Lipids and Legionella Virulence

  • Otto GeigerEmail author
Living reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


The intracellular lung pathogen Legionella pneumophila has evolved virulence mechanisms which allow it to replicate in its natural host protozoa as well as in human macrophages. L. pneumophila belongs to the γ-proteobacteria and has several lipid components in its membranes which are unusual for this bacterial group. Membrane phospholipids are substituted with branched-chain fatty acyl residues, and phosphatidylcholine is a major phospholipid in Legionella. Legionella phosphatidylcholine is an important virulence determinant and acts through multiple mechanisms. Lipopolysaccharides from L. pneumophila show several unusual features among them the substitution with very long-chain fatty acyl residues. Lipid-containing outer membrane vesicles are important vehicles for the delivery of bacterial effector proteins, and quorum sensing via α-hydroxy ketone signaling molecules is important for virulence. Besides contributing to virulence with its own lipids, L. pneumophila also interferes with the metabolism of host cell membranes and specifically redirects phosphoinositide-controlled signaling pathways thereby facilitating its replication and spread within the host.



Research in my lab was supported by grants from Consejo Nacional de Ciencia y Tecnología-México (CONACyT-Mexico) (178359 and 253549 in Investigación Científica Básica as well as 118 in Investigación en Fronteras de la Ciencia). I thank Lourdes Martínez-Aguilar for skillful technical assistance.


  1. Albers U, Tiaden A, Spirig T, Al Alam D, Goyert SM, Gangloff SC, Hilbi H (2007) Expression of Legionella pneumophila paralogous lipid A biosynthesis genes under different growth conditions. Microbiology 153:3817–3829CrossRefPubMedGoogle Scholar
  2. Banerji S, Aurass P, Flieger A (2008) The manifold phospholipases of Legionella pneumophila – identification, export, regulation and their link to bacterial virulence. Int J Med Microbiol 298:169–181CrossRefPubMedGoogle Scholar
  3. Bogdanov M, Heacock P, Guan Z, Dowhan W (2010) Plasticity of lipid–protein interactions in the function and topogenesis of the membrane protein lactose permease from Escherichia coli. Proc Natl Acad Sci U S A 107:15057–15062CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bourassa DV, Kannenberg EL, Sherrier DJ, Buhr RJ, Carlson RW (2017) The lipopolysaccharide lipid A long-chain fatty acid is important for Rhizobium leguminosarum growth and stress adaptation in free-living and nodule environments. Mol Plant–Microbe Interact 30:161–175CrossRefPubMedGoogle Scholar
  5. Busset N, Di Lorenzo F, Palmigiano A, Sturiale L, Gressent F, Fardoux J et al (2017) The very long chain fatty acid (C26:25OH) linked to the lipid A is important for the fitness of the photosynthetic Bradyrhizobium strain ORS278 and the establishment of a successful symbiosis with Aeschynomene legumes. Front Microbiol 8:1821CrossRefPubMedPubMedCentralGoogle Scholar
  6. Comerci DJ, Altabe S, de Mendoza D, Ugalde RA (2006) Brucella abortus synthesizes phosphatidylcholine from choline provided by the host. J Bacteriol 188:1929–1934CrossRefPubMedPubMedCentralGoogle Scholar
  7. Conde-Alvarez R, Grillo MJ, Salcedo SP, de Miguel MJ, Fugier E, Gorvel JP (2006) Synthesis of phosphatidylcholine, a typical eukaryotic phospholipid, is necessary for full virulence of the intracellular bacterial parasite Brucella abortus. Cell Microbiol 8:1322–1335CrossRefPubMedGoogle Scholar
  8. Conover GM, Martinez-Morales F, Heidtman ML, Luo ZQ, Tang M, Chen C, Geiger O, Isberg RR (2008) Phosphatidylcholine synthesis is required for optimal function of Legionella pneumophila virulence determinants. Cell Microbiol 10:514–528PubMedGoogle Scholar
  9. De Buck E, Anné J, Lammertyn E (2007) The role of secretion systems in the virulence of the intracellular pathogen Legionella pneumophila. Microbiology 153:3948–3953CrossRefPubMedGoogle Scholar
  10. Dubois C, Bissonnette E, Rola-Pleszczynski M (1989) Platelet-activating factor (PAF) enhances tumor necrosis factor production by alveolar macrophages. Prevention by PAF receptor antagonists and lipoxygenase inhibitors. J Immunol 143:964–970PubMedGoogle Scholar
  11. Fernandez-Moreira E, Helbig JH, Swanson MS (2006) Membrane vesicles shed by Legionella pneumophila inhibit fusion of phagosomes with lysosomes. Infect Immun 74:3285–3295CrossRefPubMedPubMedCentralGoogle Scholar
  12. Filloux A, Hachani A, Bleves S (2008) The bacterial type VI secretion machine: yet another player for protein transport across membranes. Microbiology 154:1570–1583CrossRefPubMedGoogle Scholar
  13. Galka F, Wai SN, Kusch H, Engelmann S, Hecker M, Schmeck B, Hippenstiel S, Uhlin BE, Steinert M (2008) Proteomic characterization of the whole secretome of Legionella pneumophila and functional analysis of outer membrane vesicles. Infect Immun 76:1825–1836CrossRefPubMedPubMedCentralGoogle Scholar
  14. Geiger O, López-Lara IM, Sohlenkamp C (2013) Phosphatidylcholine biosynthesis and function in bacteria. Biochim Biophys Acta 1831:503–513CrossRefPubMedGoogle Scholar
  15. Hanahan DJ (1986) Platelet activating factor: a biologically active phosphoglyceride. Annu Rev Biochem 55:483–509CrossRefPubMedGoogle Scholar
  16. Hassan MI, Lundgren BR, Chaumun M, Whitfield DM, Clark B, Schoenhofen IC, Boddy CN (2016) Total biosynthesis of legionaminic acid, a bacterial sialic acid analogue. Angew Chem Int Ed 55:12018–12021CrossRefGoogle Scholar
  17. Henderson JC, Zimmerman SM, Crofts AA, Boll JM, Kuhns LG, Herrera CM, Trent MS (2016) The power of asymmetry: architecture and assembly of the Gram-negative outer membrane lipid bilayer. Annu Rev Microbiol 70:255–278CrossRefPubMedGoogle Scholar
  18. Higgins DA, Pomianek ME, Kraml CM, Taylor RK, Semmelhack MF, Bassler BL (2007) The major Vibrio cholerae autoinducer and its role in virulence factor production. Nature 450:883–886CrossRefPubMedGoogle Scholar
  19. Hiller M, Lang C, Michel W, Flieger A (2018) Secreted phospholipases of the lung pathogen Legionella pneumophila. Int J Med Microbiol 308:168–175CrossRefGoogle Scholar
  20. Isaac D, Isberg R (2014) Master manipulators: an update on Legionella pneumophila Icm/Dot translocated substrates and their host targets. Future Microbiol 9:343–359CrossRefPubMedPubMedCentralGoogle Scholar
  21. Jung AL, Herkt CE, Schulz C, Bolte K, Seidel K, Scheller N, Sittka-Stark A, Bertrams W, Schmeck B (2017) Legionella pneumophila infection activates bystander cells differentially by bacterial and host cell vesicles. Sci Rep 7:6301CrossRefPubMedPubMedCentralGoogle Scholar
  22. Jurkowitz MS, Patel A, Wu LC, Krautwater A, Pfeiffer DR, Bell CE (2015) The YhhN protein from Legionella pneumophila is a lysoplasmalogenase. Biochim Biophys Acta 1848:742–751CrossRefPubMedGoogle Scholar
  23. Lambert MA, Moss CW (1989) Cellular fatty acid compositions and isoprenoid quinone contents of 23 Legionella species. J Clin Microbiol 27:465–473PubMedPubMedCentralGoogle Scholar
  24. López-Lara IM, Geiger O (2010) Formation of fatty acids. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology; hydrocarbons, oils and lipids: diversity, properties and formation. Springer Verlag, Berlin Heidelberg, Germany, pp 395–408Google Scholar
  25. Martínez-Morales F, Schobert M, López-Lara IM, Geiger O (2003) Pathways for phosphatidylcholine biosynthesis in bacteria. Microbiology 149:3461–3471CrossRefPubMedGoogle Scholar
  26. Minder AC, de Rudder KE, Narberhaus F, Fischer HM, Hennecke H, Geiger O (2001) Phosphatidylcholine levels in Bradyrhizobium japonicum membranes are critical for an efficient symbiosis with the soybean host plant. Mol Microbiol 53:29–40Google Scholar
  27. Oliva G, Sahr T, Buchrieser C (2018) The life cycle of L. pneumophila: cellular differentiation is linked to virulence and metabolism. Front Cell Infect Microbiol 8:3CrossRefPubMedPubMedCentralGoogle Scholar
  28. Personnic N, Striednig B, Hilbi H (2018) Legionella quorum sensing and its role in pathogen–host interactions. Curr Opin Microbiol 41:29–35CrossRefPubMedGoogle Scholar
  29. Pizarro-Cerda J, Kühlbacher A, Cossart P (2015) Phosphoinositides and host–pathogen interactions. Biochim Biophys Acta 1851:911–918CrossRefPubMedGoogle Scholar
  30. Ragaz C, Pietsch H, Urwyler S, Tiaden A, Weber SS, Hilbi H (2008) The Legionella pneumophila phosphatidylinositol-4-phosphate binding type IV substrate SidC recruits endoplasmic reticulum vesicles to a replication-permissive vacuole. Cell Microbiol 10(12):2416–2433CrossRefPubMedGoogle Scholar
  31. Rock CO (2008) Fatty acids and phospholipids metabolism in prokaryotes. In: Vance DE, Vance JE (eds) Biochemistry of lipids, lipoproteins and membranes, 5th edn. Elsevier, Amsterdam, pp 59–96CrossRefGoogle Scholar
  32. Rolando M, Escoll P, Nora T, Botti J, Boitez V, Bedia C et al (2016) Legionella pneumophila S1P-lyase targets host sphingolipid metabolism and restrains autophagy. Proc Natl Acad Sci U S A 113:1901–1906CrossRefPubMedPubMedCentralGoogle Scholar
  33. Schell U, Simon S, Sahr T, Hager D, Albers MF, Kessler A et al (2016) The α-hydroxyketone LAI-1 regulates motility, Lqs-dependent phosphorylation signalling and gene expression of Legionella pneumophila. Mol Microbiol 99:778–793CrossRefPubMedGoogle Scholar
  34. Schwechheimer C, Kuehn MJ (2015) Outer membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol 13:605–619CrossRefPubMedPubMedCentralGoogle Scholar
  35. Shin S, Roy CR (2008) Host cell processes that influence the intracellular survival of Legionella pneumophila. Cell Microbiol 10:1209–1220CrossRefPubMedGoogle Scholar
  36. Sohlenkamp C, López-Lara IM, Geiger O (2003) Biosynthesis of phosphatidylcholine in bacteria. Prog Lipid Res 42:115–162CrossRefPubMedGoogle Scholar
  37. Spirig T, Tiaden A, Kiefer P, Buchrieser C, Vorholt JA, Hilbi H (2008) The Legionella autoinducer synthase LqsA produces an α-hydroxyketone signaling molecule. J Biol Chem 283: 18113–18123CrossRefPubMedPubMedCentralGoogle Scholar
  38. Steinert M, Heuner K, Buchrieser C, Albert-Weissenberger C, Glöckner G (2007) Legionella pathogenicity: genome structure, regulatory networks and the host cell response. Int J Med Microbiol 297:577–587CrossRefPubMedGoogle Scholar
  39. Tiaden A, Spirig T, Carranza P, Brüggemann H, Riedel K, Eberl L, Buchrieser C, Hilbi H (2008) Synergistic contribution of the Legionella pneumophila lqs genes to pathogen–host interactions. J Bacteriol 190:7532–7547CrossRefPubMedPubMedCentralGoogle Scholar
  40. Vedam V, Kannenberg E, Datta A, Brown D, Haynes-Gann JG, Sherrier DJ, Carlson RW (2006) The pea nodule environment restores the ability of a Rhizobium leguminosarum lipopolysaccharide acpXL mutant to add 27-hydroxyoctacosanoic acid to its lipid A. J Bacteriol 188: 2126–2133CrossRefPubMedPubMedCentralGoogle Scholar
  41. Wei Y, Perez LJ, Ng WL, Semmelhack MF, Bassler BL (2011) Mechanism of Vibrio cholerae autoinducer-1 biosynthesis. ACS Chem Biol 6:356–365CrossRefPubMedPubMedCentralGoogle Scholar
  42. Wessel M, Klüsener S, Gödeke J, Fritz C, Hacker S, Narberhaus F (2006) Virulence of Agrobacterium tumefaciens requires phosphatidylcholine in the bacterial membrane. Mol Microbiol 62:906–915CrossRefPubMedGoogle Scholar
  43. Zähringer U, Knirel YA, Lindner B, Helbig JH, Sonesson A, Marre R, Rietschel ET (1995) The lipopolysaccharide of Legionella pneumophila serogroup I (strain Philadelphia 1): chemical structure and biological significance. Prog Clin Biol Res 92:113–139Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centro de Ciencias GenómicasUniversidad Nacional Autónoma de MéxicoCuernavacaMexico

Personalised recommendations