Poly-Beta-Hydroxybutyrate (PHB) and Infection Reduction in Farmed Aquatic Animals

  • Joseph Leopoldo Q. Laranja
  • Peter BossierEmail author
Living reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


There is a continuous effort in finding effective and sustainable strategies to control diseases in farmed animals, and in recent years, the application of the bacterial storage compound poly-β-hydroxybutyrate (PHB) was identified as a new disease control agent for aquaculture. The idea of using PHB as a biocontrol agent was conceived based on the knowledge that this biopolymer can be degraded into short-chain fatty acids (SCFAs), and SCFAs are known compounds with antimicrobial properties. At the beginning of this chapter, an overview about the PHB granule, its detection, quantification, production, and recovery in microorganisms is presented. The main topic focuses on the application and beneficial effects of PHB in farmed aquatic animals. The mechanisms by which PHB provides beneficial effects to the host are discussed.


  1. Alva-Murillo N, Ochoa-Zarzosa A, López-Meza JE (2012) Short chain fatty acids (propionic and hexanoic) decrease Staphylococcus aureus internalization into bovine mammary epithelial cells and modulate antimicrobial peptide expression. Vet Microbiol 155:324–331PubMedCrossRefPubMedCentralGoogle Scholar
  2. Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472PubMedPubMedCentralGoogle Scholar
  3. Aslım B, Çalışkan F, Beyatlı Y, Gündüz U (1998) Poly-β-hydroxybutyrate production by lactic acid bacteria. FEMS Microbiol Lett 159:293–297PubMedCrossRefPubMedCentralGoogle Scholar
  4. Azain M (2004) Role of fatty acids in adipocyte growth and development. J Anim Sci 82:916–924PubMedCrossRefPubMedCentralGoogle Scholar
  5. Baruah K, Huy TT, Norouzitallab P, Niu Y, Gupta SK, De Schryver P, Bossier P (2015) Probing the protective mechanism of poly-ß-hydroxybutyrate against vibriosis by using gnotobiotic Artemia franciscana and Vibrio campbellii as host-pathogen model. Sci Rep 5:9427PubMedPubMedCentralCrossRefGoogle Scholar
  6. Berger E, Ramsay B, Ramsay J, Chavarie C, Braunegg G (1989) PHB recovery by hypochlorite digestion of non-PHB biomass. Biotechnol Tech 3:227–232CrossRefGoogle Scholar
  7. Brandl H, Gross RA, Lenz RW, Fuller RC (1990) Plastics from bacteria and for bacteria: poly (β-hydroxyalkanoates) as natural, biocompatible, and biodegradable polyesters. In: Microbial bioproducts. Springer, Berlin, Heidelberg pp 77–93Google Scholar
  8. Braunegg G, Sonnleitner B, Lafferty R (1978) A rapid gas chromatographic method for the determination of poly-β-hydroxybutyric acid in microbial biomass. Eur J Appl Microbiol Biotechnol 6:29–37CrossRefGoogle Scholar
  9. Brown MR, Barrett SM, Volkman JK, Nearhos SP, Nell JA, Allan GL (1996) Biochemical composition of new yeasts and bacteria evaluated as food for bivalve aquaculture. Aquaculture 143:341–360CrossRefGoogle Scholar
  10. Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, Muir AI, Wigglesworth MJ, Kinghorn I, Fraser NJ (2003) The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278:11312–11319PubMedCrossRefGoogle Scholar
  11. Cabello FC (2006) Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 8:1137–1144PubMedCrossRefGoogle Scholar
  12. Davidson PM, Taylor TM, Schmidt SE (2013) Chemical preservatives and natural antimicrobial compounds. In: Food microbiology. American Society of Microbiology, ASM Press, Washington, DC pp 765–801Google Scholar
  13. De Schryver P, Sinha AK, Kunwar PS, Baruah K, Verstraete W, Boon N, Boeck G, Bossier P (2010) Poly-β-hydroxybutyrate (PHB) increases growth performance and intestinal bacterial range-weighted richness in juvenile European sea bass, Dicentrarchus labrax. Appl Microbiol Biotechnol 86:1535–1541PubMedCrossRefGoogle Scholar
  14. Defoirdt T, Halet D, Sorgeloos P, Bossier P, Verstraete W (2006) Short-chain fatty acids protect gnotobiotic Artemia franciscana from pathogenic Vibrio campbellii. Aquaculture 261:804–808CrossRefGoogle Scholar
  15. Defoirdt T, Boon N, Sorgeloos P, Verstraete W, Bossier P (2007a) Alternatives to antibiotics to control bacterial infections: luminescent vibriosis in aquaculture as an example. Trends Biotechnol 25:472–479PubMedCrossRefGoogle Scholar
  16. Defoirdt T, Halet D, Vervaeren H, Boon N, Van De Wiele T, Sorgeloos P, Bossier P, Verstraete W (2007b) The bacterial storage compound poly-beta-hydroxybutyrate protects Artemia franciscana from pathogenic Vibrio campbellii. Environ Microbiol 9:445–452PubMedCrossRefGoogle Scholar
  17. Defoirdt T, Boon N, Sorgeloos P, Verstraete W, Bossier P (2008) Quorum sensing and quorum quenching in Vibrio harveyi: lessons learned from in vivo work. ISME J 2:19PubMedCrossRefGoogle Scholar
  18. Defoirdt T, Boon N, Sorgeloos P, Verstraete W, Bossier P (2009) Short-chain fatty acids and poly-β-hydroxyalkanoates:(new) biocontrol agents for a sustainable animal production. Biotechnol Adv 27:680–685PubMedCrossRefGoogle Scholar
  19. Duan Y, Zhang Y, Dong H, Wang Y, Zhang J (2017a) Effects of dietary poly-β-hydroxybutyrate (PHB) on microbiota composition and the mTOR signaling pathway in the intestines of Litopenaeus vannamei. J Microbiol 55:946–954PubMedCrossRefGoogle Scholar
  20. Duan Y, Zhang Y, Dong H, Zheng X, Wang Y, Li H, Liu Q, Zhang J (2017b) Effect of dietary poly-β-hydroxybutyrate (PHB) on growth performance, intestinal health status and body composition of Pacific white shrimp Litopenaeus vannamei (Boone, 1931). Fish Shellfish Immunol 60:520–528PubMedCrossRefGoogle Scholar
  21. Eklund T (1983) The antimicrobial effect of dissociated and undissociated sorbic acid at different pH levels. J Appl Microbiol 54:383–389Google Scholar
  22. Franke A, Clemmesen C, De Schryver P, Garcia-Gonzalez L, Miest JJ, Roth O (2017a) Immunostimulatory effects of dietary poly-β-hydroxybutyrate in European sea bass postlarvae. Aquac Res 48:5707–5717CrossRefGoogle Scholar
  23. Franke A, Roth O, De Schryver P, Bayer T, Garcia-Gonzalez L, Künzel S, Bossier P, Miest JJ, Clemmesen C (2017b) Poly-β-hydroxybutyrate administration during early life: effects on performance, immunity and microbial community of European sea bass yolk-sac larvae. Sci Rep 7:15022PubMedPubMedCentralCrossRefGoogle Scholar
  24. Griebel R, Smith Z, Merrick J (1968) Metabolism of poly (β-hydroxybutyrate). I. Purification, composition, and properties of native poly (β-hydroxybutyrate) granules from Bacillus megaterium. Biochemistry (Mosc) 7:3676–3681CrossRefGoogle Scholar
  25. Halet D, Defoirdt T, Van Damme P, Vervaeren H, Forrez I, Van de Wiele T, Boon N, Sorgeloos P, Bossier P, Verstraete W (2007) Poly-b-hydroxybutyrate-accumulating bacteria protect gnotobiotic Artemia franciscana from pathogenic Vibrio campbellii. FEMS Microbiol Ecol 60:363–369PubMedCrossRefGoogle Scholar
  26. Hesselmann RP, Fleischmann T, Hany R, Zehnder AJ (1999) Determination of polyhydroxyalkanoates in activated sludge by ion chromatographic and enzymatic methods. J Microbiol Methods 35:111–119PubMedCrossRefGoogle Scholar
  27. Jendrossek D (2009) Polyhydroxyalkanoate granules are complex subcellular organelles (carbonosomes). J Bacteriol 191:3195–3202PubMedPubMedCentralCrossRefGoogle Scholar
  28. Jendrossek D, Pfeiffer D (2014) New insights in the formation of polyhydroxyalkanoate granules (carbonosomes) and novel functions of poly (3-hydroxybutyrate). Environ Microbiol 16:2357–2373PubMedCrossRefGoogle Scholar
  29. Jendrossek D, Selchow O, Hoppert M (2007) Poly (3-hydroxybutyrate) granules at the early stages of formation are localized close to the cytoplasmic membrane in Caryophanon latum. Appl Environ Microbiol 73:586–593PubMedCrossRefGoogle Scholar
  30. Johnson K, Kleerebezem R, van Loosdrecht MC (2010) Influence of the C/N ratio on the performance of polyhydroxybutyrate (PHB) producing sequencing batch reactors at short SRTs. Water Res 44:2141–2152PubMedCrossRefPubMedCentralGoogle Scholar
  31. Karr DB, Waters JK, Emerich DW (1983) Analysis of poly-β-hydroxybutyrate in Rhizobium japonicum bacteroids by ion-exclusion high-pressure liquid chromatography and UV detection. Appl Environ Microbiol 46:1339–1344PubMedPubMedCentralGoogle Scholar
  32. Keller L, Surette MG (2006) Communication in bacteria: an ecological and evolutionary perspective. Nat Rev Microbiol 4:249PubMedCrossRefPubMedCentralGoogle Scholar
  33. Kiran GS, Lipton AN, Priyadharshini S, Anitha K, Suárez LEC, Arasu MV, Choi KC, Selvin J, Al-Dhabi NA (2014) Antiadhesive activity of poly-hydroxy butyrate biopolymer from a marine Brevibacterium casei MSI04 against shrimp pathogenic vibrios. Microb Cell Fact 13:114PubMedPubMedCentralCrossRefGoogle Scholar
  34. Kiran GS, Priyadharshini S, Dobson AD, Gnanamani E, Selvin J (2016) Degradation intermediates of polyhydroxy butyrate inhibits phenotypic expression of virulence factors and biofilm formation in luminescent Vibrio sp. PUGSK8. NPJ Biofilms Microbiomes 2:16002CrossRefGoogle Scholar
  35. Knittle JL, Hirsch J (1965) Effect of chain length on rates of uptake of free fatty acids during in vitro incubations of rat adipose tissue. J Lipid Res 6:565–571PubMedPubMedCentralGoogle Scholar
  36. Koller M, Atlić A, Dias M, Reiterer A, Braunegg G (2010) Microbial PHA production from waste raw materials. In: Plastics from bacteria. Springer, Berlin, Heidelberg pp 85–119Google Scholar
  37. Kominek LA, Halvorson HO (1965) Metabolism of poly-β-hydroxybutyrate and acetoin in Bacillus cereus. J Bacteriol 90:1251–1259PubMedPubMedCentralGoogle Scholar
  38. Kumar BS, Prabakaran G (2006) Production of PHB (bioplastics) using bio-effluent as substrate by Alcaligens eutrophus. Indian J Biotechnol 5:76–79Google Scholar
  39. Laranja JLQ (2017) Amorphous poly-β-hydroxybutyrate (PHB)-accumulating Bacillus spp. as biocontrol agents in crustacean culture. Ghent University, Ghent, p 262Google Scholar
  40. Laranja JLQ, Ludevese-Pascual GL, Amar EC, Sorgeloos P, Bossier P, De Schryver P (2014) Poly-β-hydroxybutyrate (PHB) accumulating Bacillus spp. improve the survival, growth and robustness of Penaeus monodon (Fabricius, 1798) postlarvae. Vet Microbiol 173:310–317PubMedCrossRefGoogle Scholar
  41. Laranja JLQ, Amar EC, Ludevese-Pascual GL, Niu Y, Geaga MJ, De Schryver P, Bossier P (2017) A probiotic Bacillus strain containing amorphous poly-beta-hydroxybutyrate (PHB) stimulates the innate immune response of Penaeus monodon postlarvae. Fish Shellfish Immunol 68:202–210PubMedCrossRefGoogle Scholar
  42. Laranja JLQ, De Schryver P, Ludevese-Pascual GL, Amar EC, Aerts M, Vandamme P, Bossier P (2018) High amorphous poly-beta-hydroxybutyrate (PHB) content in a probiotic Bacillus strain displays better protective effects in Vibrio-challenged gnotobiotic Artemia. Aquaculture 487:15–21CrossRefGoogle Scholar
  43. Law JH, Slepecky RA (1961) Assay of poly-beta-hydroxybutyric acid. J Bacteriol 82:33–36PubMedPubMedCentralGoogle Scholar
  44. Le Poul E, Loison C, Struyf S, Springael J-Y, Lannoy V, Decobecq M-E, Brezillon S, Dupriez V, Vassart G, Van Damme J (2003) Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem 278:25481–25489PubMedCrossRefGoogle Scholar
  45. Lee SY (1996) Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria. Trends Biotechnol 14:431–438CrossRefGoogle Scholar
  46. Lemoigne M (1923) Production d’acide β-oxybutyrique par certaines bactéries du groupe du Bacillus subtilis. C R Hebd Seances Acad Sci 176:1761Google Scholar
  47. Liu Y, De Schryver P, Van Delsen B, Maignien L, Boon N, Sorgeloos P, Verstraete W, Bossier P, Defoirdt T (2010) PHB-degrading bacteria isolated from the gastrointestinal tract of aquatic animals as protective actors against luminescent vibriosis. FEMS Microbiol Ecol 74:196–204PubMedCrossRefGoogle Scholar
  48. Luckstadt C (2008) The use of acidifiers in fish nutrition. CAB Rev 3:1–8CrossRefGoogle Scholar
  49. Ludevese G (2016) Application and mode of action of the poly-β-hydroxybutyrate (PHB) in Penaeus culture. Ghent University, Ghent, BelgiumGoogle Scholar
  50. Ludevese-Pascual G, Laranja JLQ, Amar EC, Sorgeloos P, Bossier P, De Schryver P (2017) Poly-beta-hydroxybutyrate-enriched Artemia sp. for giant tiger prawn Penaeus monodon larviculture. Aquac Nutr 23:422–429CrossRefGoogle Scholar
  51. Ludevese-Pascual G, Laranja JL, Amar E, Bossier P, De Schryver P (2018) Application of poly-β-hydroxybutyrate (PHB)-based biodegradable plastic as artificial substratum in Litopenaeus vannamei culture. J Polym Environ 27:1–9CrossRefGoogle Scholar
  52. Lundgren D, Pfister R, Merrick J (1964) Structure of poly-β-hydroxybutyric acid granules. Microbiology 34:441–446Google Scholar
  53. Lundin G (1996) Global attempts to address shrimp disease. Marine/environmental paper no. 4. Land, Water and Natural Habitats Division, Environment Department, The World Bank, Rome, p 45Google Scholar
  54. Mani-Lopez E, García HS, López-Malo A (2012) Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Res Int 45:713–721CrossRefGoogle Scholar
  55. McHan F, Shotts EB (1993) Effect of short-chain fatty acids on the growth of Salmonella typhimurium in an in vitro system. Avian Dis 37:396–398PubMedCrossRefGoogle Scholar
  56. Merrick J, Lundgren D, Pfister R (1965) Morphological changes in poly-β-hydroxybutyrate granules associated with decreased susceptibility to enzymatic hydrolysis. J Bacteriol 89:234–239PubMedPubMedCentralGoogle Scholar
  57. Monica M, Priyanka T, Akshaya M, Rajeswari V, Sivakumar L, Somasundaram S, Shenbhagarathai R (2017) The efficacy of Poly-β-Hydroxy Butyrate (PHB)/biosurfactant derived from Staphylococcus hominis against White Spot Syndrome Virus (WSSV) in Penaeus monodon. Fish Shellfish Immunol 71:399–410PubMedCrossRefGoogle Scholar
  58. Mudliar S, Vaidya A, Kumar MS, Dahikar S, Chakrabarti T (2008) Techno-economic evaluation of PHB production from activated sludge. Clean Techn Environ Policy 10:255CrossRefGoogle Scholar
  59. Najdegerami EH, Tran TN, Defoirdt T, Marzorati M, Sorgeloos P, Boon N, Bossier P (2012) Effects of poly-β-hydroxybutyrate (PHB) on Siberian sturgeon (Acipenser baerii) fingerlings performance and its gastrointestinal tract microbial community. FEMS Microbiol Ecol 79:25–33PubMedCrossRefGoogle Scholar
  60. Najdegerami E, Bakhshi F, Tokmechi A, Shiri Harzevili A, Sorgeloos P, Bossier P (2015a) Dietary effects of poly-β-hydroxybutyrate on the growth performance, digestive enzyme activity, body composition, mineral uptake and bacterial challenge of rainbow trout fry (Oncorhynchus mykiss). Aquac Nutr 23:246–254CrossRefGoogle Scholar
  61. Najdegerami EH, Baruah K, Shiri A, Rekecki A, den Broeck W, Sorgeloos P, Boon N, Bossier P, Schryver P (2015b) Siberian sturgeon (Acipenser baerii) larvae fed Artemia nauplii enriched with poly-β-hydroxybutyrate (PHB): effect on growth performance, body composition, digestive enzymes, gut microbial community, gut histology and stress tests. Aquac Res 46:801–812CrossRefGoogle Scholar
  62. Nhan DT, Wille M, De Schryver P, Defoirdt T, Bossier P, Sorgeloos P (2010) The effect of poly-β-hydroxybutyrate on larviculture of the giant freshwater prawn Macrobrachium rosenbergii. Aquaculture 302:76–81CrossRefGoogle Scholar
  63. Ostle AG, Holt J (1982) Nile blue A as a fluorescent stain for poly-beta-hydroxybutyrate. Appl Environ Microbiol 44:238–241PubMedPubMedCentralGoogle Scholar
  64. Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82:233–247CrossRefGoogle Scholar
  65. Pötter M, Steinbüchel A (2005) Poly (3-hydroxybutyrate) granule-associated proteins: impacts on poly (3-hydroxybutyrate) synthesis and degradation. Biomacromolecules 6:552–560PubMedCrossRefGoogle Scholar
  66. Pötter M, Steinbüchel A (2006) Biogenesis and structure of polyhydroxyalkanoate granules. In: Shively JM (ed) Inclusions in prokaryotes. Microbiology monographs, vol 1. Springer, Berlin/Heidelberg, pp 109–136CrossRefGoogle Scholar
  67. Rawls JF, Samuel BS, Gordon JI (2004) Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc Natl Acad Sci U S A 101:4596–4601PubMedPubMedCentralCrossRefGoogle Scholar
  68. Ricke S (2003) Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult Sci 82:632–639PubMedCrossRefGoogle Scholar
  69. Rombout J, Huttenhuis H, Picchietti S, Scapigliati G (2005) Phylogeny and ontogeny of fish leucocytes. Fish Shellfish Immunol 19:441–455PubMedCrossRefGoogle Scholar
  70. Schönfeld P, Wojtczak L (2016) Short-and medium-chain fatty acids in energy metabolism: the cellular perspective. J Lipid Res 57:943–954PubMedPubMedCentralCrossRefGoogle Scholar
  71. Sheridan MA (1988) Lipid dynamics in fish: aspects of absorption, transportation, deposition and mobilization. Comp Biochem Physiol B Comp Biochem 90:679–690CrossRefGoogle Scholar
  72. Sheu CW, Konings WN, Freese E (1972) Effects of acetate and other short-chain fatty acids on sugar and amino acid uptake of Bacillus subtilis. J Bacteriol 111:525–530PubMedPubMedCentralGoogle Scholar
  73. Shin R, Suzuki M, Morishita Y (2002) Influence of intestinal anaerobes and organic acids on the growth of enterohaemorrhagic Escherichia coli O157: H7. J Med Microbiol 51:201–206PubMedCrossRefPubMedCentralGoogle Scholar
  74. Silva B, Jesus G, Seiffert W, Vieira F, Mouriño J, Jatobá A, Nolasco-Soria H (2018) The effects of dietary supplementation with butyrate and polyhydroxybutyrate on the digestive capacity and intestinal morphology of Pacific White Shrimp (Litopenaeus vannamei). Mar Freshw Behav Physiol 49:1–12CrossRefGoogle Scholar
  75. Sina C, Gavrilova O, Förster M, Till A, Derer S, Hildebrand F, Raabe B, Chalaris A, Scheller J, Rehmann A (2009) G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation. J Immunol 183:7514–7522PubMedCrossRefGoogle Scholar
  76. Situmorang ML (2015) Application of poly-β-hydroxybutyrate in growth and health promotion of Nile tilapia Oreochromis niloticus culture. Ghent University, Ghent, BelgiumGoogle Scholar
  77. Situmorang ML, De Schryver P, Dierckens K, Bossier P (2016) Effect of poly-β-hydroxybutyrate on growth and disease resistance of Nile tilapia Oreochromis niloticus juveniles. Vet Microbiol 182:44–49PubMedCrossRefPubMedCentralGoogle Scholar
  78. Spiekermann P, Rehm BH, Kalscheuer R, Baumeister D, Steinbüchel A (1999) A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 171:73–80PubMedCrossRefPubMedCentralGoogle Scholar
  79. Stentiford G, Neil D, Peeler E, Shields J, Small H, Flegel T, Vlak J, Jones B, Morado F, Moss S (2012) Disease will limit future food supply from the global crustacean fishery and aquaculture sectors. J Invertebr Pathol 110:141–157PubMedCrossRefPubMedCentralGoogle Scholar
  80. Suguna P, Binuramesh C, Abirami P, Saranya V, Poornima K, Rajeswari V, Shenbagarathai R (2014) Immunostimulation by poly-β hydroxybutyrate–hydroxyvalerate (PHB–HV) from Bacillus thuringiensis in Oreochromis mossambicus. Fish Shellfish Immunol 36:90–97PubMedCrossRefGoogle Scholar
  81. Sui L, Cai J, Sun H, Wille M, Bossier P (2012) Effect of poly-β-hydroxybutyrate on Chinese mitten crab, Eriocheir sinensis, larvae challenged with pathogenic Vibrio anguillarum. J Fish Dis 35:359–364PubMedCrossRefGoogle Scholar
  82. Sui L, Liu Y, Sun H, Wille M, Bossier P, De Schryver P (2014) The effect of poly-β-hydroxybutyrate on the performance of Chinese mitten crab (Eriocheir sinensis Milne-Edwards) zoea larvae. Aquac Res 45:558–565CrossRefGoogle Scholar
  83. Thai TQ, Wille M, Garcia-Gonzalez L, Sorgeloos P, Bossier P, De Schryver P (2014) Poly-ß-hydroxybutyrate content and dose of the bacterial carrier for Artemia enrichment determine the performance of giant freshwater prawn larvae. Appl Microbiol Biotechnol 98:5205–5215PubMedCrossRefGoogle Scholar
  84. Tokiwa Y, Calabia BP, Ugwu CU, Aiba S (2009) Biodegradability of plastics. Int J Mol Sci 10:3722–3742PubMedPubMedCentralCrossRefGoogle Scholar
  85. Valappil SP, Boccaccini AR, Bucke C, Roy I (2007) Polyhydroxyalkanoates in Gram-positive bacteria: insights from the genera Bacillus and Streptomyces. Antonie Van Leeuwenhoek 91:1–17PubMedCrossRefGoogle Scholar
  86. Van Hung N, De Schryver P, Tam TT, Garcia-Gonzalez L, Bossier P, Nevejan N (2015) Application of poly-β-hydroxybutyrate (PHB) in mussel larviculture. Aquaculture 446:318–324CrossRefGoogle Scholar
  87. Van Immerseel F, De Buck J, Pasmans F, Velge P, Bottreau E, Fievez V, Haesebrouck F, Ducatelle R (2003) Invasion of Salmonella enteritidis in avian intestinal epithelial cells in vitro is influenced by short-chain fatty acids. Int J Food Microbiol 85:237–248PubMedCrossRefGoogle Scholar
  88. Vázquez J, González MP, Murado M (2005) Effects of lactic acid bacteria cultures on pathogenic microbiota from fish. Aquaculture 245:149–161CrossRefGoogle Scholar
  89. Vinolo MA, Ferguson GJ, Kulkarni S, Damoulakis G, Anderson K, Bohlooly-Y M, Stephens L, Hawkins PT, Curi R (2011) SCFAs induce mouse neutrophil chemotaxis through the GPR43 receptor. PLoS One 6:e21205PubMedPubMedCentralCrossRefGoogle Scholar
  90. Wei Y-H, Chen W-C, Huang C-K, Wu H-S, Sun Y-M, Lo C-W, Janarthanan O-M (2011) Screening and evaluation of polyhydroxybutyrate-producing strains from indigenous isolate Cupriavidus taiwanensis strains. Int J Mol Sci 12:252–265PubMedPubMedCentralCrossRefGoogle Scholar
  91. Weltzien F-A, Hemre G, Evjemo J, Olsen Y, Fyhn H (2000) β-Hydroxybutyrate in developing nauplii of brine shrimp (Artemia franciscana K.) under feeding and non-feeding conditions. Comp Biochem Physiol B Biochem Mol Biol 125:63–69PubMedCrossRefGoogle Scholar
  92. Wilén B-M, Jin B, Lant P (2003) The influence of key chemical constituents in activated sludge on surface and flocculating properties. Water Res 37:2127–2139PubMedCrossRefGoogle Scholar
  93. Yu J, Plackett D, Chen LX (2005) Kinetics and mechanism of the monomeric products from abiotic hydrolysis of poly [(R)-3-hydroxybutyrate] under acidic and alkaline conditions. Polym Degrad Stab 89:289–299CrossRefGoogle Scholar
  94. Zinn M, Witholt B, Egli T (2001) Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliv Rev 53:5–21PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Aquaculture DepartmentSoutheast Asian Fisheries Development CenterIloiloPhilippines
  2. 2.Laboratory of Aquaculture and Artemia Reference CenterGhent UniversityGhentBelgium

Personalised recommendations