Transparent Ceramics for Ballistic Armor Applications

  • Senthil Kumar Rajendran
  • Papiya Biswas
  • Roy Johnson
  • Yashwant Ramachandra MahajanEmail author
Living reference work entry


Ceramic materials that are transparent to visible light with excellent mechanical properties are emerging as suitable candidate materials for ballistic armor applications. Various advanced materials such as single crystal sapphire, spinel, and aluminum oxynitride have been developed to withstand the penetration of the projectile during impact. The armors produced from these materials exhibit outstanding ballistic performance compared to the conventional soda-lime glass and glass-ceramics due to their remarkable hardness in combination with other superior mechanical properties. This chapter presents an overview of various transparent ceramic materials that have been explored hitherto for the armor applications along with various processing fundamentals required to produce these materials. This chapter also reviews the fabrication and comparative evaluation of conventional and advanced transparent armor materials for ballistic applications.


Transparent ceramics Ballistic armor Glass Sapphire Magnesium aluminate spinel Aluminium oxynitride 


  1. 1.
    Harris DC (2009) Materials for infrared windows and domes: properties and performance, SPIE, Press monograph, PM70. SPIE-The International Society for Optical Engineering, BellinghamGoogle Scholar
  2. 2.
    Patel PJ (2000) Transparent ceramics for armor and EM window applications. In: Proceedings of SPIE, inorganic optical materials II, vol. 4102, p 1, International Symposium on Optical Science and Technology, San Diego, CA, United StatesGoogle Scholar
  3. 3.
    Stefanik T (2007) Nanocomposite optical ceramics for infrared widows and domes. Proc SPIE 6545Google Scholar
  4. 4.
    Klementa R (2008) Transparent armor materials. J Eur Ceram Soc 28:1091CrossRefGoogle Scholar
  5. 5.
    Lundin L (2005) Air force testing new transparent armor, air force research laboratory public affairs,
  6. 6.
    Kasim HA, Susumu N, Sadao A (1994) Optical constants of sapphire (alpha-Al2O3) single crystals. J Appl Phys 76:8032–8036CrossRefGoogle Scholar
  7. 7.
    Na-Phattalunga S, Limpijumnong S, T-Thienpraserte J, Yu J (2018) Magnetic states and intervalence charge transfer of Ti and Fe defectsina-Al2O3: the origin of the blue in sapphire. Acta Mater 143:248–256CrossRefGoogle Scholar
  8. 8.
    Grobosch M, Schmidt C, Naber WJM, van der Wiel WG, Knupfer M (2010) A photoemission study of interfaces between organic semiconductors and Co as well as Al2O3/Co contacts. Synth Met 160:238–243CrossRefGoogle Scholar
  9. 9.
    Dobrovinskaya ER, Litvinov LA, Pischik V (2009) Sapphire: material, manufacturing, applications. Springer, BerlinGoogle Scholar
  10. 10.
    Khattak CP, Shetty R, Schwerdtfeger CR, Ullal S (2016) World’s largest sapphire for many applications. J Cryst Growth 452:44–48CrossRefGoogle Scholar
  11. 11.
    Harris DC (2004) A century of sapphire crystal growth. In: Proceedings of 10th DoD electromagnetic windows symposium, Norfolk, pp 1–17Google Scholar
  12. 12.
    Binar T, Svarc J, Vyroubal P, Kazda T, Rolc S, Dvorak A (2018) The comparison of numerical simulation of projectile interaction with transparent armor glass for buildings and vehicles. Eng Fail Anal 92:121–139CrossRefGoogle Scholar
  13. 13.
    Straßburger E (2009) Ballistic testing of transparent armor ceramics. J Eur Ceram Soc 29:267–273CrossRefGoogle Scholar
  14. 14.
    Johnson R, Biswas P, Ramavath P, Kumar RS, Padmanabham G (2012) Transparent polycrystalline ceramics: an overview. Trans Indian Ceram Soc 71:73–85CrossRefGoogle Scholar
  15. 15.
    Krell A, Hutzler T, Klimke J (2009) Transmission physics and consequences for materials selection, manufacturing, and applications. J Eur Ceram Soc 29:207–221CrossRefGoogle Scholar
  16. 16.
    Apetz R, Van Bruggen MPB (2003) Transparent alumina: a light scattering model. J Am Ceram Soc 86:480–486CrossRefGoogle Scholar
  17. 17.
    Yamamoto H, Mitsuoko T, Iio S Translucent polycrystalline ceramic and method for making same. Europe Patent application EP 1 053 983 A2, IPK7 C04B35/115, 22 Nov 2000Google Scholar
  18. 18.
    Fakolujo O, Merati A, Bielawski M, Bolduc M, Nganbe M (2016) Role of microstructural features in toughness improvement of zirconia toughened alumina. J Miner Mater Charact Eng 4:87–102Google Scholar
  19. 19.
    Kaufmann C, Cronin D, Worswick M, Pageau G, Beth A (2003) Influence of material properties on the ballistic performance of ceramics for personal body armor. Shock Vib 10:51–58CrossRefGoogle Scholar
  20. 20.
    Franco A, Roberts SG, Warren PD (1997) fracture toughness, surface flaw sizes and flaw densities in Al2O3. Acta Mater 45:1009–1015CrossRefGoogle Scholar
  21. 21.
    Benitez T, Gomez SY, Novaes de Oliveira AP, Travitzky N, Hotza D (2017) Transparent ceramic and glass-ceramic materials for armor applications. Ceram Int 43:13031–13046CrossRefGoogle Scholar
  22. 22.
    Krell A, Strassburger E (2014) Order of influences on the ballistic resistance of armor ceramics and single crystals. Mater Sci Eng A 597:422–430CrossRefGoogle Scholar
  23. 23.
    Krell A, Strassburger E, Hutzler T, Klimke J (2013) Single and polycrystalline transparent ceramic armor with different crystal structure. J Am Ceram Soc 96:2718–2721CrossRefGoogle Scholar
  24. 24.
    Krell A, Strassburger E (2012) Discrimination of basic influences on the ballistic strength of opaque and transparent ceramics. Ceram Eng Sci Proc 33:161–176CrossRefGoogle Scholar
  25. 25.
    Grujicic M, Bell WC, Pandurangan B (2012) Design and material selection guidelines and strategies for transparent armor systems. Mater Des 34:808–819CrossRefGoogle Scholar
  26. 26.
    Talladay TG, Templeton DW (2014) Glass armor-an overview. Int J Appl Glas Sci 5:331–333CrossRefGoogle Scholar
  27. 27.
    Barnak R, Franks LP, Holm D (2008) Transparent armor cost benefit study. In: Proceedings of the structures and materials intelligence seminar. McLean. pp 1–2Google Scholar
  28. 28.
    Grujicic M, Pandurangan B, Coutris N, Cheeseman BA, Fountzoulas C, Patel P, Strassburger E (2008) A ballistic material model for starphire®, a soda-lime transparent-armor glass. Mater Sci Eng A 491:397–411CrossRefGoogle Scholar
  29. 29.
    Swab JJ, Lasalvia JC, Gilde GA, Patel PJ, Motyka MJ (1999) Transparent armor ceramics: AlON and spinel. In: 23rd annual conference on composites, advanced ceramics, materials and structures: b: ceramic engineering science proceedings, vol. 20. pp 79–84, Cocoa Beach, FloridaGoogle Scholar
  30. 30.
    Sheikh MZ, Wang Z, Suo T, Lia Y, Ahmeda S, Dar UA (2018) Effect of polymeric interlayer on wave propagation in transparent soda-lime glass. Proc Struct Integr 13:2120–2125CrossRefGoogle Scholar
  31. 31.
    Walley SM (2010) Historical review of high strain rate and shock properties of ceramics relevant to their application in amour. Adv Appl Ceram 109:446–466. 2010CrossRefGoogle Scholar
  32. 32.
    Grujicic M, Pandurangan B, Bell WC, Coutris N, Cheeseman BA, Fountzoulas C, Patel P, Templeton DW, Bishnoi KD (2009) An improved mechanical material model for ballistic soda-lime glass. J Mater Eng Perform 18:1012–1028CrossRefGoogle Scholar
  33. 33.
    Salem JA (2013) Transparent armor ceramics as spacecraft windows. J Am Ceram Soc 96:281–289CrossRefGoogle Scholar
  34. 34.
    Krell A, Hutzler T, Klimke J (2005) Physics and technology of transparent ceramic armor: sintered Al2O3 vs cubic materials. In: Nanomaterials technology for military vehicle structural applications, RTO-MP-AVT-122. pp 14-1–14-10, Paper 14. Neuilly-sur-Seine, France: RTO,
  35. 35.
    Ramisetty M, Sastri S, Kashalikar U, Goldman LM, Nag N (2013) Transparent polycrystalline cubic spinels protect and defend. Am Ceram Soc Bull 92:20–25Google Scholar
  36. 36.
    Goldman LM, Twedt R, Balasubramanian S (2011) ALON optical ceramic transparencies for window, dome, and transparent armor applications. Proc SPIE 8016:77Google Scholar
  37. 37.
    Horsfall I (2001) Glass ceramic armor system for light armor applications. In: Proceedings of 19th international symposium on ballistics, Interlaken, SwitzerlandGoogle Scholar
  38. 38.
    Haney EJ, Subhash G (2013) Damage mechanisms perspective on superior ballistic performance of Spinel over Sapphire. Exp Mech 53(1):31–46CrossRefGoogle Scholar
  39. 39.
    Shockey DA, Simons JW, Curran DR (2010) The damage mechanism route to better armor materials. Int J Appl Ceram Technol 7(5):566–573CrossRefGoogle Scholar
  40. 40.
    Krell A, Strabburger E (2014) Order of influences on the ballistic resistance of armor ceramics and single crystals. Mater Sci Eng A 597:422–430CrossRefGoogle Scholar
  41. 41.
    Wahl JM, Hartnett TM, Goldman LM, Twedt R, Warner C (2005) Recent advances in AlON optical ceramic, Window and Dome Technologies and Materials IX. Proc SPIE 5786:71–82CrossRefGoogle Scholar
  42. 42.
    Goldman LM, Twedt R, Balasubramanian S, Sastri S (2011) ALON optical ceramic transparencies for window, dome, and transparent armor applications, Window and Dome Technologies and Materials XII. Proc SPIE 8016:1–14Google Scholar
  43. 43.
  44. 44.
    Xie X, Wang Y, Qi J, Wang S, Feng Z, Hou G, Liu W, Zhang W, Xu Q, Lu T (2016) Ethanol-water-derived sucrose-coated-Al2O3 for sub-micrometer AlON powder synthesis. J Am Ceram Soc 99(8):2601–2606CrossRefGoogle Scholar
  45. 45.
    Corbin ND (1989) Aluminum oxynitride spinel: a review. J Eur Ceram Soc 5:143–154CrossRefGoogle Scholar
  46. 46.
    Senthil Kumar R, Rajeswari K, Praveen B, Hareesh US, Johnson R (2010) Processing of aluminum oxynitride through aqueous colloidal forming techniques. J Am Ceram Soc 93(2):429–435CrossRefGoogle Scholar
  47. 47.
    Peelen JGJ, Metselaar R (1974) Light scattering by pores in polycrystalline materials: transmission properties of alumina. J Appl Phys 45:216–220CrossRefGoogle Scholar
  48. 48.
    Krell A, Hutzler T, Klimke J (2006) NATO-OTAN – nano materials technology for military vehicle applications. 14-1–14-10.
  49. 49.
    Miller L, Kalpan WD (2008) Water-based method for processing of aluminium oxynitride (AlON). Int J Appl Ceram Technol 5([6]):641–648CrossRefGoogle Scholar
  50. 50.
    Senthil Kumar R, Johnson R (2016) Aqueous slip casting of transparent aluminium oxynitride. J Am Ceram Soc 99(10):3220–3225CrossRefGoogle Scholar
  51. 51.
    Wang J, Zhang F, Chen F, Zhang H, Tian R, Dong M, Liu J, Zhang Z, Zhang J, Wang S (2014) Fabrication of aluminum oxynitride (c-AlON) transparent ceramics with modified gel casting. J Am Ceram Soc 97(5):1353–1355CrossRefGoogle Scholar
  52. 52.
    Parker A (2011) Aluminum oxynitride armor production and modeling of next generation transparent armor for the global war on terror, thesis report, Brigham Young University, Physics and AstronomyGoogle Scholar
  53. 53.
    Ganesh I (2013) A review on magnesium aluminate (MgAl2O4) spinel: synthesis, processing and applications. Int Mater Rev 58:63–112CrossRefGoogle Scholar
  54. 54.
    Muan A, Osborn EF (1965) Phase equilibria among oxides in steel making. Addison-Wesley, ReadingGoogle Scholar
  55. 55.
    Meir S, Kalabukhov S, Froumin N, Dariel MP, Frage N (2009) Synthesis and densification of transparent magnesium aluminate spinel by SPS processing. J Am Ceram Soc 92:358–364CrossRefGoogle Scholar
  56. 56.
    Ganesh I, Sundararajan G, Ferreira JMF (2011) Aqueous slip casting and hydrolysis assisted solidification of MgAl2O4 spinel. Adv Appl Ceram 110:63–69CrossRefGoogle Scholar
  57. 57.
    Shafeiey A, Enayati MH, Al-Haji A (2017) The effect of slip casting parameters on the green density of MgAl2O4 spinel. Ceram Int 43:6069–6074CrossRefGoogle Scholar
  58. 58.
    Krell A, Klimke J, Hutzler T (2009) Advanced spinel and sub-μm Al2O3 for transparent armor applications. J Eur Ceram Soc 29:275–281CrossRefGoogle Scholar
  59. 59.
    Zhang P, Liu P, Sun Y, Wang J, Wang Z, Wang S, Zhang J (2015) Aqueous gelcasting of the transparent MgAl2O4 spinel ceramics. J Alloys Compd 646:833–836CrossRefGoogle Scholar
  60. 60.
    Krell A, Hutzler T, Klimke J, Potthoff A (2010) Fine-grained transparent spinel windows by the processing of different nanopowders. J Am Ceram Soc 93:2656–2666CrossRefGoogle Scholar
  61. 61.
    Gajdowski A, Böhmler J, Lorgouilloux Y, Lemonnier S, d’Astorg S, Barraud E, Leriche A (2017) Influence of post-HIP temperature on microstructural and optical properties of pure MgAl2O4 spinel: from opaque to transparent ceramics. J Eur Ceram Soc 37:5347–5351CrossRefGoogle Scholar
  62. 62.
    Shimada M, Endo T, Saito T, Sato T (1996) Fabrication of transparent spine1 polycrystalline materials. Mater Lett 28:413–415CrossRefGoogle Scholar
  63. 63.
    Krell A, Hutzler T, Klimke J (2014) Defect strategies for an improved optical quality of transparent ceramics. Opt Mater 38:61–74CrossRefGoogle Scholar
  64. 64.
    Biswas P, Rajeswari K, Ramavath P, Johnson R, Maiti HS (2013) Fabrication of transparent spinel honeycomb structures by methyl cellulose based thermal gelation processing. J Am Ceram Soc 96:3042–3045Google Scholar
  65. 65.
    Biswas P, Ramavath P, Kumbhar CS, Patil DS, Chongdar TK, Gokhale NM, Johnson R, Mohan MK (2017) Effect of room and high temperature compaction on optical and mechanical properties of HIPed transparent spinel ceramics. Adv Eng Mater 19:1700111-1–1700111-7CrossRefGoogle Scholar
  66. 66.
    Ramavath P, Biswas P, Rajeswari K, Suresh MB, Johnson R, Padmanabham G, Kumbhar CS, Chongdar TK, Gokhale NM (2014) Optical and mechanical properties of compaction and slip cast processed transparent polycrystalline spinel ceramics. Ceram Int 40:5575–5581CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Senthil Kumar Rajendran
    • 1
  • Papiya Biswas
    • 1
  • Roy Johnson
    • 1
  • Yashwant Ramachandra Mahajan
    • 1
    Email author
  1. 1.International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI)HyderabadIndia

Section editors and affiliations

  • Vemuri Madhu
    • 1
  1. 1.Defence Metallurgical Research LaboratoryDefence Research & Development OrganizationKanchanbagh, HyderabadIndia

Personalised recommendations