Advertisement

Gastrointestinal Tract: Intestinal Fatty Acid Metabolism and Implications for Health

Living reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Short-chain fatty acids (SCFA) are formed from the fermentation of sugars and complex carbohydrates by gastrointestinal (GI) bacteria in man. Acetate is the most abundant SCFA, with lower amounts of propionate and butyrate formed. Propionate and butyrate are also formed from the products of carbohydrate fermentation by other bacteria, for example, from lactate, succinate, and acetate. SCFA play a role in regulating transit of digesta through the GI tract, and in health by, for example, decreasing the risk of colon cancer (butyrate), and promoting satiety and reducing cholesterol load (propionate). Major butyrate-producing (Roseburia and Faecalibacterium spp.) and propionate-producing (Negativicutes and Bacteroides spp.) bacteria are among the most abundant microbes present in the large intestine. Metabolism of longer-chain fatty acids occurs mainly by hydration or hydrogenation of unsaturated fatty acids, the pathway depending on the individual. Hydroxystearic acids are formed in the intestine, particularly under disease conditions. Metabolism of linoleic acid results in the formation of conjugated linoleic acids (CLA) by several species, including Roseburia hominis and Roseburia inulinivorans. Enhancement of GI CLA formation, possibly using probiotics, may be useful in preventing or treating inflammatory bowel disease and be protective of key health-promoting bacteria such as Faecalibacterium prausnitzii.

References

  1. Bassaganya-Riera J, Hontecillus R, Beitz DC (2002) Colonic anti-inflammatory mechanisms of conjugated linoleic acid. Clin Nutr 21:451–459CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bassaganya-Riera J, Reynolds K, Martino-Catt S, Cui Y, Hennighausen L, Gonzalez F, Rohrer J, Benninghoff AU, Hontecillas R (2004) Activation of PPAR gamma and delta by conjugated linoleic acid mediates protection from experimental inflammatory bowel disease. Gastroenterology 127:777–791CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bauman DE, Lock AL, Corl BA, Ip C, Salter AM, Parodi PM (2005) Milk fatty acids and human health: potential role of conjugated linoleic acid and trans fatty acids. In: Serjrsen K, Hvelplund T, Nielsen MO (eds) Ruminant physiology: digestion, metabolism and impact of nutrition on gene expression, immunology and stress. Wageningen Academic Publishers, Wageningen, pp 529–561Google Scholar
  4. Belenguer A, Duncan SH, Holtrop G, Anderson SE, Lobley GE, Flint HJ (2007) Impact of pH on lactate formation and utilization by human fecal microbial communities. Appl Environ Microbiol 73:6526–6533CrossRefPubMedPubMedCentralGoogle Scholar
  5. Belury MA (2002) Dietary conjugated linoleic acid in health: physiological effects and mechanisms of action. Annu Rev Nutr 22:505–531CrossRefPubMedGoogle Scholar
  6. Bergman NE (1990) Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev 70:567–590CrossRefPubMedGoogle Scholar
  7. Bonanome A, Grundy SM (1988) Effect of dietary stearic acid on plasma cholesterol and lipoprotein levels. N Engl J Med 318:1244–1248CrossRefPubMedGoogle Scholar
  8. Byrne CS, Chambers ES, Alhabeeb H, Chhina N, Morrison DJ, Preston T, Tedford C, Fitzpatrick J, Irani C, Busza A, Garcia-Perez I, Fountana S, Holmes E, Goldstone AP, Frost GS (2016) Increased colonic propionate reduces anticipatory reward responses in the human striatum to high-energy foods. Am J Clin Nutr 104:5–14CrossRefPubMedPubMedCentralGoogle Scholar
  9. Canfora EE, Jocken JW, Blaak EE (2015) Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol 11:577–591CrossRefPubMedGoogle Scholar
  10. Chanoine JP, Hampl S, Jensen C, Boldrin M, Hauptman J (2005) Effect of orlistat on weight and body composition in obese adolescents – a randomized controlled trial. J Am Med Assoc 293:2873–2883CrossRefGoogle Scholar
  11. Chaplin A, Parra P, Serra F, Palou A (2015) Conjugated linoleic acid supplementation under a high-fat diet modulates stomach protein expression and intestinal microbiota in adult mice. PLoS One 10:e0125091CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cherbut C (2003) Motor effects of short-chain fatty acids and lactate in the gastrointestinal tract. Proc Nutr Soc 62:95–99CrossRefPubMedGoogle Scholar
  13. Coakley M, Ross RP, Nordgren M, Fitzgerald G, Devery R, Stanton C (2003) Conjugated linoleic acid biosynthesis by human-derived Bifidobacterium species. J Appl Microbiol 94:138–145CrossRefPubMedGoogle Scholar
  14. Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT (1987) Short chain fatty acids in the human large intestine, portal, hepatic and venous blood. Gut 28:1221–1227CrossRefPubMedPubMedCentralGoogle Scholar
  15. Daly K, Shirazi-Beechey SP (2006) Microarray analysis of butyrate regulated genes in colonic epithelial cells. DNA Cell Biol 25:49–62CrossRefPubMedGoogle Scholar
  16. De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, Bäckhed F, Mithieux G (2014) Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156:84–96CrossRefPubMedGoogle Scholar
  17. De Weirdt R, Coenen E, Vlaeminck B, Fievez V, Van den Abbeele P, Van de Wiele T (2013) A simulated mucus layer protects Lactobacillus reuteri from the inhibitory effects of linoleic acid. Benefic Microbes 4:299–312CrossRefGoogle Scholar
  18. De Weirdt R, Hernandez-Sanabria E, Fievez V, Mees E, Geirnaert A, Van HF, Vilchez-Vargas R, Van den Abbeele P, Jauregui R, Pieper DH, Vlaeminck B, Van de Wiele T (2017) Mucosa-associated biohydrogenating microbes protect the simulated colon microbiome from stress associated with high concentrations of polyunsaturated fat. Environ Microbiol 19:722–739CrossRefPubMedGoogle Scholar
  19. Devillard E, McIntosh FM, Duncan SM, Wallace RJ (2007) Metabolism of linoleic acid by human gut bacteria: different routes for biosynthesis of conjugated linoleic acid. J Bacteriol 189: 2566–2570CrossRefPubMedPubMedCentralGoogle Scholar
  20. Devillard E, McIntosh FM, Paillard D, Thomas NA, Shingfield KJ, Wallace RJ (2009) Differences between human subjects in the composition of the faecal bacterial community and faecal metabolism of linoleic acid. Microbiology 155:513–520CrossRefPubMedGoogle Scholar
  21. Druart C, Neyrinck AM, Vlaeminck B, Fievez V, Cani PD, Delzenne NM (2014) Role of the lower and upper intestine in the production and absorption of gut microbiota-derived PUFA metabolites. PLoS One 9:e87560CrossRefPubMedPubMedCentralGoogle Scholar
  22. Duncan SH, Barcenilla A, Stewart CS, Pryde SE, Flint HJ (2002) Acetate utilization and butyryl coenzyme A (CoA): acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Appl Environ Microbiol 68:5186–5190CrossRefPubMedPubMedCentralGoogle Scholar
  23. Duncan SH, Holtrop G, Lobley GE, Calder AG, Stewart CS, Flint HJ (2004a) Contribution of acetate to butyrate formation by human faecal bacteria. Br J Nutr 91:915–923CrossRefPubMedGoogle Scholar
  24. Duncan SH, Louis P, Flint HJ (2004b) Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol 70:5810–5817CrossRefPubMedPubMedCentralGoogle Scholar
  25. Duncan SH, Aminov RI, Scott KP, Louis P, Stanton TB, Flint HJ (2006) Proposal of Roseburia faecis sp. nov., Roseburia hominis sp. nov. and Roseburia inulinivorans sp. nov., based on isolates from human faeces. Int J Syst Evol Microbiol 56:2437–2441CrossRefPubMedGoogle Scholar
  26. Eyssen H, Parmentier G (1974) Biohydrogenation of sterols and fatty acids by the intestinal microflora. Am J Clin Nutr 27:1329–1340CrossRefPubMedGoogle Scholar
  27. Falony G, Vlachou A, Verbrugghe K, De Vuyst L (2006) Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose. Appl Environ Microbiol 72:7835–7841CrossRefPubMedPubMedCentralGoogle Scholar
  28. Flint HJ (2006) Prokaryote diversity in the human GI tract. In: Logan NA, Lappin-Scott HM, Oyston PCF (eds) Prokaryotic diversity: mechanisms and significance. Society for General Microbiology symposium no. 66, Warwick. Cambridge University Press, Cambridge, pp 65–90CrossRefGoogle Scholar
  29. Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA (2008) Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 6:121–131CrossRefPubMedGoogle Scholar
  30. Frost G, Sleeth ML, Sahuri-Arisoylu M, Lizarbe B, Cerdan S, Brody L, Anastasovska J, Ghourab S, Hankir M, Zhang S, Carling D, Swann JR, Gibson G, Viardot A, Morrison D, Thomas LE, Bell JD (2014) The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun 5:3611CrossRefPubMedPubMedCentralGoogle Scholar
  31. Fuke G, Nornberg JL (2017) Systematic evaluation on the effectiveness of conjugated linoleic acid in human health. Crit Rev Food Sci Nutr 57:1–7CrossRefGoogle Scholar
  32. Ge H, Li X, Weiszmann J, Wang P, Baribault H, Chen JL, Tian H, Li Y (2008) Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology 149:4519–4526CrossRefGoogle Scholar
  33. Gibson SAW, Mcfarlan C, Hay S, Macfarlane GT (1989) Significance of microflora in proteolysis in the colon. Appl Environ Microbiol 55:679–683PubMedPubMedCentralGoogle Scholar
  34. Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ (2008) Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27:104–119CrossRefPubMedPubMedCentralGoogle Scholar
  35. Harfoot CG, Hazlewood GP (1997) Lipid metabolism in the rumen. In: Hobson PN, Stewart CS (eds) The rumen microbial ecosystem. Chapman & Hall, London, pp 382–426CrossRefGoogle Scholar
  36. Hauptman J, Lucas C, Boldrin MN, Collins H, Segal KR (2000) Orlistat in the long-term treatment of obesity in primary care settings. Arch Fam Med 9:160–167CrossRefPubMedPubMedCentralGoogle Scholar
  37. Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, Chen YY, Knight R, Ahima RS, Bushman F, Wu GD (2009) High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 137:1716–1724CrossRefPubMedPubMedCentralGoogle Scholar
  38. Hove H, Mortensen PB (1995) Influence of intestinal inflammation (IBD) and small and large bowel length on fecal short-chain fatty acids and lactate. Dig Dis Sci 40:1372–1380CrossRefPubMedPubMedCentralGoogle Scholar
  39. Hove H, Nordgaard-Andersen I, Mortensen PB (1994) Faecal dl-lactate concentration in 100 gastrointestinal patients. Scand J Gastroenterol 29:255–259CrossRefGoogle Scholar
  40. Hove H, Holtug K, Jeppesen PB, Mortensen PB (1995) Butyrate absorption and lactate secretion in ulcerative colitis. Dis Colon Rectum 38:519–525CrossRefPubMedGoogle Scholar
  41. Howard FAC, Henderson C (1999) Hydrogenation of polyunsaturated fatty acids by human colonic bacteria. Lett Appl Microbiol 29:193–196CrossRefPubMedGoogle Scholar
  42. Hoyles L (2009) In vitro examination of the effect of Orlistat on the ability of the faecal microbiota to utilize dietary lipids. PhD thesis, University of Reading, United KingdomGoogle Scholar
  43. Hoyles L, Wallace RJ (2010) Gastrointestinal tract: intestinal fatty acid metabolism and implications for health. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 3119–3132CrossRefGoogle Scholar
  44. Hoyles L, Snelling T, Umlai UK, Nicholson JK, Carding SR, Glen RC, McArthur S (2018) Microbiome–host systems interactions: protective effects of propionate upon the blood-brain barrier. Microbiome 6:55CrossRefPubMedPubMedCentralGoogle Scholar
  45. Hylemon PB, Harris SC, Ridlon JM (2018) Metabolism of hydrogen gases and bile acids in the gut microbiome. FEBS Lett.  https://doi.org/10.1002/1873-3468.13064CrossRefPubMedGoogle Scholar
  46. James AT, Webb JPW, Kellock TD (1961) The occurrence of unusual fatty acids in faecal lipids from human beings with normal and abnormal fat absorption. Biochem J 78:333–339CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kamlage B, Hartmann L, Gruhl B, Blaut M (1999) Intestinal microorganisms do not supply associated gnotobiotic rats with conjugated linoleic acid. J Nutr 129:2212–2217CrossRefPubMedGoogle Scholar
  48. Kamlage B, Hartmann L, Gruhl B, Blaut M (2000) Linoleic acid conjugation by human intestinal microorganisms is inhibited by glucose and other substrates in vitro and in gnotobiotic rats. J Nutr 130:2036–2039CrossRefPubMedGoogle Scholar
  49. Kemp MQ, Jeffy BD, Romagnolo DF (2003) Conjugated linoleic acid inhibits cell proliferation through a p53-dependent mechanism: effects on the expression of G1-restriction points in breast and colon cancer cells. J Nutr 133:3670–3677CrossRefPubMedGoogle Scholar
  50. Khedkar CD, Ouwehand AC (2006) Modifying the gastrointestinal microbiota with probiotics. In: Ouwehand A, Vaughan EE (eds) Gastrointestinal microbiology. Taylor & Francis Ltd., New York, pp 315–333CrossRefGoogle Scholar
  51. Kim CH (2018) Immune regulation by microbiome metabolites. Immunology.  https://doi.org/10.1111/imm.12930CrossRefPubMedGoogle Scholar
  52. Kim YS, Spritz N (1968) Metabolism of hydroxy fatty acids in dogs with steatorrhea secondary to experimentally produced intestinal blind loops. J Lipid Res 9:487–491PubMedGoogle Scholar
  53. Kim M, Furuzono T, Yamakuni K, Li Y, Kim YI, Takahashi H, Ohue-Kitano R, Jheng HF, Takahashi N, Kano Y, Yu R, Kishino S, Ogawa J, Uchida K, Yamazaki J, Tominaga M, Kawada T, Goto T (2017) 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, enhances energy metabolism by activation of TRPV1. FASEB J 31:5036–5048CrossRefPubMedGoogle Scholar
  54. Kishino S, Takeuchi M, Park SB, Hirata A, Kitamura N, Kunisawa J, Kiyono H, Iwamoto R, Isobe Y, Arita M, Arai H, Ueda K, Shima J, Takahashi S, Yokozeki K, Shimizu S, Ogawa J (2013) Polyunsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition. Proc Natl Acad Sci USA 110:17808–17813CrossRefPubMedGoogle Scholar
  55. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102:11070–11075CrossRefPubMedGoogle Scholar
  56. Li H, Zhu Y, Zhao F, Song S, Li Y, Xu X, Zhou G, Li C (2017) Fish oil, lard and soybean oil differentially shape gut microbiota of middle-aged rats. Sci Rep 7:826CrossRefPubMedPubMedCentralGoogle Scholar
  57. Louis P, Flint HJ (2017) Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol 19:29–41CrossRefPubMedGoogle Scholar
  58. Louis P, Duncan SH, McCrae SI, Millar J, Jackson MS, Flint HJ (2004) Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. J Bacteriol 186:2099–2106CrossRefPubMedPubMedCentralGoogle Scholar
  59. Macfarlane GT, Gibson GR (1995) Microbiological aspects of the production of short-chain fatty acids in the large bowel. In: Cummings JH, Rombeau JL, Sakata T (eds) Physiological and chemical aspects of short-chain fatty acids. Cambridge University Press, Cambridge, pp 87–105Google Scholar
  60. Macfarlane GT, Gibson GR (1997) Carbohydrate fermentation, energy transduction and gas metabolism in the human large intestine. In: Mackie RI, White BA (eds) Gastrointestinal microbiology, vol. 1. Gastrointestinal ecosystems and fermentations. Chapman & Hall, New York, pp 269–318Google Scholar
  61. Macfarlane GT, Macfarlane S, Gibson GR (1998) Validation of a three-stage compound continuous culture system for investigating the effect of retention time on the ecology and metabolism of bacteria in the human colon. Microb Ecol 35:180–187CrossRefPubMedGoogle Scholar
  62. Maia MRG, Chaudhary LC, Figueres L, Wallace RJ (2007) Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie Van Leeuwenhoek 91:303–314CrossRefPubMedGoogle Scholar
  63. Malhotra SL (1982) Faecal urobilinogen levels and pH of stools in population groups with different incidence of cancer of the colon, and their possible role in aetiology. J R Soc Med 75:709–714PubMedPubMedCentralGoogle Scholar
  64. Martin HM, Rhodes JM (2000) Bacteria and inflammatory bowel disease. Curr Opin Inflamm Dis 13:503–509CrossRefGoogle Scholar
  65. McIntosh FM, Shingfield KJ, Devillard E, Russell WR, Wallace RJ (2009) Mechanism of conjugated linoleic acid and vaccenic acid formation in human fecal suspensions and pure cultures of intestinal bacteria. Microbiology 155:285–294CrossRefPubMedGoogle Scholar
  66. Miller A, McGrath E, Stanton C, Devery R (2003) Vaccenic acid (t11-18:1) is converted to c9,t11-CLA in MCF-7 and SW480 cancer cells. Lipids 38:623–632CrossRefPubMedGoogle Scholar
  67. Miyamoto J, Mizukure T, Park SB, Kishino S, Kimura I, Hirano K, Bergamo P, Rossi M, Suzuki T, Arita M, Ogawa J, Tanabe S (2015) A gut microbial metabolite of linoleic acid, 10-hydroxy-cis-12-octadecenoic acid, ameliorates intestinal epithelial barrier impairment partially via GPR40-MEK-ERK pathway. J Biol Chem 290:2902–2918CrossRefPubMedGoogle Scholar
  68. Mosley EE, McGuire MK, Williams JE, McGuire MA (2006) cis-9,trans-11 conjugated linoleic acid is synthesized from vaccenic acid in lactating women. J Nutr 136:2297–2301CrossRefPubMedGoogle Scholar
  69. Neyrinck AM, Possemiers S, Druart C, Van de Wiele T, De BF, Cani PD, Larondelle Y, Delzenne NM (2011) Prebiotic effects of wheat arabinoxylan related to the increase in bifidobacteria, Roseburia and Bacteroides/Prevotella in diet-induced obese mice. PLoS One 6:e20944CrossRefPubMedPubMedCentralGoogle Scholar
  70. Nichenametla SN, South EH, Exon JH (2004) Interaction of conjugated linoleic acid, sphingomyelin, and butyrate on formation of colonic aberrant crypt foci and immune function in rats. J Toxicol Environ Health A 67:469–481CrossRefPubMedPubMedCentralGoogle Scholar
  71. O’Connor EB, Barrett E, Fitzgerald G, Hill C, Stanton C, Ross RP (2005) Production of vitamins, exopolysaccharides and bacteriocins by probiotic bacteria. In: Tamine A (ed) Probiotic dairy products. Blackwell Publishing Ltd., Oxford, pp 167–194Google Scholar
  72. O’Shea EF, Cotter PD, Stanton C, Ross RP, Hill C (2012) Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: bacteriocins and conjugated linoleic acid. Int J Food Microbiol 152:189–205CrossRefPubMedPubMedCentralGoogle Scholar
  73. Ogawa J, Kishino S, Ando A, Sugimoto S, Mihara K, Shimizu S (2005) Production of conjugated fatty acids by lactic acid bacteria. J Biosci Bioeng 100:355–364CrossRefGoogle Scholar
  74. Ohashi Y, Igarashi T, Kumazawa F, Fujisawa T (2007) Analysis of acetogenic bacteria in human feces with formyltetrahydrofolate synthetase sequences. Biosci Microflora 26:37–40CrossRefGoogle Scholar
  75. Paillard D, McKain N, Chaudhary LC, Walker ND, Pizette F, Koppova I, McEwan NR, Kopecny J, Vercoe PE, Louis P, Wallace RJ (2007) Relation between phylogenetic position, lipid metabolism and butyrate production by different Butyrivibrio-like bacteria from the rumen. Antonie Van Leeuwenhoek 91:417–422CrossRefGoogle Scholar
  76. Pariza MW (2004) Perspective on the safety and effectiveness of conjugated linoleic acid. Am J Clin Nutr 79:1132S–1136SCrossRefGoogle Scholar
  77. Pearson JR (1973) Alteration of dietary fat by human intestinal bacteria. Proc Nutr Soc 32:8A–9AGoogle Scholar
  78. Pokusaeva K, Fitzgerald GF, van Sinderen D (2011) Carbohydrate metabolism in bifidobacteria. Genes Nutr 6:285–306CrossRefPubMedPubMedCentralGoogle Scholar
  79. Polan CE, McNeill JJ, Tove SB (1964) Biohydrogenation of unsaturated fatty acids by rumen bacteria. J Bacteriol 88:1056–1064PubMedPubMedCentralGoogle Scholar
  80. Pouteau E, Ngyuen P, Ballèvre O, Krempf M (2003) Production rates and metabolism of short-chain fatty acids in the colon and whole body using stable isotopes. Proc Nutr Soc 62:87–93CrossRefPubMedGoogle Scholar
  81. Qin JJ, Li RQ, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li JH, Xu JM, Li SC, Li DF, Cao JJ, Wang B, Liang HQ, Zheng HS, Xie YL, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu HM, Yu C, Li ST, Jian M, Zhou Y, Li YR, Zhang XQ, Li SG, Qin N, Yang HM, Wang J, Brunak S, Dore J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Bork P, Ehrlich SD, Wang J (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65CrossRefPubMedPubMedCentralGoogle Scholar
  82. Reichardt N, Duncan SH, Young P, Belenguer A, McWilliam Leitch C, Scott KP, Flint HJ, Louis P (2014) Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J 8:1323–1335CrossRefPubMedPubMedCentralGoogle Scholar
  83. Rey FE, Faith JJ, Bain J, Muehlbauer MJ, Stevens RD, Newgard CB, Gordon JI (2010) Dissecting the in vivo metabolic potential of two human gut acetogens. J Biol Chem 285:22082–22090CrossRefPubMedPubMedCentralGoogle Scholar
  84. Rhee SK, Kayani AJ, Ciszek A, Brenna JT (1997) Desaturation and interconversion of dietary stearic and palmitic acids in human plasma and lipoproteins. Am J Clin Nutr 65:451–458CrossRefPubMedGoogle Scholar
  85. Robert C, Chassard C, Lawson PA, Bernalier-Donadille A (2007) Bacteroides cellulosilyticus sp. nov., a cellulolytic bacterium from the human gut microbial community. Int J Syst Evol Microbiol 57:1516–1520CrossRefPubMedGoogle Scholar
  86. Roediger WE (1980) Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut 21:793–798CrossRefPubMedPubMedCentralGoogle Scholar
  87. Roediger WE (1990) The starved colon – diminished mucosal nutrition, diminished absorption, and colitis. Dis Colon Rectum 33:858–862CrossRefPubMedGoogle Scholar
  88. Russell JB, Wallace RJ (1997) Energy yielding and consuming reactions. In: Hobson PN, Stewart CS (eds) The rumen microbial ecosystem. Chapman & Hall, London, pp 185–215Google Scholar
  89. Salminen S, Bouley C, Boutron-Ruault MC, Cummings JH, Franck A, Gibson GR, Isolauri E, Moreau MC, Roberfroid M, Rowland I (1998) Functional food science and gastrointestinal physiology and function. Br J Nutr 80(suppl. 1):S147–S171CrossRefPubMedGoogle Scholar
  90. Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH (2013) The influence of diet on the gut microbiota. Pharmacol Res 69:52–60CrossRefPubMedGoogle Scholar
  91. Thomas PJ (1972) Identification of some enteric bacteria which convert oleic acid to hydroxystearic acid in vitro. Gastroenterology 62:430–435PubMedGoogle Scholar
  92. Tiruppathi K, Balasubramanian KA, Hill PG, Mathan VI (1983) Faecal free fatty acids in tropical sprue and their possible role in the production of diarrhoea by inhibition of ATPases. Gut 24:300–305CrossRefPubMedPubMedCentralGoogle Scholar
  93. Todesco T, Rao AV, Bosello O, Jenkins DJA (1991) Propionate lowers blood glucose and lipid metabolism in healthy subjects. Am J Clin Nutr 54:860–865CrossRefPubMedGoogle Scholar
  94. Tricon S, Yaqoob P (2006) Conjugated linoleic acid and human health: a critical evaluation of the evidence. Curr Opin Clin Nutr Metab Care 9:105–110CrossRefPubMedGoogle Scholar
  95. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031CrossRefPubMedPubMedCentralGoogle Scholar
  96. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484CrossRefPubMedPubMedCentralGoogle Scholar
  97. Turpeinen AM, Mutanen M, Aro A, Salminen I, Basu S, Palmquist DL, Griinari JM (2002) Bioconversion of vaccenic acid to conjugated linoleic acid in humans. Am J Clin Nutr 76:504–510CrossRefPubMedGoogle Scholar
  98. van Nuenen MH, Venema K, van der Woude JC, Kuipers EJ (2004) The metabolic activity of fecal microbiota from healthy individuals and patients with inflammatory bowel disease. Dig Dis Sci 49:485–491CrossRefPubMedGoogle Scholar
  99. Venter CS, Vorster HH, Cummings JH (1990) Effects of dietary propionate on carbohydrate and lipid metabolism in healthy volunteers. Am J Gastroenterol 85:549–553PubMedGoogle Scholar
  100. Wahle KWJ, Heys SD, Rotondo D (2004) Conjugated linoleic acids: are they beneficial or detrimental to health. Prog Lipid Res 43:553–557CrossRefPubMedGoogle Scholar
  101. Walker ARP, Walker BF, Walker AJ (1986) Fecal pH, dietary fibre intake, and proneness to colon cancer in four South African populations. Br J Cancer 53:489–495CrossRefPubMedPubMedCentralGoogle Scholar
  102. Walker AW, Duncan SH, McWilliam Leitch EC, Child MW, Flint HJ (2005) pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl Environ Microbiol 71:3692–3700CrossRefPubMedPubMedCentralGoogle Scholar
  103. Wiggins HS, Pearson JR, Walker JG, Russell RI, Kellock TD (1974) Incidence and significance of faecal hydroxystearic acid in alimentary disease. Gut 15:614–621CrossRefPubMedPubMedCentralGoogle Scholar
  104. Williams EA, Coxhead JM, Mathers JC (2003) Anti-cancer effects of butyrate: use of micro-array technology to investigate mechanisms. Proc Nutr Soc 62:107–115CrossRefPubMedGoogle Scholar
  105. Xiong Y, Miyamoto B, Shibata K, Valasek MA, Motoike T, Kedzierski RM, Yanagisawa M (2004) Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc Natl Acad Sci USA 101:1045–1050CrossRefPubMedGoogle Scholar

Authors and Affiliations

  1. 1.Department of BioscienceNottingham Trent UniversityNottinghamUK
  2. 2.Rowett InstituteUniversity of AberdeenAberdeenUK

Personalised recommendations