Microbiome Metabolic Potency Towards Plant Bioactives and Consequences for Health Effects

  • Charlotte Grootaert
  • Tom Van de Wiele
Living reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


Plant-based bioactive molecules containing a (modified) hydrocarbon backbone may have diverse health-promoting effects, but because of large interindividual variability the cause-consequence relationship is difficult to establish. In this chapter, we use the case of polyphenols to explain the main determinants causing this variability, i.e., the complex interplay between dietary, host, and especially microbial factors. Finally, we focus on the potential of microbiome-driven population stratification as a tool to improve the understanding of mechanisms of bioavailability and bioactivity.


  1. Aura AM (2008) Microbial metabolism of dietary phenolic compounds in the colon. Phytochem Rev 7:407–429CrossRefGoogle Scholar
  2. Bohn T (2014) Dietary factors affecting polyphenol bioavailability. Nutr Rev 72:429–452CrossRefGoogle Scholar
  3. Bolca S, Possemiers S, Herregat A, Huybrechts I, Heyerick A, De Vriese S, Verbruggen M, Depypere H, De Keukeleire D, Bracke M, De Henauw S, Verstraete W, Van de Wiele T (2007) Microbial and dietary factors are associated with the equol producer phenotype in healthy postmenopausal women. J Nutr 137:2242–2246CrossRefGoogle Scholar
  4. Cassidy A, Minihane AM (2017) The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. Am J Clin Nutr 105:10–22CrossRefGoogle Scholar
  5. Choi O, Yahiro K, Morinaga N, Miyazaki M, Noda M (2007) Inhibitory effects of various plant polyphenols on the toxicity of Staphylococcal α-toxin. Microb Pathog 42:215–224CrossRefGoogle Scholar
  6. Daglia M (2012) Polyphenols as antimicrobial agents. Curr Opin Biotechnol 23:174–181CrossRefGoogle Scholar
  7. Decroos K, Eeckhaut E, Possemiers S, Verstraete W (2006) Administration of equol-producing bacteria alters the equol production status in the Simulator of the Gastrointestinal Microbial Ecosystem (SHIME). J Nutr 136:946–952CrossRefGoogle Scholar
  8. Dueñas M, Muñoz-González I, Cueva C, Jiménez-Girón A, Sánchez-Patán F, Santos-Buelga C, Moreno-Arribas MV, Bartolomé B (2015) A survey of modulation of gut microbiota by dietary polyphenols. Biomed Res Int 2015:850902CrossRefGoogle Scholar
  9. Garcia-Villalba R, Vissenaekens H, Pitart J, Romo-Vaquero M, Espin JC, Grootaert C, Selma MV, Raes K, Smagghe G, Possemiers S, Van Camp J, Tomas-Barberan FA (2017) Gastrointestinal simulation model TWIN-SHIME shows differences between human urolithin-metabotypes in gut microbiota composition, pomegranate polyphenol metabolism, and transport along the intestinal tract. J Agric Food Chem 65:5480–5493CrossRefGoogle Scholar
  10. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, Verbeke K, Reid G (2017) The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 14:491–502PubMedGoogle Scholar
  11. Gil-Cardoso K, Ginés I, Pinent M, Ardévol A, Blay M, Terra X (2016) Effects of flavonoids on intestinal inflammation, barrier integrity and changes in gut microbiota during diet-induced obesity. Nutr Res Rev 29:234–248CrossRefGoogle Scholar
  12. Gonzales GB, Smagghe G, Vissenaekens H, Grootaert C, Rajkovic A, Van de Wiele T, Raes K, Van Camp J (2016) Quercetin mitigates valinomycin-induced cellular stress via stress-induced metabolism and cell uptake. Mol Nutr Food Res 60:972–980CrossRefGoogle Scholar
  13. Gonzalez-Aguilar GA, Blancas-Benitez FJ, Sayago-Ayerdi SG (2017) Polyphenols associated with dietary fibers in plant foods: molecular interactions and bioaccessibility. Curr Opin Food Sci 13:84–88CrossRefGoogle Scholar
  14. Gonzalez-Sarrias A, Garcia-Villalba R, Romo-Vaquero M, Alasalvar C, Orem A, Zafrilla P, Tomas-Barberan FA, Selma MV, Espin JC (2017) Clustering according to urolithin metabotype explains the interindividual variability in the improvement of cardiovascular risk biomarkers in overweight-obese individuals consuming pomegranate: a randomized clinical trial. Mol Nutr Food Res 61:1600830CrossRefGoogle Scholar
  15. Gry J, Black L, Eriksen FD, Pilegaard K, Plumb J, Rhodes M, Sheehan D, Kiely M, Kroon PA (2007) EuroFIR-BASIS – a combined composition and biological activity database for bioactive compounds in plant-based foods. Trends Food Sci Technol 18:434–444CrossRefGoogle Scholar
  16. He FJ, Nowson CA, MacGregor GA (2006) Fruit and vegetable consumption and stroke: meta-analysis of cohort studies. Lancet 367:320–326CrossRefGoogle Scholar
  17. Huber B, Eberl L, Feucht W, Polster J (2003) Influence of polyphenols on bacterial biofilm formation and quorum-sensing. Z Naturforsch C 58:879–884CrossRefGoogle Scholar
  18. Link A, Balaguer F, Goel A (2010) Cancer chemoprevention by dietary polyphenols: promising role for epigenetics. Biochem Pharmacol 80:1771–1792CrossRefGoogle Scholar
  19. Molina-Montes E, Sanchez MJ, Zamora-Ros R, Bueno-de-Mesquita HB, Wark PA, Obon-Santacana M, Kuhn T, Katzke V, Travis RC, Ye W, Sund M, Naccarati A, Mattiello A, Krogh V, Martorana C, Masala G, Amiano P, Huerta JM, Barricarte A, Quiros JR, Weiderpass E, Angell Asli L, Skeie G, Ericson U, Sonestedt E, Peeters PH, Romieu I, Scalbert A, Overvad K, Clemens M, Boeing H, Trichopoulou A, Peppa E, Vidalis P, Khaw KT, Wareham N, Olsen A, Tjonneland A, Boutroun-Rualt MC, Clavel-Chapelon F, Cross AJ, Lu Y, Riboli E, Duell EJ (2016) Flavonoid and lignan intake and pancreatic cancer risk in the European prospective investigation into cancer and nutrition cohort. Int J Cancer 139:1480–1492CrossRefGoogle Scholar
  20. Monagas M, Urpi-Sarda M, Sanchez-Patan F, Llorach R, Garrido I, Gomez-Cordoves C, Andres-Lacuev C, Bartolome B (2010) Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites. Food Funct 1:233–253CrossRefGoogle Scholar
  21. Pérez-Cano FJ, Massot-Cladera M, Rodríguez-Lagunas MJ, Castell M (2014) Flavonoids affect host-microbiota crosstalk through TLR modulation. Antioxidants 3:649–670CrossRefGoogle Scholar
  22. Sanhueza L, Melo R, Montero R, Maisey K, Mendoza L, Wilkens M (2017) Synergistic interactions between phenolic compounds identified in grape pomace extract with antibiotics of different classes against Staphylococcus aureus and Escherichia coli. PLoS One 12:e0172273CrossRefGoogle Scholar
  23. Taira T, Yamaguchi S, Takahashi A, Okazaki Y, Yamaguchi A, Sakaguchi H, Chiji H (2015) Dietary polyphenols increase fecal mucin and immunoglobulin A and ameliorate the disturbance in gut microbiota caused by a high fat diet. J Clin Biochem Nutr 57:212–216CrossRefGoogle Scholar
  24. Tammen SA, Friso S, Choi SW (2013) Epigenetics: the link between nature and nurture. Mol Aspects Med 34:753–764CrossRefGoogle Scholar
  25. Teng H, Chen L (2018) Polyphenols and bioavailability: an update. Crit Rev Food Sci Nutr.
  26. Terao J, Murota K, Kawai Y (2011) Conjugated quercetin glucuronides as bioactive metabolites and precursors of aglycone in vivo. Food Funct 2:11–17CrossRefGoogle Scholar
  27. Thilakarathna WPDW, Langille MGI, Rupasinghe HPV (2018) Polyphenol-based prebiotics and synbiotics: potential for cancer chemoprevention. Curr Opin Food Sci 20:51–57CrossRefGoogle Scholar
  28. Tomas-Barberan FA (2017) I7 Interaction of polyphenols with gut microbiota, understanding the health effects of polyphenols. Biochem Pharmacol 139:109CrossRefGoogle Scholar
  29. Tomas-Barberan FA, Garcia-Villalba R, Gonzalez-Sarrias A, Selma MV, Espin JC (2014) Ellagic acid metabolism by human gut microbiota: consistent observation of three urolithin phenotypes in intervention trials, independent of food source, age, and health status. J Agric Food Chem 62:6535–6538CrossRefGoogle Scholar
  30. Tomas-Navarro M, Vallejo F, Sentandreu E, Navarro JL, Tomas-Barberan FA (2014) Volunteer stratification is more relevant than technological treatment in orange juice flavanone bioavailability. J Agric Food Chem 62:24–27CrossRefGoogle Scholar
  31. Van Rymenant E, Abrankó L, Tumova S, Grootaert C, Van Camp J, Williamson G, Kerimi A (2017) Chronic exposure to short-chain fatty acids modulates transport and metabolism of microbiome-derived phenolics in human intestinal cells. J Nutr Biochem 39:156–168CrossRefGoogle Scholar
  32. Van Rymenant E, Grootaert C, Beerens K, Needs PW, Kroon PA, Kerimi A, Williamson G, Garcia-Villalba R, Gonzalez-Sarrias A, Tomas-Barberan F, Van Camp J, Van de Voorde J (2018a) Vasorelaxant activity of twenty-one physiologically relevant (poly)phenolic metabolites on isolated mouse arteries. Food Funct 8:4331–4335CrossRefGoogle Scholar
  33. Van Rymenant E, Salden B, Voorspoels S, Jacobs G, Noten B, Pitart J, Possemiers S, Smagghe G, Grootaert C, Van Camp JA (2018b) Critical evaluation of in vitro hesperidin 2S bioavailability in a model combining luminal (microbial) digestion and Caco-2 cell absorption in comparison to a randomized controlled human trial. Mol Nutr Food Res 62:e1700881CrossRefGoogle Scholar
  34. Wu T, Grootaert C, Voorspoels S, Jacobs G, Pitart J, Kamiloglu S, Possemiers S, Heinonen M, Kardum N, Glibetic M, Smagghe G, Raes K, Van Camp J (2017) Aronia (Aronia melanocarpa) phenolics bioavailability in a combined in vitro digestion/Caco-2 cell model is structure and colon region dependent. J Funct Foods 38:128–139CrossRefGoogle Scholar
  35. Zamora-Ros R, Knaze V, Rothwell JA, Hemon B, Moskal A, Overvad K, Tjonneland A, Kyro C, Fagherazzi G, Boutron-Ruault MC, Touillaud M, Katzke V, Kuhn T, Boeing H, Forster J, Trichopoulou A, Valanou E, Peppa E, Palli D, Agnoli C, Ricceri F, Tumino R, de Magistris MS, Peeters PH, Bueno-de-Mesquita HB, Engeset D, Skeie G, Hjartaker A, Menendez V, Agudo A, Molina-Montes E, Huerta JM, Barricarte A, Amiano P, Sonestedt E, Nilsson LM, Landberg R, Key TJ, Khaw KT, Wareham NJ, Lu Y, Slimani N, Romieu I, Riboli E, Scalbert A (2016) Dietary polyphenol intake in Europe: the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Eur J Nutr 55:1359–1375CrossRefGoogle Scholar
  36. Ziegler K, Kerimi A, Poquet L, Williamson G (2016) Butyric acid increases transepithelial transport of ferulic acid through upregulation of the monocarboxylate transporters SLC16A1 (MCT1) and SLC16A3 (MCT4). Arch Biochem Biophys 599:3–12CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratory of Food Chemistry and Human NutritionGhent UniversityGhentBelgium
  2. 2.Center for Microbial Ecology and TechnologyGhent UniversityGhentBelgium

Personalised recommendations