Advertisement

Advanced SiC-SiC Composites for Nuclear Application

  • Tetsuji NodaEmail author
Living reference work entry

Abstract

The progress of the development of SiC fiber-reinforced SiC (SiC/SiC) composites focusing on applying the composites to nuclear fusion systems is overviewed. The physical and mechanical properties of SiC/SiC composites prepared with chemical vapor infiltration (CVI), polymer impregnation and pyrolysis (PIP), reaction sintering (RS), and liquid-phase sintering (LPS) are presented. Among various SiC/SiC composites, LPS SiC/SiC composite, so-called nano-powder infiltration and transient eutectoid (NITE) process, with a density close to that of monolithic SiC shows the highest thermal conductivity and mechanical properties. CVI and NITE SiC/SiC composites demonstrate excellent neutron irradiation resistance on thermal conductivity, swelling, flexural strength, and creep properties at temperatures up to 1000 °C. The composites also offer low induced activity, favorable chemical compatibility with liquid candidate coolant of Pb-Li and solid breeder materials, and preferable joining characteristics.

Keywords

SiC/SiC composites CVI Liquid-phase sintering Mechanical properties Neutron irradiation Compatibility Joining 

Abbreviation

A-SSTR

Advanced steady-state tokamak reactor

BMAS

BaO2-MgO-Al2O3-SiO2

BSR

Bend stress relaxation

CMC

Ceramic matrix composite

CVI

Chemical vapor infiltration

D-T

Deuterium-tritium

FCVI

Forced-thermal gradient chemical vapor infiltration

HP

Hot pressing

ITER

International Thermonuclear Experimental Reactor

LPS

Liquid phase sintering

NITE

Nano-powder infiltration and transient eutectoid

PCS

Polycarbosilane

PIP

Polymer impregnation and pyrolysis

PMS

Polymethylsilane

PVS

Polyvinylsilane

RS

Reaction sintering

SEMB

Single-edge notched beam

SiC/SiC

SiC fiber-reinforced SiC

TBM

Test blanket modules

References

  1. 1.
    Ogasawara T (2004) Recent research activities regarding SiC-based ceramic composites for aerospace applications. J Plasma Fusion Res 80:36–41CrossRefGoogle Scholar
  2. 2.
    Mizuta N, Ueta S, Aihara J, Shibata T (2017) Confirmation of feasibility of fabrication technology and characterization of high-packing fraction fuel compact for HTGR, JAEA-Technol. 2017-004Google Scholar
  3. 3.
    Price RJ (1973) Neutron irradiation-induced voids in β-silicon carbide. J Nucl Mater 48:47–57CrossRefGoogle Scholar
  4. 4.
    Yajima S, Hayashi J, Omori M, Okamura K (1976) Development of a silicon carbide fibre with high tensile strength. Nature 261:683–685CrossRefGoogle Scholar
  5. 5.
    Hopkins G, Cheng ET (1983) Low activation fusion rationale. Nucl Technol 4:528–544Google Scholar
  6. 6.
    Deck CP, Jacobsen GM, Sheeder J, Gutierrez O, Zhang J, Stone J, Khalifa HE, Back CA (2015) Characterization of SiC-SiC composites for accident tolerant fuel cladding. J Nucl Mater 466:667–681CrossRefGoogle Scholar
  7. 7.
    Takeda M, Sakamoto J, Imai Y, Ichikawa H (1999) Thermal stability of the low-oxygen-content silicon carbide fiber, Hi-NicalonTM. Compos Sci Technol 59:813–819CrossRefGoogle Scholar
  8. 8.
    Ichikawa H, Takeda M, Seguchi T, Okamura K (2000) Development of super heat-resistant silicon carbide fiber. Materia Japan 39:190–192CrossRefGoogle Scholar
  9. 9.
    Takeda M, Sakamoto J, Saeki A, Ichikawa H (2008) High performance silicon carbide fiber Hi-Nicalon for ceramic matrix composites. Ceram Eng Sci Proc 16:37–44CrossRefGoogle Scholar
  10. 10.
    Lipowitz J, Rabe JA, Zangvil A, Xu Y (1997) Structure and properties of Sylramic™ silicon carbide fiber – a polycrystalline, stoichiometric β – SiC composition. Ceram Eng Sci Proc 18:147–157CrossRefGoogle Scholar
  11. 11.
    Morishita K, Ochiai S, Okuda H, Ishikawa T, Sato M, Inoue T (2006) Fracture toughness of a crystalline silicon carbide fiber (Tyranno-SA3®). J Am Ceram Soc 89:2571–2576CrossRefGoogle Scholar
  12. 12.
    Ishikawa T, Kaji S, Matsunaga K, Hogami T, Kohtoku Y (1995) Structure and properties of Si-Ti-C-O fibre-bonded ceramic material. J Mater Sci 30:6218–6222CrossRefGoogle Scholar
  13. 13.
    Noda T, Araki H, Suzuki H (1994) Processing of high-purity SiC composites by chemical vapor infiltration (CVI). J Nucl Mater 212-215:823–829CrossRefGoogle Scholar
  14. 14.
    Naslain R, Langlais F (1986) CVD-processing of ceramic composite materials. In: Tressler RE et al (eds) Tailoring multiphase and composite ceramics, Materials science research, vol 20. Plenum Press, New York, pp 145–164CrossRefGoogle Scholar
  15. 15.
    Besmann TM, Sheldon BW, Lowden RA, Stinton DP (1991) Vapor-phase fabrication and properties of continuous-filament ceramic composites. Science 253:1104–1109CrossRefGoogle Scholar
  16. 16.
    Noda T, Kohyama A, Katoh Y (2001) Recent progress of SiC-fibers and SiC/SiC-composites for fusion applications. Phys Scr T91:124–129CrossRefGoogle Scholar
  17. 17.
    Yang W, Kohyama A, Katoh Y, Araki H, Yu J, Noda T (2003) Effect of carbon and silicon carbide/carbide interlayers on the mechanical behavior of Tyranno-SA-fiber-reinforced silicon carbide-matrix composites. J Am Ceram Soc 86:851–856CrossRefGoogle Scholar
  18. 18.
    Yang W, Noda T, Araki H, Yu J, Kohyama A (2003) Mechanical properties of several advanced Tyranno-SA fiber reinforced CVI-SiC matrix composites. Mater Sci Eng A345:28–35CrossRefGoogle Scholar
  19. 19.
    Yang W, Araki H, Kohyama A, Busabok C, Hu Q, Suzuki H, Noda T (2003) Flexual strength of plain-woven Tyranno-SA fiber-reinforced SiC matrix composite. Mater Trans 44:1797–1801CrossRefGoogle Scholar
  20. 20.
    Yang W, Araki H, Tang C, Thaveethavorn S, Kohyama A, Suzuki H, Noda T (2005) Single-crystal SiC nanowires with a thin carbon coating for stronger and tougher ceramic composites. Adv Mater 17:1519–1523CrossRefGoogle Scholar
  21. 21.
    Suyama S, Kameda T, Itoh Y (2001) Evaluation of microstructure, mechanical and thermal properties of SiC/SiC composites. J Ceram Soc Japan 109:619–626CrossRefGoogle Scholar
  22. 22.
    Kotani M, Kohyama A, Okamura K, Inoue T (1999) Fabrication of high performance SiC/SiC composite by polymer impregnation and pyrolysis method. Ceram Eng Sci Proc 20:309–316CrossRefGoogle Scholar
  23. 23.
    Dong SM, Katoh Y, Kohyama A, Schwab ST, Snead LL (2002) Microstructural evolution and mechanical performances of SiC/SiC composites by polymer impregnation/microwave pyrolysis (PIMP) process. Ceram Int 28:899–905CrossRefGoogle Scholar
  24. 24.
    Lee SP, Katoh Y, Hinoki T, Kotani M, Kohyama A, Suyama S, Itoh Y (2000) Microstructure and bending properties of SiC/SiC composites fabricated by reaction sintering process. Ceram Eng Sci Proc 21:339–346CrossRefGoogle Scholar
  25. 25.
    Kohyama A, Kishimoto H (2013) SiC/SiC composite materials for nuclear applications. Nucl Saf Simul 4:72–79Google Scholar
  26. 26.
    Dong S, Katoh Y, Kohyama A (2003) Preparation of SiC/SiC composites by hot pressing, using Tyaranno-SA fiber as reinforcement. J Am Ceram Soc 86:26–32CrossRefGoogle Scholar
  27. 27.
    Shimoda K, Kohyama A, Hinoki T (2009) High mechanical performance SiC/SiC composites by NITE process with tailoring of appropriate fabrication temperature to fiber fraction. Compos Sci Technol 69:1623–1628CrossRefGoogle Scholar
  28. 28.
    Katoh Y (2004) Status and properties of SiC-based ceramic composites for fusion and advanced fission applications. J Plasma Fusion Res 80:18–23CrossRefGoogle Scholar
  29. 29.
    Kohyama A (2012) Industrialization of advanced SiC/SiC composites for environment and energy. Materia Japan 51:383–385CrossRefGoogle Scholar
  30. 30.
    Yang W, Araki H, Kohyama A, Yu J, Noda T (2002) New Tyranno-Sa fiber reinforced CVi-SiC/SiC compolsite. J Mater Sci Lett 21:1411–1413CrossRefGoogle Scholar
  31. 31.
    Yang W, Araki H, Thaveethavorn S, Kohyama A, Yu J, Suzuki H, Noda T (2005) Advanced CVI-SiC/SiC composite with in-situ growth of SiC nanowires in the matrix as additional reinforcement. Mat Sci Forum 175-479:1009–1012CrossRefGoogle Scholar
  32. 32.
    Kotani M, Inoue T, Kohyama A, Katoh Y, Okamura K (2003) Effect of SiC particle dispersion on microstructure and mechanical properties of polymer-derived SiC/SiC composite. Mater Sci Eng A357:376–385CrossRefGoogle Scholar
  33. 33.
    Kotani M, Ximmer A, Matsuzaki S, Nishiyabu K, Tanaka S (2014) Improvement in matrix microstructure of SiC/SiC composites by incorporation of pore-forming powder. J Ceram Soc Jpn 122:863–869CrossRefGoogle Scholar
  34. 34.
    Kameda T, Suyama S, Itoh Y, Nishida K (1999) Development of reaction sintered silicon carbide matrix composite and tensile strength properties. J Ceram Soc Jpn 107:622–626CrossRefGoogle Scholar
  35. 35.
    Graves GA, Iden D (1994) CVD silicon carbide characterization, RL-TR-94-122Google Scholar
  36. 36.
    Youngblood GE, Jones RH, Kohyama A, Snead LL (1998) Radiation response of SiC-based fibers. J Nucl Mater 258-263:1551–1556CrossRefGoogle Scholar
  37. 37.
    Snead LL, ZinkIe SJ, Steiner D (1992) Radiation induced microstructure and mechanical property evolution of SiC/C/SiC composite materials. J Nucl Mater 191-194:560–565CrossRefGoogle Scholar
  38. 38.
    Yano T, Miyazaki H, Akiyoshi M, Iseki T (1998) X-ray diffractometry and high-resolution electron microscopy of neutron-irradiated SiC to a fluence of 1.9×1027 n/m2. J Nucl Mater 253:78–86CrossRefGoogle Scholar
  39. 39.
    Hollenberg GW, Henager CH Jr, Youngblood GE, Trimble DJ, Simonson SA, Newsome GA, Lewis E (1995) The effect of irradiation on the stability and properties of monolithic silicon carbide and SiCf/SiC composites up to 25 dpa. J Nucl Mater 219:70–86CrossRefGoogle Scholar
  40. 40.
    Zincle SJ, Snead LL (1998) Thermophysical and mechanical properties of SiC/SiC composites, DOE/ER-0313/24, 93–100Google Scholar
  41. 41.
    Katoh Y, Snead LL, Henager CH Jr, Hasegawa A, Kohyama A, Riccardi B, Hegeman H (2007) Current status and critical issues for development of SiC composites for fusion applications. J Nucl Mater 367-370:659–671CrossRefGoogle Scholar
  42. 42.
    Price RJ (1973) Neutron irradiation-induced voids in β-silicon carbide. J Nucl Mater 48:47–57CrossRefGoogle Scholar
  43. 43.
    Snead LL, Osbone MC, Lowden RA, Strizak J, Shinavski RJ, More KL, Eatherly WS, Bailey J, Williams AM (1998) Low dose irradiation performance of SiC interphase SiC/SiC composites. J Nucl Mater 253:20–30CrossRefGoogle Scholar
  44. 44.
    Jones RH, Giancarli L, Hasegawa A, Katoh Y, Kohyama A, Riccardi B, Snead LL, Weber WJ (2002) Promise and challenges of SiCf/SiC composites for fusion energy applications. J Nucl Mater 307-311:1057–1072CrossRefGoogle Scholar
  45. 45.
    Ozawa K, Nozawa T, Katoh Y, Hinoki T, Kohyama A (2007) Mechanical properties of advanced SiC/SiC composites after neutron irradiation. J Nucl Mater 367-370:713–718CrossRefGoogle Scholar
  46. 46.
    Katoh Y, Snead LL, Nozawa T, Kondo S, Busby J (2010) Thermophysical and mechanical properties of near-stoichiometric fiber CVI SiC/SiC composites after neutron irradiation at elevated temperatures. J Nucl Mater 403:48–61CrossRefGoogle Scholar
  47. 47.
    Katoh Y, Ozawa K, Shih C, Nozawa T, Shinavski RJ, Hasegawa A, Snead LL (2014) Continuous SiC fiber, CVI SiC matrix composites for nuclear applications: properties and irradiation effects. J Nucl Mater 448:448–476CrossRefGoogle Scholar
  48. 48.
    Nozawa T, Katoh Y, Snead LL (2009) The effect of neutron irradiation on the fiber/matrix interphase of silicon carbide composites. J Nucl Mater 384:195–211CrossRefGoogle Scholar
  49. 49.
    Nozawa T, Hinoki T, Katoh Y, Kohyama A (2002) Effects of fibers and fabrication processes on mechanical properties of neutron irradiated SiC/SiC composites. J Nucl Mater 307-311:1173–1177CrossRefGoogle Scholar
  50. 50.
    Hay JC, Snead LL (1999) Mechanical – and physical property changes of neutron-irradiated chemical-vapor-deposited silicon carbide. J Am Ceram Soc 82:2490–2496CrossRefGoogle Scholar
  51. 51.
    Nogami S, Hasegawa A, Snead LL (2002) Indentation fracture toughness of neutron irradiated silicon carbide. J Nucl Mater 207-211:1163–1167CrossRefGoogle Scholar
  52. 52.
    Hasegawa A (2004) Neutron irradiation effects in SiC and SiC/SiC composites. J Plasma Fusion Res 80:24–30CrossRefGoogle Scholar
  53. 53.
    Price RJ (1977) Properties of silicon carbide for nuclear fuel particle coatings. Nucl Technol 35:320–336CrossRefGoogle Scholar
  54. 54.
    Scholz R, Mueller R, Lesueur D (2002) Light ion irradiation creep of Textron SCS-6™ silicon carbide fibers. J Nucl Mater 307-311:1183–1186CrossRefGoogle Scholar
  55. 55.
    Specialty Materials, INC., SCS silicon carbide fiber, http://www.specmaterials.com/siliconcarbidefiber.htm
  56. 56.
    Seki Y, Kikuchi M, Ando T, Ohara Y, Nishio S, Seki M, Takizuka T, Tani K, Ozeki T, Koizumi K, Matsuda Y, Azumi M, Oikawa A, Madarame H, Mizoguchi T, Iida F, Ozawa Y, Mori S, Yamazaki S, Kobayashi T, Hirata S, Adachi J, Ikeda B, Suzuki Y, Ueda N, Kageyama T, Yamada M, Asahara M, Konishi K, Yokogawa N, Shinya K, Ozaki A, Takase H, Kobayashi S (1990) The steady state Tokamak reactor. In: Proceedings of 13th international conference on plasma physics and controlled fusion research, vol 3. IAEA, pp 473–485Google Scholar
  57. 57.
    Giancarli L, Ferrari M, Fuetterer MA, Malang S (2000) Candidate blanket concepts for a European fusion power plant study. Fusion Eng Des 49-50:445–456CrossRefGoogle Scholar
  58. 58.
    Giancarli L, Golfier H, Nishio S, Raffray R, Wong C, Yamada R (2002) Progress in blanket designs using SiCf/SiC composites. Fusion Eng Des 61-62:307–318CrossRefGoogle Scholar
  59. 59.
    Abdou A, Bromberg L, Brown T, Chan VC, Chu MC, Dahigren F, El-Guebaly L, Heitzenroeder P, Hendrson D, St. John HE, Kessel CE, Lao LL, Longhurst GR, Malang S, Mau TK, Merrill BJ, Miller RL, Mogahed E, Moore RL, Petrie T, Petti DA, Polizer P, Raffray AR, Steiner D, Sviatoslavsky I, Synder P, Syaebler GM, Turnbull AD, Tillack MS, Wagner LM, Wang X, West P, Wilson P (2006) The ARIES-AT advanced tokamak, advanced technology fusion power plant. Fusion Eng Des 80:3–23CrossRefGoogle Scholar
  60. 60.
    Nishio S, Tobita K, Ushigusa K, Konishi S, Reactor Design Team (2002) Conceptual design of Tokamak high power reactor (A-SSTR2). J Plasma Fusion Res 78:1218–1230CrossRefGoogle Scholar
  61. 61.
    Raffray AR, Akiba M, Chuyanov V, Giancarli L, Malang S (2002) Breeding blanket concepts for fusion and materials requirements. J Nucl Mater 307-311:21–30CrossRefGoogle Scholar
  62. 62.
    ITER – the way to new energy https://www.iter.org/
  63. 63.
    Konishi T, Enoeda M (2014) The current status of the world ITER test blanket module program. J Plasma Res 90:332–337Google Scholar
  64. 64.
    Conn RW, Holdren JP, Sharafat S, Steiner D, Ehst DA, Hogan WJ, Krakowski RA, Miller RL, Najmabadi F, Schultz KR (1990) Economic, safety and environmental prospects of fusion reactors. Nucl Fusion 30:1919–1934CrossRefGoogle Scholar
  65. 65.
    Seki Y, Tabara T, Aoki I, Ueda S, Nishio S, Kurihara R (1998) Impact of low activation materials on fusion reactor design. J Nucl Mater 258-263:1791–1797CrossRefGoogle Scholar
  66. 66.
    Noda T, Fujita M (1996) Effect of neutron spectra on the transmutation of first wall materials. J Nucl Mater 233-237:1491–1495CrossRefGoogle Scholar
  67. 67.
    Snead LL, Scholz R, Hasegawa A, Frias Rebelo A (2002) Experimental simulation of the effect of transmuted helium on the mechanical properties of silicon carbide. J Nucl Mater 307-311:1141–1145CrossRefGoogle Scholar
  68. 68.
    Kishimoto H, Katoh Y, Kohyama A (2002) Microstructural stability of SiC and SiC/SiC composites under high temperature irradiation environment. J Nucl Mater 307-311:1130–1134CrossRefGoogle Scholar
  69. 69.
    Causey RA, Wampier WR, Retelle JR, Kaae JL (1993) Tritium migration in vapor-deposited β-silicon carbide. J Nucl Mater 203:196–205CrossRefGoogle Scholar
  70. 70.
    Fenichi P, Scholz HW (1994) Advanced low-activation materials. Fibre-reinforced ceramic composites. J Nucl Mater 212-215:60–68CrossRefGoogle Scholar
  71. 71.
    Yoneoka T, Tanaka S, Terai T (2001) Compatibility of SiC/SiC composite materials with molten lithium metal and Li16-Pb84 eutectic alloy. Mater Trans, JIM 42:1019–1023CrossRefGoogle Scholar
  72. 72.
    Hubberstey P, Sample T (1997) Thermodynamics of the interactions between liquid breeders and ceramic coating materials. J Nucl Mater 248:140–146CrossRefGoogle Scholar
  73. 73.
    Sample T, Fenici P, Kolbe H, Orecchia L (1994) The compatibility of SiC/SiC composites with ceramic breeder materials. J Nucl Mater 212-215:1529–1533CrossRefGoogle Scholar
  74. 74.
    Hinoki T, Katoh Y, Snead LL, Jung HC, Ozawa K, Katsui H, Zhong ZH, Kondo S, Park YH, Shih C, Parish CM, Meiner RA, Hasegawa A (2013) Silicon carbide and silicon carbide composites for fusion reactor application. Mater Trans 54:472–476CrossRefGoogle Scholar
  75. 75.
    Naslain R (2004) Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Compos Sci Technol 64:155–170CrossRefGoogle Scholar
  76. 76.
    Katoh Y, Snead LL, Henager CH Jr, Nozawa T, Hinoki T, Ivekovic A, Novak S, Gonzalez de Vicente SM (2014) Current status and recent research achievements in SiC/SiC composites. J Nucl Mater 455:387–397CrossRefGoogle Scholar
  77. 77.
    Park JS, Kohyama A, Hinoki T, Shimoda K, Park YH (2007) Efforts on large scale production of NITE-SiC/SiC composites. J Nucl Mater 367-370:719–724CrossRefGoogle Scholar
  78. 78.
    Henager CH Jr, Kurtz RJ (2011) Low-activation joining of SiC/SiC composites for fusion applications. J Nucl Mater 417:375–378CrossRefGoogle Scholar
  79. 79.
    Riccardi B, Giancarli L, Hasegawa A, Katoh Y, Kohyama A, Jones RH, Snead LL (2004) Issues and advances in SiC/SiC composites development for fusion reactors. J Nucl Mater 329-333:56–65CrossRefGoogle Scholar
  80. 80.
    Lewinsohn CA, Singh M, Shibayama T, Hinoki T, Ando M, Katoh Y, Kohyama A (2000) Joining of silicon carbide composites for fusion energy applications. J Nucl Mater 283-287:1258–1261CrossRefGoogle Scholar
  81. 81.
    Hinoki T, Eiza N, Son SJ, Shimoda K, Lee JK, Kohyama A (2005) Development of joining and coating technique for SiC and SiC/SiC composites utilizing NITE processing. Mechanical properties and performance of engineering ceramics and composites. Ceram Eng Sci Proc 26:399–405CrossRefGoogle Scholar
  82. 82.
    Ferraris M, Salvo M, Casalegno V, Han S, Katoh Y, Jung HC, Hinoki T, Kohyama A (2011) Joining of SiC-based materials for nuclear energy applications. J Nucl Mater 417:379–382CrossRefGoogle Scholar
  83. 83.
    Katoh Y, Snead LL, Cheng T, Shih C, Lewis WD, Koyanagi T, Hinoki T, Henager CH Jr, Ferraris M (2014) Radiation-tolerant joining technologies for silicon carbide ceramics and composites. J Nucl Mater 448:497–511CrossRefGoogle Scholar
  84. 84.
    Hino T, Hayashita E, Kohyama A, Yamauchi Y, Hirohata Y (2007) Helium gas permeability of SiC/SiC composite after heat cycles. J Nucl Mater 367-370:736–741CrossRefGoogle Scholar
  85. 85.
    Bolt H, Barabash V, Federici G, Linke J, Loarte A, Roth J, Sato K (2002) Plasma facing and high heat flux materials – needs for ITER and beyond. J Nucl Mater 307-311:43–52CrossRefGoogle Scholar
  86. 86.
    Hasegawa A, Fukuda M, Tanno T, Nogami S (2013) Neutron irradiation behavior of tungsten. Mater Trans 54:466–471CrossRefGoogle Scholar
  87. 87.
    Kishimoto H, Shibayama T, Shimoda K, Kobayashi T, Kohyama A (2011) Microstructural and mechanical characterization of W/SiC bonding for structural material in fusion. J Nucl Mater 417:387–390CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.National Institute for Materials ScienceTsukubaJapan

Section editors and affiliations

  • Tetsuji NODA
    • 1
  1. 1.Center for Nanotechnology PlatformRNFS, National Institute for Materials ScienceTsukubaJapan

Personalised recommendations