGoogle Scholar
  21. 21.
    Lohia A, Sivakumar G, Ramakrishna M, Joshi SV (2014) Deposition of nanocomposite coatings employing a hybrid APS + SPPS technique. J Therm Spray Technol 23:1054–1064CrossRefGoogle Scholar
  22. 22.
    Karthikeyan J, Berndt CC, Tikkanen J, Reddy S, Herman H (1997) Plasma spray synthesis of nanomaterial powders and deposits. Mater Sci Eng A 238(2):275–286CrossRefGoogle Scholar
  23. 23.
    Padture NP et al (2001) Towards durable thermal barrier coatings with novel microstructures deposited by solution-precursor plasma spray. Acta Mater 49(12):2251–2257CrossRefGoogle Scholar
  24. 24.
    Jordan EH et al (2004) Superior thermal barrier coatings using solution precursor plasma spray. J Therm Spray Technol 13(1):57–65CrossRefGoogle Scholar
  25. 25.
    Gell M, Xie L, Ma X, Jordan EH, Padture NP (2004) Highly durable thermal barrier coatings made by the solution precursor plasma spray process. Surf Coat Technol 177–178:97–102CrossRefGoogle Scholar
  26. 26.
    Dom R, Sivakumar G, Hebalkar NY, Joshi SV, Borse PH (2012) Deposition of nanostructured photocatalytic zinc ferrite films using solution precursor plasma spraying. Mater Res Bull 47(3):562–570CrossRefGoogle Scholar
  27. 27.
    Garcia E, Zhang ZB, Coyle TW, Hao SE, Mu SL (2007) Liquid precursors plasma spraying of TiO2 and Ce- doped Ba(Zr0.2Ti0.8)O3 coatings. In: Thermal spray 2007: global coating solutions, pp 650–654Google Scholar
  28. 28.
    Ma TD, Ge XQ, Zhang SH, Roth YD, Xiao J (2004) Solution plasma spray synthesis of NiZnFe2O4 magnetic nanocomposite thick films. In: International thermal spray conference 2004Google Scholar
  29. 29.
    Ma XQ, Roth J, Gandy DW, Frederick GJ (2006) A new high-velocity oxygen fuel process for making finely structured and highly bonded Inconel alloy layers from liquid feedstock. In: Proceedings of the international thermal spray conference, 2006, pp 670–675CrossRefGoogle Scholar
  30. 30.
    Joshi SV, Sivakumar G, Raghuveer T, Dusane RO (2014) Hybrid plasma-sprayed thermal barrier coatings using powder and solution precursor feedstock. J Therm Spray Technol 23(4):616–624CrossRefGoogle Scholar
  31. 31.
    Gopal V, Goel S, Manivasagam G, Joshi S (2019) Performance of hybrid powder-suspension axial plasma sprayed Al2O3-YSZ coatings in bovine serum solution. Materials 12(12):1922CrossRefGoogle Scholar
  32. 32.
    Kassner H, Siegert R, Hathiramani D, Vassen R, Stoever D (2008) Application of suspension plasma spraying (SPS) for manufacture of ceramic coatings. J Therm Spray Technol 17(1):115–123CrossRefGoogle Scholar
  33. 33.
    Toma FL, Potthoff A, Berger LM, Leyens C (2015) Demands, potentials, and economic aspects of thermal spraying with suspensions: a critical review. J Therm Spray Technol 24(7):1143–1152CrossRefGoogle Scholar
  34. 34.
    Vaen R, Kaner H, Mauer G, Stöver D (2010) Suspension plasma spraying: process characteristics and applications. J Therm Spray Technol 19(1–2):219–225Google Scholar
  35. 35.
    Rampon R, Marchand O, Filiatre C, Bertrand G (2008) Influence of suspension characteristics on coatings microstructure obtained by suspension plasma spraying. Surf Coat Technol 202(18):4337–4342CrossRefGoogle Scholar
  36. 36.
    Pateyron B, Calve N, Pawłowski L (2013) Influence of water and ethanol on transport properties of the jets used in suspension plasma spraying. Surf Coat Technol 220:257–260CrossRefGoogle Scholar
  37. 37.
    Ganvir A (2018) Design of suspension plasma sprayed thermal barrier coatings. Ph.D. thesis, University West, ISBN 978-91-87531-92-7, TrollhättanGoogle Scholar
  38. 38.
    Fazilleau J, Delbos C, Rat V, Coudert JF, Fauchais P, Pateyron B (2006) Phenomena involved in suspension plasma apraying part 1: suspension injection and behavior. Plasma Chem Plasma Process 26(4):371–391CrossRefGoogle Scholar
  39. 39.
    Mahade S (2018) Functional performance of gadolinium Zirconate/Yttria stabilized zirconia multi-layered thermal barrier coatings. Ph.D. thesis, ISBN 978-91-87531-86-6, TrollhättanGoogle Scholar
  40. 40.
    Fauchais P, Rat V, Coudert JF, Etchart-Salas R, Montavon G (2008) Operating parameters for suspension and solution plasma-spray coatings. Surf Coat Technol 202(18):4309–4317CrossRefGoogle Scholar
  41. 41.
    Kaßner H, Vaßen R, Stöver D (2008) Study on instant droplet and particle stages during suspension plasma spraying (SPS). Surf Coat Technol 202(18):4355–4361CrossRefGoogle Scholar
  42. 42.
    Oberste-Berghaus J, Bouaricha S, Legoux J-G, Moreau C (2005) Injection conditions and in-flight particles states in suspension plasma spraying of alumina and zirconia nano-ceramics. In: Thermal spray 2005: proceedings of the international thermal spray conference, pp 512–518Google Scholar
  43. 43.
    Aranke O (2018) Effect of spray parameters on micro-structure and lifetime of suspension plasma sprayed thermal barrier coatings. Master Thesis, University West, URN: urn:nbn:se:hv:diva-12986, TrollhättanGoogle Scholar
  44. 44.
    Vanevery K et al (2011) Column formation in suspension plasma-sprayed coatings and resultant thermal properties. J Therm Spray Technol 20(4):817–828CrossRefGoogle Scholar
  45. 45.
    Ganvir A, Curry N, Björklund S, Markocsan N, Nylén P (2015) Characterization of microstructure and thermal properties of YSZ coatings obtained by axial suspension plasma spraying (ASPS). J Therm Spray Technol 24(7):1195–1204CrossRefGoogle Scholar
  46. 46.
    Guo H, Kuroda S, Murakami H (2006) Microstructures and properties of plasma-sprayed segmented thermal barrier coatings. J Am Ceram Soc 89(4):1432–1439CrossRefGoogle Scholar
  47. 47.
    Carpio P et al (2013) Correlation of thermal conductivity of suspension plasma sprayed yttria stabilized zirconia coatings with some microstructural effects. Mater Lett 107:370–373CrossRefGoogle Scholar
  48. 48.
    Schwingel D, Taylor R, Haubold T, Wigren J, Gualco C (1998) Mechanical and thermophysical properties of thick PYSZ thermal barrier coatings: correlation with microstructure and spraying parameters. Surf Coat Technol 108–109(1–3):99–106CrossRefGoogle Scholar
  49. 49.
    Ganvir A, Markocsan N, Joshi S (2016) Influence of isothermal heat treatment on porosity and crystallite size in axial suspension plasma sprayed thermal barrier coatings for gas turbine applications. Coatings 7(1):4CrossRefGoogle Scholar
  50. 50.
    Stecura S (1979) Effects of compositional changes on the performance of a thermal barrier coating system for aircraft gas turbine engines. In: Presented at the American ceramic society, annual conference on composites and advanced materials, Merritt IslandGoogle Scholar
  51. 51.
    Aygun A, Vasiliev AL, Padture NP, Ma X (2007) Novel thermal barrier coatings that are resistant to high-temperature attack by glassy deposits. Acta Mater 55(20):6734–6745CrossRefGoogle Scholar
  52. 52.
    Stöver D, Pracht G, Lehmann H, Dietrich M, Döring J-E, Vaßen R (2004) New material concepts for the next generation of plasma-sprayed thermal barrier coatings. J Therm Spray Technol 13(1):76–83CrossRefGoogle Scholar
  53. 53.
    Leckie RM, Krämer S, Rühle M, Levi CG (2005) Thermochemical compatibility between alumina and ZrO2–GdO3/2 thermal barrier coatings. Acta Mater 53(11):3281–3292CrossRefGoogle Scholar
  54. 54.
    Jarligo MO, Mack DE, Vassen R, Stöver D (2009) Application of plasma-sprayed complex perovskites as thermal barrier coatings. J Therm Spray Technol 18(2):187–193CrossRefGoogle Scholar
  55. 55.
    Ma W, Mack D, Malzbender J, Vaßen R, Stöver D (2008) Yb2O3 and Gd2O3 doped strontium zirconate for thermal barrier coatings. J Eur Ceram Soc 28(16):3071–3081CrossRefGoogle Scholar
  56. 56.
    Padture NP, Klemens PG (2005) Low thermal conductivity in garnets. J Am Ceram Soc 80(4):1018–1020CrossRefGoogle Scholar
  57. 57.
    Guo X, Lu Z, Jung Y-G, Li L, Knapp J, Zhang J (2016) Thermal properties, thermal shock, and thermal cycling behavior of Lanthanum Zirconate-based thermal barrier coatings. Metall Mater Trans E 3(2):64–70Google Scholar
  58. 58.
    Vaßen R, Jarligo MO, Steinke T, Mack DE, Stöver D (2010) Overview on advanced thermal barrier coatings. Surf Coat Technol 205(4):938–942CrossRefGoogle Scholar
  59. 59.
    Clarke DR, Phillpot SR (2005) Thermal barrier coating materials. Mater Today 8(6):22–29CrossRefGoogle Scholar
  60. 60.
    Vassen R, Cao X, Tietz F, Basu D, Stöver D (2000) Zirconates as new materials for thermal barrier coatings. J Am Ceram Soc 83(8):2023–2028CrossRefGoogle Scholar
  61. 61.
    Wu J et al (2004) Low-thermal-conductivity rare-earth zirconates for potential thermal-barrier-coating applications. J Am Ceram Soc 85(12):3031–3035CrossRefGoogle Scholar
  62. 62.
    Mahade S, Curry N, Björklund S, Markocsan N, Nylén P, Vaßen R (2017) Functional performance of Gd2Zr2O7/YSZ multi-layered thermal barrier coatings deposited by suspension plasma spray. Surf Coat Technol 318:208–216CrossRefGoogle Scholar
  63. 63.
    Drexler JM, Ortiz AL, Padture NP (2012) Composition effects of thermal barrier coating ceramics on their interaction with molten Ca-Mg-Al-silicate (CMAS) glass. Acta Mater 60(15):5437–5447CrossRefGoogle Scholar
  64. 64.
    Gledhill AD, Reddy KM, Drexler JM, Shinoda K, Sampath S, Padture NP (2011) Mitigation of damage from molten fly ash to air-plasma-sprayed thermal barrier coatings. Mater Sci Eng A 528(24):7214–7221CrossRefGoogle Scholar
  65. 65.
    Bakan E, Mack DE, Mauer G, Vaßen R (2014) Gadolinium Zirconate/YSZ thermal barrier coatings: plasma spraying, microstructure, and thermal cycling behavior. J Am Ceram Soc 97(12):4045–4051CrossRefGoogle Scholar
  66. 66.
    Zhong X et al (2014) Thermal shock behavior of toughened gadolinium zirconate/YSZ double-ceramic-layered thermal barrier coating. J Alloys Compd 593:50–55CrossRefGoogle Scholar
  67. 67.
    Lee KS, Lee DH, Kim TW (2014) Microstructure controls in Gadolinium Zirconate/YSZ double layers and their properties. J Ceram Soc Japan 122(1428):668–673CrossRefGoogle Scholar
  68. 68.
    Bakan E, Mack DE, Mauer G, Mücke R, Vaßen R (2015) Porosity–property relationships of plasma-sprayed Gd2Zr2O7/YSZ thermal barrier coatings. J Am Ceram Soc 98(8):2647–2654CrossRefGoogle Scholar
  69. 69.
    Mahade S, Curry N, Björklund S, Markocsan N, Nylén P (2015) Thermal conductivity and thermal cyclic fatigue of multilayered Gd2Zr2O7/YSZ thermal barrier coatings processed by suspension plasma spray. Surf Coat Technol 283:329–336CrossRefGoogle Scholar
  70. 70.
    Mahade S, Li R, Curry N, Björklund S, Markocsan N, Nylén P (2016) Isothermal oxidation behavior of Gd2Zr2O7/YSZ multilayered thermal barrier coatings. Int J Appl Ceram Technol 13(3):443–450CrossRefGoogle Scholar
  71. 71.
    Mahade S, Curry N, Björklund S, Markocsan N, Nylén P, Vaßen R (2017) Erosion performance of gadolinium Zirconate-based thermal barrier coatings processed by suspension plasma spray. J Therm Spray Technol 26(1–2):108–115CrossRefGoogle Scholar
  72. 72.
    Mahade S, Zhou D, Curry N, Markocsan N, Nylén P, Vaßen R (2019) Tailored microstructures of gadolinium zirconate/YSZ multi-layered thermal barrier coatings produced by suspension plasma spray: durability and erosion testing. J Mater Process Technol 264:283–294CrossRefGoogle Scholar
  73. 73.
    Algenaid W, Ganvir A, Filomena Calinas R, Varghese J, Rajulapati K, Joshi S (2019) Influence of microstructure on the erosion behaviour of suspension plasma sprayed thermal barrier coatings. Surf Coat Technol 375:86–99CrossRefGoogle Scholar
  74. 74.
    Ganvir A, Joshi S, Markocsan N, Vassen R (2018) Tailoring columnar microstructure of axial suspension plasma sprayed TBCs for superior thermal shock performance. Mater Des 144:192–208CrossRefGoogle Scholar
  75. 75.
    Ganvir A, Filomena R, Markocsan N, Curry N, Joshi S (2019) Experimental visualization of microstructure evolution during suspension plasma spraying of thermal barrier coatings. J Eur Ceram Soc 39(2–3):470–481CrossRefGoogle Scholar
  76. 76.
    Goel S, Björklund S, Curry N, Wiklund U, Joshi SV (2017) Axial suspension plasma spraying of Al2O3coatings for superior tribological properties. Surf Coat Technol 315:80–87CrossRefGoogle Scholar
  77. 77.
    Aranke O, Algenaid W, Awe S, Joshi S (2019) Coatings for automotive gray cast iron brake discs: a review. Coatings 9:552CrossRefGoogle Scholar
  78. 78.
    Mubarok F, Espallargas N (2015) Suspension plasma spraying of sub-micron silicon carbide composite coatings. J Therm Spray Technol 24(5):817–825CrossRefGoogle Scholar
  79. 79.
    Berghaus JO, Marple B, Moreau C (2006) Suspension plasma spraying of nanostructured WC-12Co coatings. J Therm Spray Technol 15:676–681CrossRefGoogle Scholar
  80. 80.
    Tejero-Martin D, Rezvani Rad M, McDonald A, Hussain T (2019) Beyond traditional coatings: a review on thermal-sprayed functional and smart coatings. J Therm Spray Technol 28(4):598–644. Springer New York LLCCrossRefGoogle Scholar
  81. 81.
    Robinson BW et al (2015) Suspension plasma sprayed coatings using dilute hydrothermally produced titania feedstocks for photocatalytic applications. J Mater Chem A 3(24):12680–12689CrossRefGoogle Scholar
  82. 82.
    Jian Zhou S, Bai Y, Ma W, dong Chen W (2019) Suspension plasma-sprayed fluoridated hydroxyapatite/calcium silicate composite coatings for biomedical applications. J Therm Spray Technol 28(5):1025–1038CrossRefGoogle Scholar
  83. 83.
    Nielsen ML, Hamilton PM, Walsh RJ (1963) Ultrafine metal oxides by decomposition of salts in a flame. In: Kuhn WE, Lamprey H, Sheer C (eds) Ultrafine particles. Wiley, New York, p 181Google Scholar
  84. 84.
    Bhatia T et al (2002) Mechanisms of ceramic coating deposition in solution-precursor plasma spray. J Mater Res 17(9):2363–2372CrossRefGoogle Scholar
  85. 85.
    Chen D, Jordan EH, Gell M (2008) Effect of solution concentration on splat formation and coating microstructure using the solution precursor plasma spray process. Surf Coat Technol 202(10):2132–2138CrossRefGoogle Scholar
  86. 86.
    Xie L et al (2006) Formation of vertical cracks in solution-precursor plasma-sprayed thermal barrier coatings. Surf Coat Technol 201(3–4):1058–1064CrossRefGoogle Scholar
  87. 87.
    Jiang C, Jordan EH, Harris AB, Gell M, Roth J (2015) Double-layer gadolinium zirconate/yttria-stabilized zirconia thermal barrier coatings deposited by the solution precursor plasma spray process. J Therm Spray Technol 24(6):895–906CrossRefGoogle Scholar
  88. 88.
    Tummala R, Guduru RK, Mohanty PS (2012) Solution precursor plasma deposition of nanostructured CdS thin films. Mater Res Bull 47(3):700–707CrossRefGoogle Scholar
  89. 89.
    Gell M, Wang J, Kumar R, Roth J, Jiang C, Jordan EH (2018) Higher temperature thermal barrier coatings with the combined use of yttrium aluminum garnet and the solution precursor plasma spray process. J Therm Spray Technol 27(4):543–555CrossRefGoogle Scholar
  90. 90.
    Viswanathan V, Filmalter R, Patil S, Deshpande S, Seal S (2007) High-temperature oxidation behavior of solution precursor plasma sprayed Nanoceria coating on martensitic steels. J Am Ceram Soc 90(3):870–877CrossRefGoogle Scholar
  91. 91.
    Singh V, Karakoti A, Kumar A, Saha A, Basu S, Seal S (2010) Precursor dependent microstructure evolution and nonstoichiometry in nanostructured cerium oxide coatings using the solution precursor plasma spray technique. J Am Ceram Soc 93(11):3700–3708CrossRefGoogle Scholar
  92. 92.
    Michaux P, Montavon G, Grimaud A, Denoirjean A, Fauchais P (2010) Elaboration of porous NiO/8YSZ layers by several SPS and SPPS routes. J Therm Spray Technol 19(1–2):317–327CrossRefGoogle Scholar
  93. 93.
    Wang Y, Coyle TW (2011) Solution precursor plasma spray of porous La1-xSrx MnO3 perovskite coatings for SOFC cathode application. J Fuel Cell Sci Technol 8(2)Google Scholar
  94. 94.
    Chen D, Jordan EH, Renfro MW, Gell M (2009) Dy: YAG phosphor coating using the solution precursor plasma spray process. J Am Ceram Soc 92(1):268–271CrossRefGoogle Scholar
  95. 95.
    Laine RM, Marchal JC, Sun HP, Pan XQ (2006) Nano-α-Al2O3 by liquid-feed flame spray pyrolysis. Nat Mater 5(9):710–712CrossRefGoogle Scholar
  96. 96.
    Jun BS, Lee SJ, Messing GL (2006) Synthesis of Nano-scaled α-Al2O3 particles by combustion spray pyrolysis. Key Eng Mater 317–318:207–210CrossRefGoogle Scholar
  97. 97.
    Hinklin T et al (2004) Liquid-feed flame spray pyrolysis of metalloorganic and inorganic alumina sources in the production of nanoalumina powders. Chem Mater 16(1):21–30CrossRefGoogle Scholar
  98. 98.
    Smith RM, Zhou XD, Huebner W, Anderson HU (2004) Novel yttrium-stabilized zirconia polymeric precursor for the fabrication of thin films. J Mater Res 19(9):2708–2713CrossRefGoogle Scholar
  99. 99.
    Ismail HM, Hussein GAM (1996) Texture properties of yttrium oxides generated from different inorganic precursors. Powder Technol 87(1):87–92CrossRefGoogle Scholar
  100. 100.
    Chen D, Jordan EH, Gell M, Ma X (2008) Dense TiO2 coating using the solution precursor plasma spray process. J Am Ceram Soc 91(3):865–872CrossRefGoogle Scholar
  101. 101.
    Sivakumar G, Ramakrishna M, Dusane RO, Joshi SV (2015) Effect of SPPS process parameters on in-flight particle generation and splat formation to achieve pure α-Al2O3 coatings. J Therm Spray Technol 24(7):1221–1234CrossRefGoogle Scholar
  102. 102.
    Schlichting KW, Padture NP, Jordan EH, Gell M (2003) Failure modes in plasma-sprayed thermal barrier coatings. Mater Sci Eng A 342(1–2):120–130CrossRefGoogle Scholar
  103. 103.
    Govindarajan S, Dusane RO, Joshi SV (2014) Understanding the formation of vertical cracks in solution precursor plasma sprayed yttria-stabilized zirconia coatings. J Am Ceram Soc 97(11):3396–3406CrossRefGoogle Scholar
  104. 104.
    Gell M, Xie L, Jordan EH, Padture NP (2004) Mechanisms of spallation of solution precursor plasma spray thermal barrier coatings. Surf Coat Technol 188–189(1-3. SPEC.ISS.):101–106CrossRefGoogle Scholar
  105. 105.
    Praveen K, Sravani N, Alroy RJ, Shanmugavelayutham G, Sivakumar G (2019) Hot corrosion behaviour of atmospheric and solution precursor plasma sprayed (La0.9Gd0.1)2Ce2O7 coatings in sulfate and vanadate environments. J Eur Ceram Soc 39(14):4233–4244CrossRefGoogle Scholar
  106. 106.
    Gao L, Guo H, Gong S, Xu H (2014) Plasma-sprayed La2Ce2O7 thermal barrier coatings against calcium-magnesium-alumina-silicate penetration. J Eur Ceram Soc 34(10):2553–2561CrossRefGoogle Scholar
  107. 107.
    Kumar R, Govindarajan S, Janardhana RKSK, Rao TN, Joshi SV, Anandan S (2016) Facile one-step route for the development of in situ Cocatalyst-modified Ti3+ self-doped TiO2 for improved visible-light photocatalytic activity. ACS Appl Mater Interfaces 8(41):27642–27653CrossRefGoogle Scholar
  108. 108.
    Dom R, Kumar GS, Hebalkar NY, Joshi SV, Borse PH (2013) Eco-friendly ferrite nanocomposite photoelectrode for improved solar hydrogen generation. RSC Adv 3(35):15217–15224CrossRefGoogle Scholar
  109. 109.
    Tummala R, Guduru RK, Mohanty PS (2011) Solution precursor plasma deposition of nanostructured ZnO coatings. Mater Res Bull 46(8):1276–1282CrossRefGoogle Scholar
  110. 110.
    Yu Z, Moussa H, Liu M, Schneider R, Moliere M, Liao H (2018) Solution precursor plasma spray process as an alternative rapid one-step route for the development of hierarchical ZnO films for improved photocatalytic degradation. Ceram Int 44(2):2085–2092CrossRefGoogle Scholar
  111. 111.
    Nehe P, Sivakumar G, Kumar S (2015) Solution precursor plasma spray (SPPS) technique of catalyst coating for hydrogen production in a single channel with cavities plate type methanol based microreformer. Chem Eng J 277:168–175CrossRefGoogle Scholar
  112. 112.
    Mohanty PS, Anton SBCMN, Guduru KR (2010) Direct thermal spray synthesis of Li ion battery components, US patent No. US20100323118A1Google Scholar
  113. 113.
    Varadaraajan V, Satishkumar BC, Nanda J, Mohanty P (2011) Direct synthesis of nanostructured V2O5 films using solution plasma spray approach for lithium battery applications. J Power Sources 196(24):10704–10711CrossRefGoogle Scholar
  114. 114.
    Chen D, Jordan EH, Renfro MW, Gell M (2012) Solution precursor plasma spray Eu: Y2O3 phosphor coating. Int J Appl Ceram Technol 9(3):636–641CrossRefGoogle Scholar
  115. 115.
    Golozar M, Chien K, Coyle TW (2012) Orthorhombic $α$-MoO3 coatings with lath-shaped morphology developed by SPPS: applications to super-capacitors. J Therm Spray Technol 21(3–4):469–479CrossRefGoogle Scholar
  116. 116.
    Guo XZ et al (2005) Synthesis of yttrium iron garnet (YIG) by citrate-nitrate gel combustion and precursor plasma spray processes. J Magn Magn Mater 295(2):145–154CrossRefGoogle Scholar
  117. 117.
    Killinger A, Gadow R, Mauer G, Guignard A, Vaen R, Stöver D (2011) Review of new developments in suspension and solution precursor thermal spray processes. J Therm Spray Technol 20(4):677–695CrossRefGoogle Scholar
  118. 118.
    Moign A, Vardelle A, Themelis NJ, Legoux JG (2010) Life cycle assessment of using powder and liquid precursors in plasma spraying: the case of yttria-stabilized zirconia. Surf Coat Technol 205(2):668–673CrossRefGoogle Scholar
  119. 119.
    Marr M, Kuhn J, Metcalfe C, Harris J, Kesler O (2014) Electrochemical performance of solid oxide fuel cells having electrolytes made by suspension and solution precursor plasma spraying. J Power Sources 245:398–405CrossRefGoogle Scholar
  120. 120.
    Joshi SV, Sivakumar G (2015) Hybrid processing with powders and solutions: a novel approach to deposit composite coatings. J Therm Spray Technol 24(7):1166–1186CrossRefGoogle Scholar
  121. 121.
    Björklund S, Goel S, Joshi S (2018) Function-dependent coating architectures by hybrid powder-suspension plasma spraying: injector design, processing and concept validation. Mater Des 142:56–65CrossRefGoogle Scholar
  122. 122.
    Sivakumar G, Banerjee S, Raja VS, Joshi SV (2018) Hot corrosion behavior of plasma sprayed powder-solution precursor hybrid thermal barrier coatings. Surf Coat Technol 349:452–461CrossRefGoogle Scholar
  123. 123.
    Ajay A, Raja VS, Sivakumar G, Joshi SV (2015) Hot corrosion behavior of solution precursor and atmospheric plasma sprayed thermal barrier coatings. Corros Sci 98:271–279CrossRefGoogle Scholar
  124. 124.
    Tesar T, Musalek R, Lukac F, Medricky J, Cizeka J, Rimal V, Joshi S, Chraska T (2019) Increasing α-phase content of alumina-chromia coatings deposited by suspension plasma spraying using hybrid and intermixed concepts. Surf Coat Technol 371:298–311CrossRefGoogle Scholar
  125. 125.
    Chen D, Gell M, Jordan EH, Cao E, Ma X (2007) Thermal stability of air plasma spray and solution precursor plasma spray thermal barrier coatings. J Am Ceram Soc 90(10):3160–3166CrossRefGoogle Scholar
  126. 126.
    Duarte W, Rossignol S, Vardelle M (2014) La2Zr2O7(LZ) coatings by liquid feedstock plasma spraying: the role of precursors. J Therm Spray Technol 23(8):1425–1435CrossRefGoogle Scholar
  127. 127.
    Candidato RT, Sokołowski Pawełand L, Pawłowski G, Lecomte-Nana CC, Denoirjean A (2017) Development of hydroxyapatite coatings by solution precursor plasma spray process and their microstructural characterization. Surf Coat Technol 318:39–49CrossRefGoogle Scholar
  128. 128.
    Wang WZ, Coyle T, Zhao D (2014) Preparation of lanthanum zirconate coatings by the solution precursor plasma spray. J Therm Spray Technol 23(5):827–832CrossRefGoogle Scholar
  129. 129.
    Sivakumar G, Dusane RO, Joshi SV (2013) A novel approach to process phase pure α-Al2O3 coatings by solution precursor plasma spraying. J Eur Ceram Soc 33(13–14):2823–2829CrossRefGoogle Scholar
  130. 130.
    Sanpo N, Siao A, Ang M, Hasan F, Wang J, Berndt CC (2012) Phases and microstructures of solution precursor plasma sprayed cobalt ferrite splats. In: Proceedings of 5th Asian thermal spray conference, pp 145–146Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • S. Joshi
    • 1
    Email author
  • N. Markocsan
    • 1
  • P. Nylén
    • 1
  • G. Sivakumar
    • 2
  1. 1.University WestTrollhättanSweden
  2. 2.International Advanced Research Centre for Powder Metallurgy & New Materials (ARCI)HyderabadIndia

Section editors and affiliations

  • L. Rama Krishna
    • 1
  1. 1.International Advanced Research Centre for Powder Metallurgy and New MaterialsBalapur, HyderabadIndia

Personalised recommendations