Advertisement

Zinc Sulfide Ceramics for Infrared Optics

  • Roy JohnsonEmail author
  • Papiya Biswas
  • Pandu Ramavath
  • Yashwant R. Mahajan
Living reference work entry

Abstract

Zinc sulfide (ZnS) is a well-known wide gap semiconductor ceramic that finds application in infrared (IR) optics, electroluminescent devices, flat panel displays, and photocatalysis. This chapter presents an overview of ZnS ceramic as a candidate material for focusing on IR optics. Monolithic ZnS fabrication by various processes such as chemical vapor deposition (CVD) and hot isostatic pressing (HIP) of high purity ZnS powders and also post-CVD thermal treatments under pressure and pressure-less conditions to enhance the transmission of desired wavelength ranges are attempted. Physico-chemical, thermal, mechanical, and optical properties of CVD, post-thermal CVD-processed, and powder-processed ZnS specimens are reported. The results were correlated with the type of process employed in addition to process parameters. The thermodynamic feasibility of the CVD reaction based on zinc and hydrogen sulfide was evaluated and deposition conditions along with flow parameters are elucidated. Physico-chemical and optical properties indicated the superiority of CVD processing in achieving optical quality ZnS. Single-step consolidation of ZnS powder under HIP conditions resulted in relatively low density along with the presence of minor quantities of hexagonal wurtzite phase, leading to relatively low transmission values. Unlike post-CVD thermal treatment under pressure-less conditions, the HIP eliminates not only zinc hydride but also the healing of residual micro-porosity, extending transmission to the mid-wave infrared and visible ranges. Microstructure of ZnS is significantly influenced by process conditions, which in turn dictate the mechanical properties.

Keywords

Zinc sulphide Infrared optics Chemical vapour deposition Hot isosttic pressing Optical property 

List of Abbreviations

AR coating

Anti-reflection coating

CTE

Coefficient of thermal expansion

CVD

Chemical vapor deposition

CVD-ZS

Chemical vapor deposited zinc sulfide

CVD HIP-ZS

Chemical vapor deposited and hot isostatic pressed zinc sulfide

CVD HT-ZS

Chemical vapor deposited and heat-treated zinc sulfide

FTIR

Fourier transform infrared spectroscopy

HIP

Hot isostatic pressing

HP

Hot pressing

LEFM

Linear elastic fracture mechanism

LWIR

Long wave infrared

MWIR

Medium wave infrared

PHIP-ZS

Powder hot isostatic pressed zinc sulfide

SEM

Scanning electron microscopy

SENB

Single edge notch beam

Zn-H

Zinc hydride

References

  1. 1.
    Johnson R, Biswas P, Ramavath P, Kumar RS, Padmanabham G (2012) Transparent polycrystalline ceramics: an overview. Trans Indian Ceram Soc 71:73–85CrossRefGoogle Scholar
  2. 2.
    Arrzurr M (1981) Investigation of phase transition of natural ZnS minerals by high resolution electron microscopy: reply. Am Mineral 66:1006–1012Google Scholar
  3. 3.
    Adachi S (1999) Cubic zinc sulphide (β-ZnS), optical constants of crystalline and amorphous semiconductors. Springer, Boston, pp 445–458CrossRefGoogle Scholar
  4. 4.
    McCloy JS, Bliss M, Miller B, Wang Z, Stave S (2015) Scintillation and luminescence in transparent colorless single and polycrystalline bulk ceramic ZnS. J Luminescence 157:416–423CrossRefGoogle Scholar
  5. 5.
    Drezner Y, Berger S, Hefetz M (2001) A correlation between microstructure composition and optical transparency of CVD-ZnS. Mater. Sci. Eng. B87:59–65CrossRefGoogle Scholar
  6. 6.
    Lee K-T, Choi B-H, Woo J-U, Kang J-S, Paik J-H, Chu B-U, Nahm S (2018) Microstructural and optical properties of the ZnS ceramics sintered by vacuum hot-pressing using hydrothermally synthesized ZnS powders. J Eur Ceram Soc 38:4237–4244CrossRefGoogle Scholar
  7. 7.
    McCloy JS, Korenstein R, Zelinski B (2009) Effects of temperature, pressure, and metal promoter on the recrystallized structure and optical transmission of chemical vapor deposited zinc sulfide. J Am Ceram Soc 92(8):1725–1731CrossRefGoogle Scholar
  8. 8.
    Chlique C, Delaizir G, Merdrignac-Conanec O, Roucau C, Dollé P, Rozier M, Bouquet V, Zhang XH (2011) A comparative study of ZnS powders sintering by hot uniaxial pressing (HUP) and spark plasma sintering (SPS). Opt Mater 33:706–712CrossRefGoogle Scholar
  9. 9.
    Li Y, Liu Y, Fedorov VV, Mirov SB, Wu Y (2016) Hot-pressed chromium doped zinc sulfide infrared transparent ceramics. Scripta Mater 125:15–18CrossRefGoogle Scholar
  10. 10.
    Vasilyev S, Moskalev I, Mirov M, Smolski V, Mirov S, Gapontsev V (2017) Ultrafast middle-IR lasers and amplifiers based on polycrystalline Cr:ZnS and Cr:ZnSe. Opt Mater Express 7:2636–2650CrossRefGoogle Scholar
  11. 11.
    Fang XS, Bando Y, Liao MY, Gautam UK, Zhi CY, Dierre B, Liu BD, Zhai TY, Sekiguchi T, Koide Y, Golberg D (2009) Single-crystalline ZnS nanobelts as ultraviolet-light sensors. Adv Mater 21:2034–2039CrossRefGoogle Scholar
  12. 12.
    Bujnakova Z, Dukova E, Kello M, Mojzis J, Balaz M, Balaz P, Shpotyuk O (2017) Mechanochemistry of chitosan-coated zinc sulfide (ZnS) nanocrystals for bio-imaging applications. Nanoscale Res Lett 12:32CrossRefGoogle Scholar
  13. 13.
    Firsov KN, Gavrishchuk EM, Ikonnikov VB, Kazantsev SY, Kononov IG, Rodin SA, Savin DV, Timofeeva NA (2016) High-energy room-temperature Fe2+:ZnS laser. Laser Phys Lett 13:015001–015008CrossRefGoogle Scholar
  14. 14.
    Salih AT, Najim AA, Muhi MAH, Gbashi KR (2017) Single-material multilayer ZnS as anti-reflective coating for solar cell applications. Opt Commun 388:84–89CrossRefGoogle Scholar
  15. 15.
    Singh SS, Pratap S, Prasad J, Kumar R, Murari A (2001) Effect of grain size on the transmission of zinc sulphide windows in the 8–12 micron range of infrared, Ind. J Eng Mater Sci 8:18–21Google Scholar
  16. 16.
    Harris DC (1999) Materials for infrared windows and domes: properties and performance. SPIE PressGoogle Scholar
  17. 17.
    Ghosh A, Upadhyaya AS (2009) Broad band antireflection coating on zinc sulphide simultaneously effective in SWIR, MWIR and LWIR regions. Infrared Phys Tech 52:109–112CrossRefGoogle Scholar
  18. 18.
    Krell A, Strassburger E, Hutzler T, Klimke J (2013) Single and polycrystalline transparent ceramic armor with different crystal structure. J Am Ceram Soc 96:2718–2721CrossRefGoogle Scholar
  19. 19.
    Krell A, Klimke J, Hutzler T (2009) Advanced spinel and sub-μm Al2O3 for transparent armour applications. J Eur Ceram Soc 29:275–281CrossRefGoogle Scholar
  20. 20.
    Corbin ND (1987) Aluminium oxinitride spinel (AlON): a review. U.S. Army Technology LaboratoryGoogle Scholar
  21. 21.
    Harris DC (2005) History of development of polycrystalline optical spinel in U.S. Proc SPIE 5786:1–22CrossRefGoogle Scholar
  22. 22.
    Biswas P, Kumar RS, Ramavath P, Mahendar V, Rao GVN, Hareesh US, Johnson R (2010) Effect of post CVD thermal treatments on crystallographic orientation, microstructure, mechanical and transmission properties of ZnS ceramics. J Alloys Compd 496:273–277CrossRefGoogle Scholar
  23. 23.
    Hogan P, Stefanik T, Willingham C, Gentilman R (2004) Transparent yttria for IR windows and domes – past and present. In: 10th DoD electromagnetic windows symposium, Norfolk, 19 May 2004Google Scholar
  24. 24.
    Harris DC (2007) History of the development of hot-pressed and chemical-vapour-deposited zinc sulphide and zinc selenide in the United States. Proc SPIE 6545Google Scholar
  25. 25.
    McCloy J (2007) International development of chemical, vapour deposited zinc sulphide. Proc SPIE 6545:654503-1–654503-12Google Scholar
  26. 26.
    Sato T, Furukawa, Kashi H (1986) CVD-ZnS IR dome. J Jpn Soc Infra Sci Technol 11:44–49Google Scholar
  27. 27.
    Han Y (1995) On development of high grade ZnS bulk materials for mid and far infrared in China. J Northwestern Polytech Ins 13:158–159Google Scholar
  28. 28.
    Yashina EV (2003) Preparation and properties of polycrystalline ZnS for IR applications. Inorg Mater 39:663–668CrossRefGoogle Scholar
  29. 29.
    Donadio RN, Connolly JF, Taylor RL (1981) New advances in chemical vapor deposited (CVD) infrared transmitting materials. Proc SPIE–Int Soc Opt Eng 297:65–69Google Scholar
  30. 30.
    Goela JS (2001) Low stress, water clear zinc sulphide. US Patent 6,221,482Google Scholar
  31. 31.
    Braudeau PH, Keller G, Torre JP (1986) CVD of IR transmitting ZnS. J Phys Colloq 47:1-193–1-196CrossRefGoogle Scholar
  32. 32.
    Mochizuki K (1985) Vapor growth and polarity on ZnS crystals. J Cryst Growth 71:459–462CrossRefGoogle Scholar
  33. 33.
    Hartmann H (1962) Growth of ZnS single crystals from the vapor phase. Phys Status Solidi 2:585–589CrossRefGoogle Scholar
  34. 34.
    Shibata K (2000) Optical component, zinc sulfide sintered compact, and fabricating method thereof. US Patent 6,111,689Google Scholar
  35. 35.
    Kozelsky MJ (1967) Growth of ZnS single crystals from the melt. J Cryst Growth 1:293–296CrossRefGoogle Scholar
  36. 36.
    Green LC, Reynolds DC, Cryzac SJ, Baker WM (1958) Melt grown ZnS single crystal. J Chem Phys 29:1375–1377CrossRefGoogle Scholar
  37. 37.
    Kuznetsov VA (1964) Melt-grown zinc sulfide crystals. Rost Krist 29:144–147Google Scholar
  38. 38.
    Goela J, Taylor RL (1988) Monolithic material fabrication by chemical vapor deposition. J Mater Sci 23:4331–4339CrossRefGoogle Scholar
  39. 39.
    Sharifi Y, E. Achenie L (2007) Using density functional theory to postulate a mechanism for zinc sulfide formation in a CVD reactor. J. Crystal Growth 307:440–447CrossRefGoogle Scholar
  40. 40.
    diBenedetto BA, Pappis J, Capriulo AJ (1973) Chemical vapor deposition of multispectral windows. AFAL-TR-73-252Google Scholar
  41. 41.
    Lewis KL et al (1984) The mechanical properties of CVD-grown zinc sulphide and their dependence on the conditions of growth. Proc Electrochem Soc PV84–6:530–545Google Scholar
  42. 42.
    Savage JA, Lewis KL, Pitt AM, Whitehouse RHL (1984) The role of a CVD research reactor in studies of the growth and physical properties of ZnS infrared optical material. Proc SPIE 0505:47–51CrossRefGoogle Scholar
  43. 43.
    Gavrishchuk EM, Yashina EV (1994) The growth mechanism of zinc sulfide from the gas phase. Vyskochistye Veshchestva 328:36–39Google Scholar
  44. 44.
    Bredikhin VI, Garishchuk EM, Ikonnikov VB, Karaksina EV, Ketkova LA, Kuznetsov SP, Mal’shakova OA (2009) Optical losses in polycrystalline CVD ZnS. Inorg Mater 45:235–241CrossRefGoogle Scholar
  45. 45.
    McCloy J, Fest E, Korenstein R, Poisl WH (2011) Anisotropy in structural and optical properties of chemical vapor deposited ZnS. Proc SPIE 8016:80160I-1–80160I-11CrossRefGoogle Scholar
  46. 46.
    Biswas P, Ramavath P, Johnson R, Ravi KV (2016) Fabrication of IR transparent ZnS plate by chemical vapour deposition. Ind J Chem Technol 23:400–404Google Scholar
  47. 47.
    Yu H (2000) The study of the relationship between inside defects and optical properties of CVD ZnS. Proc SPIE 4231:224–230CrossRefGoogle Scholar
  48. 48.
    Goela JS (1999) Fabrication of conformal ZnS domes by chemical vapor deposition. SPIE 3705:227–236Google Scholar
  49. 49.
    Goela JS, Askinazi J, Robinson B (2001) Mandrel reusability in precision replication of ZnS conformal domes. Proc SPIE 4375:114–127CrossRefGoogle Scholar
  50. 50.
    Zhenyi F, Yichao C, Yongliang H, Yaoyuan Y, Yanping D, Zewu Y, Hongchang T, Hongtao X, Heming W (2002) CVD growth of bulk polycrystalline ZnS and its optical properties. J Crystal Growth 237–239:1707–1710CrossRefGoogle Scholar
  51. 51.
    Devyatykh GG, Gavrishuchuk EM, Yashina EV (1996) Effect of deposition conditions on the microstructure of CVD ZnS. Inorg Mater 32:589–591Google Scholar
  52. 52.
    Devyatykh GG, Gavrishuchuk EM, Fatenkov AN, Yashina EV (1995) Effect of CVD conditions on the porosity of zinc sulphide. Inorg Mater 31:936–938Google Scholar
  53. 53.
    Campbell A, Hayman C (1988) Manufacturing aspects of zinc sulphide. Proc SPIE 0915:79–83CrossRefGoogle Scholar
  54. 54.
    Sato T, Furukawa, Kashi H (1986) CVD-ZnS IR domes. J Jpn Soc Infrared Sci Tech 11:44–49Google Scholar
  55. 55.
    Zscheckel T, Wisniewski W, Gebhardt A, Russel C (2014) Recrystallization of CVD-ZnS during thermal treatment. Opt Mater Express 5:1885–1894CrossRefGoogle Scholar
  56. 56.
    Wilkinson DS, Ashby MF (1975) Pressure sintering by power law creep. Acta Metall 23:1277–1285CrossRefGoogle Scholar
  57. 57.
    Willingham CB, Pappis J (1990) Polycrystalline zinc sulphide and zinc selenide articles having improved optical quality. US patent 4,944,900Google Scholar
  58. 58.
    Shchurov AF, Gavrishchuk EM, Ikonnikov VB, Yashina EV, Syseov AN, Shevarenkov DN (2004) Effect of hot isostatic pressing on the elastic and optical properties of polycrystalline CVD ZNS. Inorg Mater 40:336–339CrossRefGoogle Scholar
  59. 59.
    Karaksina EV, Ikonnikov VB, Gavrishchuk EM (2007) Recrystallization behavior of ZnS during hot isostatic pressing. Inorg Mater 43:452–454CrossRefGoogle Scholar
  60. 60.
    Aknic M, Celikkaya A (1989) Synthesis and hot pressing of ZnS powder. Proc SPIE 1112:60–67CrossRefGoogle Scholar
  61. 61.
    Ramavath P, Biswas P, Johnson R, Reddy GJ, Laxminarayana P (2014) Hot isostatic pressing of ZnS powder and CVD zinc sulphide ceramics and comparative evaluation of physico-chemical, microstructural and transmission properties. Trans Ind Ceram Soc 73:299–302CrossRefGoogle Scholar
  62. 62.
    Xue LA, Raj R (1991) Effect of hot pressing temperature on the optical transmission of zinc sulphide. Appl Phys Lett 58:441–443CrossRefGoogle Scholar
  63. 63.
    Zwaag SVD, Field JE (1982) Liquid jet impact damage on zinc sulphide. J Mater Sci 17:2625–2636CrossRefGoogle Scholar
  64. 64.
    Ramavath P, Biswas P, Senthil Kumar R, Mahendar V, Rao GVN, Hareesh US, Johnson R (2011) Effect of sphalerite to wurtzite crystallographic transformation on microstructure, optical and mechanical properties of zinc sulphide ceramics. Ceram Int 37:1039–1046CrossRefGoogle Scholar
  65. 65.
    Reddy GJ, Rao ESB (1995) The infrared transmission performance of hot isostatically pressed zinc sulphide. Int J Powder Metall 31:265–269Google Scholar
  66. 66.
    Ramavath P, Ravi N, Hareesh US, Johnson R, Eswara Prasad N (2010) Compressive and flexural strength properties of ZnS optical ceramics. Trans Ind Ins Metals 63:847–852CrossRefGoogle Scholar
  67. 67.
    Prasad NE, Kumari S, Kamat SV, Vijayakumar M, Malakondaiah G (2004) Fracture behaviour of 2D-weaved silica-silica continuous fibre-reinforced, ceramic-matrix composites (CFCCs). Eng Fract Mech 71:2589–2605CrossRefGoogle Scholar
  68. 68.
    ASTM Standard E-399 (1997) Standard test method for plane strain fracture toughness of metallic materials. Annual book of ASTM standards vol.03.01. American Society for Testing and Materials, West Conshohocken, pp 408–438Google Scholar
  69. 69.
    Ramavath P, Mahender V, Hareesh US, Johnson R, Kumari S, Prasad NE (2011) Fracture behavior of chemical vapour deposited and hot isostatically pressed zinc sulphide. Mater Sci Eng A 528:5030–5035CrossRefGoogle Scholar
  70. 70.
    Joseph S, Kassous E, Yadlovker D, Levi A, Marcovich O, Shinman A, Zipin H (2013) Challenges of developing hemispherical ZnS domes coated with a durable anti-reflection coating. Proc SPIE 8708:870800-1–870800-11Google Scholar
  71. 71.
    Korenstein R, Goldman L, Hallock R Diamond coated ZnS for improved erosion resistance. SPIE 3060:181–195Google Scholar
  72. 72.
    Mackowski JM, Cimma B, Pignard R (1992) Rain erosion behavior of germanium carbide (GeC) films grown on ZnS substrates. SPIE 1760:201–209Google Scholar
  73. 73.
    Hu C, Zheng W, Tian H, Xn L, Jiang Q (2006) Effects of the chemical bonding on the optical and mechanical properties for germanium carbide films used as antireflection and protection coating of ZnS windows. J Phys Condensed Matter 18:4231–4241CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Roy Johnson
    • 1
    Email author
  • Papiya Biswas
    • 1
  • Pandu Ramavath
    • 1
  • Yashwant R. Mahajan
    • 1
  1. 1.Center for Ceramic ProcessingInternational Advanced Research Centre for Powder Metallurgy and New Materials (ARCI)HyderabadIndia

Section editors and affiliations

  • Roy Johnson
    • 1
  1. 1.Centre for Knowledge Management of Nanoscience and TechnologyInternational Advanced Research Centre for Powder Metallurgy and New Materials (ARCI)HyderabadIndia

Personalised recommendations