Skip to main content

Infection Prevention: Oil- and Lipid-Containing Products in Vaccinology

  • Living reference work entry
  • First Online:
  • 226 Accesses

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

Vaccination remains the most valuable tool for preventing infectious diseases. However, the performance of many existing vaccines should be improved, and there are diseases for which vaccines are still not available. The use of well-defined antigens for the generation of subunit vaccines has led to products with an improved safety profile. However, purified antigens are usually poorly immunogenic, making essential the use of sophisticated delivery systems or, more frequently, adjuvants. Despite the fact that adjuvants have been used to increase the immunogenicity of vaccines for more than 70 years, only a handful has been licensed for human use (e.g., aluminum salts, the micro-fluidized squalene-in-water emulsion MF59, monophosphoryl lipid A (MPL A), AS03, AF03, LT, and virosomes). Thus, the development of new delivery systems, combinations of already known adjuvants and novel adjuvants, which are able to promote broad and sustained immune responses at systemic and mucosal levels, still remains a major challenge in vaccinology. Recent advances in our understanding of the immune system have facilitated the identification of new biological targets for screening programs aimed at the discovery of novel immune stimulators. This resulted in the identification of new candidate adjuvants, which made possible the modulation of the immune responses elicited according to specific needs. A number of promising delivery systems and adjuvants based on lipids, which are currently under preclinical or clinical development, will be described in this chapter.

This is a preview of subscription content, log in via an institution.

References

  • Abdel-Aal AB, Batzloff MR, Fujita Y et al (2008) Structure-activity relationship of a series of synthetic lipopeptide self-adjuvanting group a streptococcal vaccine candidates. J Med Chem 51:167–172

    Article  CAS  PubMed  Google Scholar 

  • Adotevi O, Vingert B, Freyburger L et al (2007) B subunit of Shiga toxin-based vaccines synergize with alpha-galactosylceramide to break tolerance against self antigen and elicit antiviral immunity. J Immunol 179:3371–3379

    Article  CAS  PubMed  Google Scholar 

  • Agger EM, Cassidy JP, Brady J et al (2008) Adjuvant modulation of the cytokine balance in Mycobacterium tuberculosis subunit vaccines; immunity, pathology and protection. Immunology 124:175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed SS, Montomoli E, Pasini FL et al (2016) The safety of Adjuvanted vaccines revisited: vaccine-induced narcolepsy. Isr Med Assoc J 18:216–220

    PubMed  Google Scholar 

  • Akmatov MK, Riese P, May M et al (2017) Establishment of a cohort for deep phenotyping of the immune response to influenza vaccination among elderly individuals recruited from the general population. Hum Vaccin Immunother 13:1630–1639

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Jamal WT, Kostarelos K (2011) Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc Chem Res 44:1094–1104

    Article  CAS  PubMed  Google Scholar 

  • Altin JG, Parish CR (2006) Liposomal vaccines – targeting the delivery of antigen. Methods 40:39–52

    Article  CAS  PubMed  Google Scholar 

  • Alving CR, Rao M (2007) Lipid a and liposomes containing lipid a as antigens and adjuvants. Vaccine. https://doi.org/10.1016/j.vaccine.2007.12.002

  • Anderson P (2006) Liposomal muramyl tripeptide phosphatidyl ethanolamine: ifosfamide-containing chemotherapy in osteosarcoma. Future Oncol 2:333–343

    Article  CAS  PubMed  Google Scholar 

  • Anthoney N, Foldi I, Hidalgo A (2018) Toll and toll-like receptor signalling in development. Development 145(9):1–6

    Google Scholar 

  • Attama AA, Muller-Goymann CC (2007) Investigation of surface-modified solid lipid nanocontainers formulated with a heterolipid-templated homolipid. Int J Pharm 334:179–189

    Article  CAS  PubMed  Google Scholar 

  • Attama AA, Schicke BC, Paepenmuller T et al (2007) Solid lipid nanodispersions containing mixed lipid core and a polar heterolipid: characterization. Eur J Pharm Biopharm 67:48–57

    Article  CAS  PubMed  Google Scholar 

  • Attama AA, Reichl S, Muller-Goymann CC (2008) Diclofenac sodium delivery to the eye: in vitro evaluation of novel solid lipid nanoparticle formulation using human cornea construct. Int J Pharm 355:307–313

    Article  CAS  PubMed  Google Scholar 

  • Aucouturier J, Dupuis L, Deville S et al (2002) Montanide ISA 720 and 51: a new generation of water in oil emulsions as adjuvants for human vaccines. Expert Rev Vaccines 1:111–118

    Article  CAS  PubMed  Google Scholar 

  • Aucouturier J, Ascarateil S, Dupuis L (2006) The use of oil adjuvants in therapeutic vaccines. Vaccine 24(Suppl 2):S2-44–S2-45

    Google Scholar 

  • Azuma I, Seya T (2001) Development of immunoadjuvants for immunotherapy of cancer. Int Immunopharmacol 1:1249–1259

    Article  CAS  PubMed  Google Scholar 

  • Bandola-Simon J, Roche PA (2018) Dysfunction of antigen processing and presentation by dendritic cells in cancer. Mol Immunol. https://doi.org/10.1016/j.molimm.2018.03.025

  • Baxevanis CN, Voutsas IF, Tsitsilonis OE (2013) Toll-like receptor agonists: current status and future perspective on their utility as adjuvants in improving anticancer vaccination strategies. Immunotherapy 5:497–511

    Article  CAS  PubMed  Google Scholar 

  • Becker PD, Corral RS, Guzman CA et al (2001) Adamantylamide dipeptide as effective immunoadjuvant in rabbits and mice. Vaccine 19:4603–4609

    Article  CAS  PubMed  Google Scholar 

  • Becker PD, Fiorentini S, Link C et al (2006) The HIV-1 matrix protein p17 can be efficiently delivered by intranasal route in mice using the TLR 2/6 agonist MALP-2 as mucosal adjuvant. Vaccine 24:5269–5276

    Article  CAS  PubMed  Google Scholar 

  • Becker PD, Bertot GM, Souss D et al (2007a) Intranasal vaccination with recombinant outer membrane protein CD and adamantylamide dipeptide as the mucosal adjuvant enhances pulmonary clearance of Moraxella catarrhalis in an experimental murine model. Infect Immun 75:1778–1784

    Article  CAS  PubMed  Google Scholar 

  • Becker PD, Norder M, Guzman CA et al (2007b) Immune modulator adamantylamide dipeptide stimulates efficient major histocompatibility complex class I-restricted responses in mice. Clin Vaccine Immunol 14:538–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behr MA, Divangahi M (2015) Freund’s adjuvant, NOD2 and mycobacteria. Curr Opin Microbiol 23:126–132

    Article  CAS  PubMed  Google Scholar 

  • Bernstein D (2005) Glycoprotein D adjuvant herpes simplex virus vaccine. Expert Rev Vaccines 4:615–627

    Article  CAS  PubMed  Google Scholar 

  • Bertot GM, Becker PD, Guzman CA et al (2004) Intranasal vaccination with recombinant P6 protein and adamantylamide dipeptide as mucosal adjuvant confers efficient protection against otitis media and lung infection by nontypeable Haemophilus influenzae. J Infect Dis 189:1304–1312

    Article  CAS  PubMed  Google Scholar 

  • Black S (2015) Safety and effectiveness of MF-59 adjuvanted influenza vaccines in children and adults. Vaccine 33(Suppl 2):B3–B5

    Article  CAS  PubMed  Google Scholar 

  • Borsutzky S, Fiorelli V, Ebensen T et al (2003) Efficient mucosal delivery of the HIV-1 Tat protein using the synthetic lipopeptide MALP-2 as adjuvant. Eur J Immunol 33:1548–1556

    Article  CAS  PubMed  Google Scholar 

  • Borsutzky S, Kretschmer K, Becker PD et al (2005) The mucosal adjuvant macrophage-activating lipopeptide-2 directly stimulates B lymphocytes via the TLR2 without the need of accessory cells. J Immunol 174:6308–6313

    Article  CAS  PubMed  Google Scholar 

  • Borsutzky S, Ebensen T, Link C et al (2006) Efficient systemic and mucosal responses against the HIV-1 Tat protein by prime/boost vaccination using the lipopeptide MALP-2 as adjuvant. Vaccine 24:2049–2056

    Article  CAS  PubMed  Google Scholar 

  • Brodsky I, Medzhitov R (2007) Two modes of ligand recognition by TLRs. Cell 130:979–981

    Article  CAS  PubMed  Google Scholar 

  • Caillet C, Piras F, Bernard MC et al (2010) AF03-adjuvanted and non-adjuvanted pandemic influenza A (H1N1) 2009 vaccines induce strong antibody responses in seasonal influenza vaccine-primed and unprimed mice. Vaccine 28:3076–3079

    Article  CAS  PubMed  Google Scholar 

  • Calabro S, Tritto E, Pezzotti A et al (2013) The adjuvant effect of MF59 is due to the oil-in-water emulsion formulation, none of the individual components induce a comparable adjuvant effect. Vaccine 31:3363–3369

    Article  CAS  PubMed  Google Scholar 

  • Carita AC, Eloy JO, Chorilli M et al (2018) Recent advances and perspectives in liposomes for cutaneous drug delivery. Curr Med Chem 25:606–635

    Article  CAS  PubMed  Google Scholar 

  • Cazorla SI, Frank FM, Becker PD et al (2008) Prime-boost immunization with cruzipain co-administered with MALP-2 triggers a protective immune response able to decrease parasite burden and tissue injury in an experimental Trypanosoma cruzi infection model. Vaccine 26:1999–2009

    Article  CAS  PubMed  Google Scholar 

  • Cech PG, Aebi T, Abdallah MS et al (2011) Virosome-formulated Plasmodium falciparum AMA-1 & CSP derived peptides as malaria vaccine: randomized phase 1b trial in semi-immune adults & children. PLoS One 6:e22273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandler CE, Ernst RK (2017) Bacterial lipids: powerful modifiers of the innate immune response. F1000Res 6:1334

    Article  Google Scholar 

  • Chang LC, Lee HF, Chung MJ et al (2005) PEG-modified protamine with improved pharmacological/pharmaceutical properties as a potential protamine substitute: synthesis and in vitro evaluation. Bioconjug Chem 16:147–155

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Lu WL, Gu W et al (2014) Drug-in-cyclodextrin-in-liposomes: a promising delivery system for hydrophobic drugs. Expert Opin Drug Deliv 11:565–577

    Article  CAS  PubMed  Google Scholar 

  • Chesne J, Schmidt-Weber CB, Esser Von-Bieren J (2016) The use of adjuvants for enhancing allergen immunotherapy efficacy. Immunol Allergy Clin N Am 36:125–145

    Article  Google Scholar 

  • Coelho-Dos-Reis JG, Huang J, Tsao T et al (2016) Co-administration of alpha-GalCer analog and TLR4 agonist induces robust CD8(+) T-cell responses to PyCS protein and WT-1 antigen and activates memory-like effector NKT cells. Clin Immunol 168:6–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corvo ML, Mendo AS, Figueiredo S et al (2016) Liposomes as delivery system of a Sn(IV) complex for Cancer therapy. Pharm Res 33:1351–1358

    Article  CAS  PubMed  Google Scholar 

  • Cox JC, Sjolander A, Barr IG (1998) ISCOMs and other saponin based adjuvants. Adv Drug Deliv Rev 32:247–271

    Article  CAS  PubMed  Google Scholar 

  • De Barros AL, Mota L, Soares DC et al (2013) Long-circulating, pH-sensitive liposomes versus long-circulating, non-pH-sensitive liposomes as a delivery system for tumor identification. J Biomed Nanotechnol 9:1636–1643

    Article  PubMed  CAS  Google Scholar 

  • De Bruijn I, Meyer I, Gerez L et al (2007) Antibody induction by virosomal, MF59-adjuvanted, or conventional influenza vaccines in the elderly. Vaccine 26:119–127

    Article  PubMed  CAS  Google Scholar 

  • De Jesus Valle MJ, Lopez Diaz D, Velazquez Salicio M et al (2016) Development and in vitro evaluation of a novel drug delivery system (Albumin microspheres containing liposomes) applied to vancomycin. J Pharm Sci 105:2180–2187

    Article  PubMed  CAS  Google Scholar 

  • De Souza Reboucas J, Esparza I, Ferrer M et al (2012) Nanoparticulate adjuvants and delivery systems for allergen immunotherapy. J Biomed Biotechnol 2012:474605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deiters U, Barsig J, Tawil B et al (2004) The macrophage-activating lipopeptide-2 accelerates wound healing in diabetic mice. Exp Dermatol 13:731–739

    Article  CAS  PubMed  Google Scholar 

  • Del Giudice G, Rappuoli R (2015) Inactivated and adjuvanted influenza vaccines. Curr Top Microbiol Immunol 386:151–180

    PubMed  Google Scholar 

  • Delneste Y, Beauvillain C, Jeannin P (2007) Innate immunity: structure and function of TLRs. Med Sci (Paris) 23:67–73

    Article  Google Scholar 

  • Deng J, Cai W, Jin F (2014) A novel oil-in-water emulsion as a potential adjuvant for influenza vaccine: development, characterization, stability and in vivo evaluation. Int J Pharm 468:187–195

    Article  CAS  PubMed  Google Scholar 

  • Didierlaurent AM, Laupeze B, Di Pasquale A et al (2017) Adjuvant system AS01: helping to overcome the challenges of modern vaccines. Expert Rev Vaccines 16:55–63

    Article  CAS  PubMed  Google Scholar 

  • Dubey V, Mishra D, Nahar M et al (2007) Vesicles as tools for the modulation of skin permeability. Expert Opin Drug Deliv 4:579–593

    Article  CAS  PubMed  Google Scholar 

  • Dupont J, Altclas J, Lepetic A et al (2006) A controlled clinical trial comparing the safety and immunogenicity of a new adjuvanted hepatitis B vaccine with a standard hepatitis B vaccine. Vaccine 24:7167–7174

    Article  CAS  PubMed  Google Scholar 

  • Dupuis L, Ascarateil S, Aucouturier J et al (2006) SEPPIC vaccine adjuvants for poultry. Ann N Y Acad Sci 1081:202–205

    Article  CAS  PubMed  Google Scholar 

  • Duthie MS, Kahn SJ (2002) Treatment with alpha-galactosylceramide before Trypanosoma cruzi infection provides protection or induces failure to thrive. J Immunol 168:5778–5785

    Article  CAS  PubMed  Google Scholar 

  • Duthie MS, Kahn SJ (2006) During acute Trypanosoma cruzi infection highly susceptible mice deficient in natural killer cells are protected by a single alpha-galactosylceramide treatment. Immunology 119:355–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebensen T, Link C, Riese P et al (2007) A pegylated derivative of alpha-galactosylceramide exhibits improved biological properties. J Immunol 179:2065–2073

    Article  CAS  PubMed  Google Scholar 

  • Ellouz F, Adam A, Ciorbaru R et al (1974) Minimal structural requirements for adjuvant activity of bacterial peptidoglycan derivatives. Biochem Biophys Res Commun 59:1317–1325

    Article  CAS  PubMed  Google Scholar 

  • Esposito E, Fantin M, Marti M et al (2008) Solid lipid nanoparticles as delivery Systems for Bromocriptine. Pharm Res 25:1521

    Article  CAS  PubMed  Google Scholar 

  • Felnerova D, Viret JF, Gluck R et al (2004) Liposomes and virosomes as delivery systems for antigens, nucleic acids and drugs. Curr Opin Biotechnol 15:518–529

    Article  CAS  PubMed  Google Scholar 

  • Ferwerda G, Girardin SE, Kullberg BJ et al (2005) NOD2 and toll-like receptors are nonredundant recognition systems of Mycobacterium tuberculosis. PLoS Pathog 1:279–285

    Article  CAS  PubMed  Google Scholar 

  • Filskov J, Mikkelsen M, Hansen PR et al (2017) Broadening CD4(+) and CD8(+) T cell responses against Hepatitis C virus by Vaccination with NS3 overlapping peptide panels in Cross-Priming Liposomes. J Virol 91:e00130-17

    Article  PubMed  PubMed Central  Google Scholar 

  • Fischetti L, Zhong Z, Pinder CL et al (2017) The synergistic effects of combining TLR ligand based adjuvants on the cytokine response are dependent upon p38/JNK signalling. Cytokine 99:287–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs B, Knothe S, Rochlitzer S et al (2010) A toll-like receptor 2/6 agonist reduces allergic airway inflammation in chronic respiratory sensitisation to Timothy grass pollen antigens. Int Arch Allergy Immunol 152:131–139

    Article  CAS  PubMed  Google Scholar 

  • Fujii S, Shimizu K, Hemmi H et al (2006) Glycolipid alpha-C-galactosylceramide is a distinct inducer of dendritic cell function during innate and adaptive immune responses of mice. Proc Natl Acad Sci U S A 103:11252–11257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita Y, Taguchi H (2012) Overview and outlook of toll-like receptor ligand-antigen conjugate vaccines. Ther Deliv 3:749–760

    Article  CAS  PubMed  Google Scholar 

  • Galliher-Beckley A, Pappan LK, Madera R et al (2015) Characterization of a novel oil-in-water emulsion adjuvant for swine influenza virus and Mycoplasma hyopneumoniae vaccines. Vaccine 33:2903–2908

    Article  CAS  PubMed  Google Scholar 

  • Garcia A, Lema D (2016) An updated review of ISCOMSTM and ISCOMATRIXTM vaccines. Curr Pharm Des 22:6294–6299

    Article  CAS  PubMed  Google Scholar 

  • Garcon N, Vaughn DW, Didierlaurent AM (2012) Development and evaluation of AS03, an adjuvant system containing alpha-tocopherol and squalene in an oil-in-water emulsion. Expert Rev Vaccines 11:349–366

    Article  CAS  PubMed  Google Scholar 

  • Giaccone G, Punt CJ, Ando Y et al (2002) A phase I study of the natural killer T-cell ligand alpha-galactosylceramide (KRN7000) in patients with solid tumors. Clin Cancer Res 8:3702–3709

    CAS  PubMed  Google Scholar 

  • Gilewski TA, Ragupathi G, Dickler M et al (2007) Immunization of high-risk breast cancer patients with clustered sTn-KLH conjugate plus the immunologic adjuvant QS-21. Clin Cancer Res 13:2977–2985

    Article  CAS  PubMed  Google Scholar 

  • Giotta F, Lorusso V, Maiello E et al (2007) Liposomal-encapsulated doxorubicin plus cyclophosphamide as first-line therapy in metastatic breast cancer: a phase II multicentric study. Ann Oncol 18(Suppl 6):vi66–vi69

    PubMed  Google Scholar 

  • Giudice EL, Campbell JD (2006) Needle-free vaccine delivery. Adv Drug Deliv Rev 58:68–89

    Article  CAS  PubMed  Google Scholar 

  • Gluck R, Moser C, Metcalfe IC (2004) Influenza virosomes as an efficient system for adjuvanted vaccine delivery. Expert Opin Biol Ther 4:1139–1145

    Article  PubMed  Google Scholar 

  • Gluck R, Burri KG, Metcalfe I (2005) Adjuvant and antigen delivery properties of virosomes. Curr Drug Deliv 2:395–400

    Article  CAS  PubMed  Google Scholar 

  • Guillaume J, Pauwels N, Aspeslagh S et al (2015) Synthesis of C-5″ and C-6″-modified alpha-GalCer analogues as iNKT-cell agonists. Bioorg Med Chem 23:3175–3182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guillaume J, Wang J, Janssens J et al (2017) Galactosylsphingamides: new alpha-GalCer analogues to probe the F′-pocket of CD1d. Sci Rep 7:4276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guiotto A, Pozzobon M, Canevari M et al (2003) PEGylation of the antimicrobial peptide nisin A: problems and perspectives. Farmaco 58:45–50

    Article  CAS  PubMed  Google Scholar 

  • Hailemichael Y, Overwijk WW (2014) Cancer vaccines: trafficking of tumor-specific T cells to tumor after therapeutic vaccination. Int J Biochem Cell Biol 53:46–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hailemichael Y, Dai Z, Jaffarzad N et al (2013) Persistent antigen at vaccination sites induces tumor-specific CD8(+) T cell sequestration, dysfunction and deletion. Nat Med 19:465–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamdy S, Haddadi A, Somayaji V et al (2007) Pharmaceutical analysis of synthetic lipid A-based vaccine adjuvants in poly (D,L-lactic-co-glycolic acid) nanoparticle formulations. J Pharm Biomed Anal 44:914–923

    Article  CAS  PubMed  Google Scholar 

  • Harro CD, Pang YY, Roden RB et al (2001) Safety and immunogenicity trial in adult volunteers of a human papillomavirus 16 L1 virus-like particle vaccine. J Natl Cancer Inst 93:284–292

    Article  CAS  PubMed  Google Scholar 

  • Hemmi H, Kaisho T, Takeuchi O et al (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3:196–200

    Article  CAS  PubMed  Google Scholar 

  • Henneke P, Dramsi S, Mancuso G et al (2008) Lipoproteins are critical TLR2 activating toxins in group B streptococcal sepsis. J Immunol 180:6149–6158

    Article  CAS  PubMed  Google Scholar 

  • Hinds KD, Campbell KM, Holland KM et al (2005) PEGylated insulin in PLGA microparticles. In vivo and in vitro analysis. J Control Release 104:447–460

    Article  CAS  PubMed  Google Scholar 

  • Hisert KB, Maccoss M, Shiloh MU et al (2005) A glutamate-alanine-leucine (EAL) domain protein of Salmonella controls bacterial survival in mice, antioxidant defence and killing of macrophages: role of cyclic diGMP. Mol Microbiol 56:1234–1245

    Article  CAS  PubMed  Google Scholar 

  • Hoebe K, Georgel P, Rutschmann S et al (2005) CD36 is a sensor of diacylglycerides. Nature 433:523–527

    Article  CAS  PubMed  Google Scholar 

  • Hosseini SM, Gholami Pourbadie H, Sayyah M et al (2018) Neuroprotective effect of monophosphoryl lipid A, a detoxified lipid A derivative, in photothrombotic model of unilateral selective hippocampal ischemia in rat. Behav Brain Res 347:26–36

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Chen A, Li X et al (2008) Enhancement of HIV DNA vaccine immunogenicity by the NKT cell ligand, alpha-galactosylceramide. Vaccine 26:1807–1816

    Article  CAS  PubMed  Google Scholar 

  • Hui GS (1994) Liposomes, muramyl dipeptide derivatives, and nontoxic lipid A derivatives as adjuvants for human malaria vaccines. Am J Trop Med Hyg 50:41–51

    Article  CAS  PubMed  Google Scholar 

  • Inohara N, Ogura Y, Fontalba A et al (2003) Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. J Biol Chem 278:5509–5512

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Amakawa R, Kaisho T et al (2002) Interferon-alpha and interleukin-12 are induced differentially by toll-like receptor 7 ligands in human blood dendritic cell subsets. J Exp Med 195: 1507–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwamura C, Nakayama T (2007) Role of alpha-galactosylceramide-activated Valpha14 natural killer T cells in the regulation of allergic diseases. Allergol Int 56:1–6

    Article  CAS  PubMed  Google Scholar 

  • Jain V, Sahu R, Misra-Bhattacharya S et al (2008) Enhancement of T-helper type I immune responses against hepatitis B surface antigen by LPS derivatives adjuvanted liposomes delivery system. J Drug Target 16:706–715

    Article  CAS  PubMed  Google Scholar 

  • Jain H, Kumavat V, Singh T et al (2014) Immunogenicity and safety of a pediatric dose of a virosomal hepatitis A vaccine in healthy children in India. Hum Vaccin Immunother 10:2089–2097

    Article  PubMed  PubMed Central  Google Scholar 

  • Jakopin Z (2013) Murabutide revisited: a review of its pleiotropic biological effects. Curr Med Chem 20:2068–2079

    Article  CAS  PubMed  Google Scholar 

  • Jansen T, Hofmans MP, Theelen MJ et al (2007) Dose and timing requirements for immunogenicity of viral poultry vaccine antigen: investigations of emulsion-based depot function. Avian Pathol 36:361–365

    Article  CAS  PubMed  Google Scholar 

  • Jeong SH, Qiao M, Nascimbeni M et al (2004) Immunization with hepatitis C virus-like particles induces humoral and cellular immune responses in nonhuman primates. J Virol 78:6995–7003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang ZH, Koganty RR (2003) Synthetic vaccines: the role of adjuvants in immune targeting. Curr Med Chem 10:1423–1439

    Article  CAS  PubMed  Google Scholar 

  • Kajimoto K, Yamamoto M, Watanabe M et al (2011) Noninvasive and persistent transfollicular drug delivery system using a combination of liposomes and iontophoresis. Int J Pharm 403:57–65

    Article  CAS  PubMed  Google Scholar 

  • Kaliuzhin OV (1998) [Muramyl dipeptide derivatives in experimental and clinical use]. Zh Mikrobiol Epidemiol Immunobiol 1:104–108

    Google Scholar 

  • Kensil CR (1996) Saponins as vaccine adjuvants. Crit Rev Ther Drug Carrier Syst 13:1–55

    CAS  PubMed  Google Scholar 

  • Kensil CR, Wu JY, Soltysik S (1995) Structural and immunological characterization of the vaccine adjuvant QS-21. Pharm Biotechnol 6:525–541

    Article  CAS  PubMed  Google Scholar 

  • Kensil CR, Soltysik S, Wheeler DA et al (1996) Structure/function studies on QS-21, a unique immunological adjuvant from Quillaja saponaria. Adv Exp Med Biol 404:165–172

    Article  CAS  PubMed  Google Scholar 

  • Kersten G, Hirschberg H (2004) Antigen delivery systems. Expert Rev Vaccines 3:453–462

    Article  CAS  PubMed  Google Scholar 

  • Khan FA, Ulanova M, Bai B et al (2017) Design, synthesis and immunological evaluation of novel amphiphilic desmuramyl peptides. Eur J Med Chem 141:26–36

    Article  CAS  PubMed  Google Scholar 

  • Khatri K, Goyal AK, Gupta PN et al (2008) Surface modified liposomes for nasal delivery of DNA vaccine. Vaccine 26:2225–2233

    Article  CAS  PubMed  Google Scholar 

  • Kirk DD, Rempel R, Pinkhasov J et al (2004) Application of Quillaja saponaria extracts as oral adjuvants for plant-made vaccines. Expert Opin Biol Ther 4:947–958

    Article  CAS  PubMed  Google Scholar 

  • Kirkley JE, Goldstein AL, Naylor PH (1996) Adjuvant properties of montanide CSA 720 with a recombinant HIV P17 gag protein and synthetic peptide antigens. Scand J Immunol 43:431–438

    Article  CAS  PubMed  Google Scholar 

  • Klimek L, Schmidt-Weber CB, Kramer MF et al (2017) Clinical use of adjuvants in allergen-immunotherapy. Expert Rev Clin Immunol 13:599–610

    Article  CAS  PubMed  Google Scholar 

  • Klucker MF, Dalencon F, Probeck P et al (2012) AF03, an alternative squalene emulsion-based vaccine adjuvant prepared by a phase inversion temperature method. J Pharm Sci 101: 4490–4500

    Article  PubMed  CAS  Google Scholar 

  • Knothe S, Mutschler V, Rochlitzer S et al (2011) The NKT cell ligand alphagalactosylceramide suppresses allergic airway inflammation by induction of a Th1 response. Vaccine 29:4249–4255

    Article  CAS  PubMed  Google Scholar 

  • Krishnan L, Sprott GD (2008) Archaeosome adjuvants: immunological capabilities and mechanism(s) of action. Vaccine 26:2043–2055

    Article  CAS  PubMed  Google Scholar 

  • Kuroda Y, Nacionales DC, Akaogi J et al (2004) Autoimmunity induced by adjuvant hydrocarbon oil components of vaccine. Biomed Pharmacother 58:325–337

    Article  CAS  PubMed  Google Scholar 

  • Lacaille-Dubois MA, Wagner H (2017) New perspectives for natural triterpene glycosides as potential adjuvants. Phytomedicine. https://doi.org/10.1016/j.phymed.2017.10.019

  • Lee YS, Lee KA, Lee JY et al (2011) An alpha-GalCer analogue with branched acyl chain enhances protective immune responses in a nasal influenza vaccine. Vaccine 29:417–425

    Article  CAS  PubMed  Google Scholar 

  • Lee MS, Dees EC, Wang AZ (2017) Nanoparticle-delivered chemotherapy: old drugs in new packages. Oncology (Williston Park) 31:198–208

    Google Scholar 

  • Leroux-Roels G, Haelterman E, Maes C et al (2011) Randomized trial of the immunogenicity and safety of the Hepatitis B vaccine given in an accelerated schedule coadministered with the human papillomavirus type 16/18 AS04-adjuvanted cervical cancer vaccine. Clin Vaccine Immunol 18:1510–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Fujio M, Imamura M et al (2010) Design of a potent CD1d-binding NKT cell ligand as a vaccine adjuvant. Proc Natl Acad Sci USA 107:13010–13015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Link C, Gavioli R, Ebensen T et al (2004) The toll-like receptor ligand MALP-2 stimulates dendritic cell maturation and modulates proteasome composition and activity. Eur J Immunol 34:899–907

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Li S, Tian W et al (2011) Immunoregulatory effects of alpha-GalCer in a murine model of autoimmune myocarditis. Exp Mol Pathol 91:636–642

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Patil HP, De Vries-Idema J et al (2012) Enhancement of the immunogenicity and protective efficacy of a mucosal influenza subunit vaccine by the saponin adjuvant GPI-0100. PLoS One 7:e52135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, De Vries-Idema J, Ter Veer W et al (2014) Influenza virosomes supplemented with GPI-0100 adjuvant: a potent vaccine formulation for antigen dose sparing. Med Microbiol Immunol 203:47–55

    Article  CAS  PubMed  Google Scholar 

  • Lovgren Bengtsson K, Morein B, Osterhaus AD (2011) ISCOM technology-based matrix M adjuvant: success in future vaccines relies on formulation. Expert Rev Vaccines 10:401–403

    Article  PubMed  Google Scholar 

  • Luhrmann A, Tschernig T, Pabst R et al (2005) Improved intranasal immunization with live-attenuated measles virus after co-inoculation of the lipopeptide MALP-2. Vaccine 23: 4721–4726

    Article  PubMed  CAS  Google Scholar 

  • Maek ANW, Pitisuttithum P, Phonrat B et al (2003) Evaluation of attitude, risk behavior and expectations among Thai participants in Phase I/II HIV/AIDS vaccine trials. J Med Assoc Thail 86:299–307

    Google Scholar 

  • Marciani DJ (2018) Elucidating the mechanisms of action of Saponin-derived adjuvants. Trends Pharmacol Sci 39:573

    Article  CAS  PubMed  Google Scholar 

  • Mazzuca P, Marsico S, Schulze K et al (2017) Role of autophagy in HIV-1 matrix protein p17-driven Lymphangiogenesis. J Virol 91:17

    Article  Google Scholar 

  • Mccluskie MJ, Weeratna RD (2001) Novel adjuvant systems. Curr Drug Targets Infect Disord 1:263–271

    Article  CAS  PubMed  Google Scholar 

  • Medvedev AE, Sabroe I, Hasday JD et al (2006) Tolerance to microbial TLR ligands: molecular mechanisms and relevance to disease. J Endotoxin Res 12:133–150

    CAS  PubMed  Google Scholar 

  • Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449:819–826

    Article  CAS  PubMed  Google Scholar 

  • Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila toll protein signals activation of adaptive immunity. Nature 388:394–397

    Article  CAS  PubMed  Google Scholar 

  • Melief CJ (2011) Synthetic vaccine for the treatment of lesions caused by high risk human papilloma virus. Cancer J 17:300–301

    Article  PubMed  Google Scholar 

  • Melssen M, Slingluff CL Jr (2017) Vaccines targeting helper T cells for cancer immunotherapy. Curr Opin Immunol 47:85–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mesa C, Fernandez LE (2004) Challenges facing adjuvants for cancer immunotherapy. Immunol Cell Biol 82:644–650

    Article  CAS  PubMed  Google Scholar 

  • Minagawa S, Ohyama C, Hatakeyama S et al (2005) Activation of natural killer T cells by alpha-galactosylceramide mediates clearance of bacteria in murine urinary tract infection. J Urol 173:2171–2174

    Article  CAS  PubMed  Google Scholar 

  • Minko T, Pakunlu RI, Wang Y et al (2006) New generation of liposomal drugs for cancer. Anti Cancer Agents Med Chem 6:537–552

    Article  CAS  Google Scholar 

  • Mishra D, Mishra PK, Dubey V et al (2008) Systemic and mucosal immune response induced by transcutaneous immunization using Hepatitis B surface antigen-loaded modified liposomes. Eur J Pharm Sci 33:424–433

    Article  CAS  PubMed  Google Scholar 

  • Mitchell DK, Holmes SJ, Burke RL et al (2002) Immunogenicity of a recombinant human cytomegalovirus gB vaccine in seronegative toddlers. Pediatr Infect Dis J 21:133–138

    Article  PubMed  Google Scholar 

  • Molineux G (2003) Pegylation: engineering improved biopharmaceuticals for oncology. Pharmacotherapy 23:3S–8S

    Article  CAS  PubMed  Google Scholar 

  • Morein B, Sundquist B, Hoglund S et al (1984) Iscom, a novel structure for antigenic presentation of membrane proteins from enveloped viruses. Nature 308:457–460

    Article  CAS  PubMed  Google Scholar 

  • Morein B, Villacres-Eriksson M, Lovgren-Bengtsson K (1998) Iscom, a delivery system for parenteral and mucosal vaccination. Dev Biol Stand 92:33–39

    CAS  PubMed  Google Scholar 

  • Morein B, Villacres-Eriksson M, Ekstrom J et al (1999) ISCOM: a delivery system for neonates and for mucosal administration. Adv Vet Med 41:405–413

    Article  CAS  PubMed  Google Scholar 

  • Mori K, Ando K, Heymann D (2008) Liposomal muramyl tripeptide phosphatidyl ethanolamine: a safe and effective agent against osteosarcoma pulmonary metastases. Expert Rev Anticancer Ther 8:151–159

    Article  CAS  PubMed  Google Scholar 

  • Morishima Y, Ishii Y, Kimura T et al (2005) Suppression of eosinophilic airway inflammation by treatment with alpha-galactosylceramide. Eur J Immunol 35:2803–2814

    Article  CAS  PubMed  Google Scholar 

  • Moser C, Metcalfe IC, Viret JF (2003) Virosomal adjuvanted antigen delivery systems. Expert Rev Vaccines 2:189–196

    Article  CAS  PubMed  Google Scholar 

  • Moser C, Amacker M, Kammer AR et al (2007) Influenza virosomes as a combined vaccine carrier and adjuvant system for prophylactic and therapeutic immunizations. Expert Rev Vaccines 6:711–721

    Article  CAS  PubMed  Google Scholar 

  • Moser C, Amacker M, Zurbriggen R (2011) Influenza virosomes as a vaccine adjuvant and carrier system. Expert Rev Vaccines 10:437–446

    Article  CAS  PubMed  Google Scholar 

  • Motohashi S (2007) Translational research in patients with lung cancer – clinical application of NKT cell immunotherapy. Gan To Kagaku Ryoho 34:550–553

    CAS  PubMed  Google Scholar 

  • Motohashi S, Nakayama T (2008) Clinical applications of natural killer T cell-based immunotherapy for cancer. Cancer Sci 99:638–645

    Article  CAS  PubMed  Google Scholar 

  • Moyle PM, Toth I (2008) Self-adjuvanting lipopeptide vaccines. Curr Med Chem 15:506–516

    Article  CAS  PubMed  Google Scholar 

  • Moyle PM, Olive C, Good MF et al (2006a) Method for the synthesis of highly pure vaccines using the lipid core peptide system. J Pept Sci 12:800–807

    Article  CAS  PubMed  Google Scholar 

  • Moyle PM, Olive C, Ho MF et al (2006b) Method for the synthesis of multi-epitopic Streptococcus pyogenes lipopeptide vaccines using native chemical ligation. J Org Chem 71:6846–6850

    Article  CAS  PubMed  Google Scholar 

  • Moyle PM, Olive C, Ho MF et al (2007) Toward the development of prophylactic and therapeutic human papillomavirus type-16 lipopeptide vaccines. J Med Chem 50:4721–4727

    Article  CAS  PubMed  Google Scholar 

  • Nahori MA, Fournie-Amazouz E, Que-Gewirth NS et al (2005) Differential TLR recognition of leptospiral lipid A and lipopolysaccharide in murine and human cells. J Immunol 175: 6022–6031

    Article  CAS  PubMed  Google Scholar 

  • Naik SR, Desai SK, Shah PD et al (2013) Liposomes as potential carrier system for targeted delivery of polyene antibiotics. Recent Patents Inflamm Allergy Drug Discov 7:202–214

    Article  CAS  Google Scholar 

  • Nasr M, Abdel-Hamid S, Alyoussef AA (2015) A highlight on lipid based nanocarriers for transcutaneous immunization. Curr Pharm Biotechnol 16:371–379

    Article  CAS  PubMed  Google Scholar 

  • Nishio S, Yamada N, Ohyama H et al (2008) Enhanced suppression of pulmonary metastasis of malignant melanoma cells by combined administration of alpha-galactosylceramide and interleukin-18. Cancer Sci 99:113–120

    CAS  PubMed  Google Scholar 

  • Nisini R, Poerio N, Mariotti S et al (2018) The multirole of liposomes in therapy and prevention of infectious diseases. Front Immunol 9:155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Hagan DT (1998) Recent advances in vaccine adjuvants for systemic and mucosal administration. J Pharm Pharmacol 50:1–10

    Article  PubMed  Google Scholar 

  • O’Hagan DT (2001) Recent developments in vaccine delivery systems. Curr Drug Targets Infect Disord 1:273–286

    Article  PubMed  Google Scholar 

  • O’Hagan DT (2007) MF59 is a safe and potent vaccine adjuvant that enhances protection against influenza virus infection. Expert Rev Vaccines 6:699–710

    Article  PubMed  Google Scholar 

  • O’Hagan DT, Lavelle E (2002) Novel adjuvants and delivery systems for HIV vaccines. AIDS 16(Suppl 4):S115–S124

    Article  PubMed  Google Scholar 

  • O’Hagan DT, Singh M (2003) Microparticles as vaccine adjuvants and delivery systems. Expert Rev Vaccines 2:269–283

    Article  PubMed  Google Scholar 

  • O’Hagan DT, Ott GS, Van Nest G (1997) Recent advances in vaccine adjuvants: the development of MF59 emulsion and polymeric microparticles. Mol Med Today 3:69–75

    Article  PubMed  Google Scholar 

  • O’Hagan DT, Ugozzoli M, Barackman J et al (2000) Microparticles in MF59, a potent adjuvant combination for a recombinant protein vaccine against HIV-1. Vaccine 18:1793–1801

    Article  PubMed  Google Scholar 

  • O’Hagan DT, Mackichan ML, Singh M (2001) Recent developments in adjuvants for vaccines against infectious diseases. Biomol Eng 18:69–85

    Article  PubMed  Google Scholar 

  • O’Hagan DT, Wack A, Podda A (2007) MF59 is a safe and potent vaccine adjuvant for flu vaccines in humans: what did we learn during its development? Clin Pharmacol Ther 82:740–744

    Article  PubMed  CAS  Google Scholar 

  • O’Reilly T, Zak O (1992) Enhancement of the effectiveness of antimicrobial therapy by muramyl peptide immunomodulators. Clin Infect Dis 14:1100–1109

    Article  PubMed  Google Scholar 

  • Ockenhouse CF, Angov E, Kester KE et al (2006) Phase I safety and immunogenicity trial of FMP1/AS02A, a Plasmodium falciparum MSP-1 asexual blood stage vaccine. Vaccine 24:3009–3017

    Article  CAS  PubMed  Google Scholar 

  • Ogawa C, Liu YJ, Kobayashi KS (2011) Muramyl dipeptide and its derivatives: peptide adjuvant in immunological disorders and cancer therapy. Curr Bioact Compd 7:180–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogura H, Nakanishi-Ueda T, Ueda T et al (2007) Effect of a dihydrobenzofuran derivative on lipid hydroperoxide-induced rabbit corneal neovascularization. J Pharmacol Sci 103:234–240

    Article  CAS  PubMed  Google Scholar 

  • Olive C, Schulze K, Sun HK et al (2007) Enhanced protection against Streptococcus pyogenes infection by intranasal vaccination with a dual antigen component M protein/SfbI lipid core peptide vaccine formulation. Vaccine 25:1789–1797

    Article  CAS  PubMed  Google Scholar 

  • Ott G, Barchfeld GL, Chernoff D et al (1995) MF59. Design and evaluation of a safe and potent adjuvant for human vaccines. Pharm Biotechnol 6:277–296

    Article  CAS  PubMed  Google Scholar 

  • Overton ET, Goepfert PA, Cunningham P et al (2014) Intranasal seasonal influenza vaccine and a TLR-3 agonist, rintatolimod, induced cross-reactive IgA antibody formation against avian H5N1 and H7N9 influenza HA in humans. Vaccine 32:5490–5495

    Article  CAS  PubMed  Google Scholar 

  • Padte NN, Li X, Tsuji M et al (2011) Clinical development of a novel CD1d-binding NKT cell ligand as a vaccine adjuvant. Clin Immunol 140:142–151

    Article  CAS  PubMed  Google Scholar 

  • Patel S, Faraj Y, Duso DK et al (2017) Comparative safety and efficacy profile of a novel oil in water vaccine adjuvant comprising vitamins A and E and a Catechin in protective anti-influenza immunity. Nutrients 9:E516

    Article  PubMed  CAS  Google Scholar 

  • Peduzzi E, Westerfeld N, Zurbriggen R et al (2008) Contribution of influenza immunity and virosomal-formulated synthetic peptide to cellular immune responses in a phase I subunit malaria vaccine trial. Clin Immunol 127:188–197

    Article  CAS  PubMed  Google Scholar 

  • Pegu A, Qin S, Fallert Junecko BA et al (2008) Human lymphatic endothelial cells express multiple functional TLRs. J Immunol 180:3399–3405

    Article  CAS  PubMed  Google Scholar 

  • Persing DH, Coler RN, Lacy MJ et al (2002) Taking toll: lipid A mimetics as adjuvants and immunomodulators. Trends Microbiol 10:S32–S37

    Article  CAS  PubMed  Google Scholar 

  • Pfaar O, Cazan D, Klimek L et al (2012) Adjuvants for immunotherapy. Curr Opin Allergy Clin Immunol 12:648–657

    Article  CAS  PubMed  Google Scholar 

  • Podda A, Del Giudice G (2003) MF59-adjuvanted vaccines: increased immunogenicity with an optimal safety profile. Expert Rev Vaccines 2:197–203

    Article  CAS  PubMed  Google Scholar 

  • Polhemus ME, Magill AJ, Cummings JF et al (2007) Phase I dose escalation safety and immunogenicity trial of Plasmodium falciparum apical membrane protein (AMA-1) FMP2.1, adjuvanted with AS02A, in malaria-naive adults at the Walter Reed Army Institute of Research. Vaccine 25:4203–4212

    Article  CAS  PubMed  Google Scholar 

  • Powell JS, Nugent DJ, Harrison JA et al (2008) Safety and pharmacokinetics of a recombinant factor VIII with pegylated liposomes in severe hemophilia A. J Thromb Haemost 6:277–283

    Article  CAS  PubMed  Google Scholar 

  • Ragupathi G, Gardner JR, Livingston PO et al (2011) Natural and synthetic saponin adjuvant QS-21 for vaccines against cancer. Expert Rev Vaccines 10:463–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajput ZI, Hu SH, Xiao CW et al (2007) Adjuvant effects of saponins on animal immune responses. J Zhejiang Univ Sci B 8:153–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reed SG, Hsu FC, Carter D et al (2016) The science of vaccine adjuvants: advances in TLR4 ligand adjuvants. Curr Opin Immunol 41:85–90

    Article  CAS  PubMed  Google Scholar 

  • Reppe K, Radunzel P, Dietert K et al (2015) Pulmonary immunostimulation with MALP-2 in influenza virus-infected mice increases survival after pneumococcal superinfection. Infect Immun 83:4617–4629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Revets H, Pynaert G, Grooten J et al (2005) Lipoprotein I, a TLR2/4 ligand modulates Th2-driven allergic immune responses. J Immunol 174:1097–1103

    Article  CAS  PubMed  Google Scholar 

  • Rharbaoui F, Drabner B, Borsutzky S et al (2002) The Mycoplasma-derived lipopeptide MALP-2 is a potent mucosal adjuvant. Eur J Immunol 32:2857–2865

    Article  CAS  PubMed  Google Scholar 

  • Rharbaoui F, Westendorf A, Link C et al (2004) The Mycoplasma-derived macrophage-activating 2-kilodalton lipopeptide triggers global immune activation on nasal mucosa-associated lymphoid tissues. Infect Immun 72:6978–6986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riedmann EM, Kyd JM, Cripps AW et al (2007) Bacterial ghosts as adjuvant particles. Expert Rev Vaccines 6:241–253

    Article  CAS  PubMed  Google Scholar 

  • Riese P, Trittel S, May T et al (2015) Activated NKT cells imprint NK-cell differentiation, functionality and education. Eur J Immunol 45:1794–1807

    Article  CAS  PubMed  Google Scholar 

  • Saka H, Kitagawa C, Ichinose Y et al (2017) A randomized phase II study to assess the effect of adjuvant immunotherapy using alpha-GalCer-pulsed dendritic cells in the patients with completely resected stage II-IIIA non-small cell lung cancer: study protocol for a randomized controlled trial. Trials 18:429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmidt J, Welsch T, Jager D et al (2007) Intratumoural injection of the toll-like receptor-2/6 agonist ‘macrophage-activating lipopeptide-2’ in patients with pancreatic carcinoma: a phase I/II trial. Br J Cancer 97:598–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider C, Schmidt T, Ziske C et al (2004) Tumour suppression induced by the macrophage activating lipopeptide MALP-2 in an ultrasound guided pancreatic carcinoma mouse model. Gut 53:355–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulze K, Olive C, Ebensen T et al (2006) Intranasal vaccination with SfbI or M protein-derived peptides conjugated to diphtheria toxoid confers protective immunity against a lethal challenge with Streptococcus pyogenes. Vaccine 24:6088–6095

    Article  CAS  PubMed  Google Scholar 

  • Schulze K, Ebensen T, Chandrudu S et al (2017) Bivalent mucosal peptide vaccines administered using the LCP carrier system stimulate protective immune responses against Streptococcus pyogenes infection. Nanomedicine 13:2463–2474

    Article  CAS  PubMed  Google Scholar 

  • Schwarz K, Storni T, Manolova V et al (2003) Role of toll-like receptors in costimulating cytotoxic T cell responses. Eur J Immunol 33:1465–1470

    Article  CAS  PubMed  Google Scholar 

  • Sevcik J, Masek K (1999) The interaction of immunomodulatory muramyl dipeptide with peripheral 5-HT receptors: overview of the current state. Int J Immunopharmacol 21:227–232

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Chakrapani A, O’Hagan D (2007) Nanoparticles and microparticles as vaccine-delivery systems. Expert Rev Vaccines 6:797–808

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Kazzaz J, Ugozzoli M et al (2012) MF59 oil-in-water emulsion in combination with a synthetic TLR4 agonist (E6020) is a potent adjuvant for a combination Meningococcus vaccine. Hum Vaccin Immunother 8:486–490

    Article  CAS  PubMed  Google Scholar 

  • Soboll G, Crane-Godreau MA, Lyimo MA et al (2006a) Effect of oestradiol on PAMP-mediated CCL20/MIP-3 alpha production by mouse uterine epithelial cells in culture. Immunology 118:185–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soboll G, Schaefer TM, Wira CR (2006b) Effect of toll-like receptor (TLR) agonists on TLR and microbicide expression in uterine and vaginal tissues of the mouse. Am J Reprod Immunol 55:434–446

    Article  CAS  PubMed  Google Scholar 

  • Stassijns J, Bollaerts K, Baay M et al (2016) A systematic review and meta-analysis on the safety of newly adjuvanted vaccines among children. Vaccine 34:714–722

    Article  PubMed  Google Scholar 

  • Stoute JA, Gombe J, Withers MR et al (2007) Phase 1 randomized double-blind safety and immunogenicity trial of Plasmodium falciparum malaria merozoite surface protein FMP1 vaccine, adjuvanted with AS02A, in adults in western Kenya. Vaccine 25:176–184

    Article  CAS  PubMed  Google Scholar 

  • Stowe J, Andrews N, Kosky C et al (2016) Risk of narcolepsy after AS03 Adjuvanted Pandemic A/H1N1 2009 Influenza Vaccine in adults: a case-coverage study in England. Sleep 39: 1051–1057

    Article  PubMed  PubMed Central  Google Scholar 

  • Sutmuller RP, Den Brok MH, Kramer M et al (2006a) Toll-like receptor 2 controls expansion and function of regulatory T cells. J Clin Invest 116:485–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutmuller RP, Morgan ME, Netea MG et al (2006b) Toll-like receptors on regulatory T cells: expanding immune regulation. Trends Immunol 27:387–393

    Article  CAS  PubMed  Google Scholar 

  • Switalla S, Lauenstein L, Prenzler F et al (2010) Natural innate cytokine response to immunomodulators and adjuvants in human precision-cut lung slices. Toxicol Appl Pharmacol 246:107–115

    Article  CAS  PubMed  Google Scholar 

  • Takagi D, Iwabuchi K, Iwabuchi C et al (2004) Immunoregulatory defects of V alpha 24V+ beta 11+ NKT cells in development of Wegener’s granulomatosis and relapsing polychondritis. Clin Exp Immunol 136:591–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka T, Legat A, Adam E et al (2008) DiC14-amidine cationic liposomes stimulate myeloid dendritic cells through toll-like receptor 4. Eur J Immunol 38:1351–1357

    Article  CAS  PubMed  Google Scholar 

  • Tanzi E, Esposito S, Bojanin J et al (2006) Immunogenicity and effect of a virosomal influenza vaccine on viral replication and T-cell activation in HIV-infected children receiving highly active antiretroviral therapy. J Med Virol 78:440–445

    Article  PubMed  Google Scholar 

  • Tashiro T, Sekine-Kondo E, Shigeura T et al (2010) Induction of Th1-biased cytokine production by alpha-carba-GalCer, a neoglycolipid ligand for NKT cells. Int Immunol 22:319–328

    Article  CAS  PubMed  Google Scholar 

  • Taylor DN, Treanor JJ, Strout C et al (2011) Induction of a potent immune response in the elderly using the TLR-5 agonist, flagellin, with a recombinant hemagglutinin influenza-flagellin fusion vaccine (VAX125, STF2.HA1 SI). Vaccine 29:4897–4902

    Article  CAS  PubMed  Google Scholar 

  • Tetsutani K, Ishii KJ (2012) Adjuvants in influenza vaccines. Vaccine 30:7658–7661

    Article  CAS  PubMed  Google Scholar 

  • Thakur MS, Khurana A, Kronenberg M et al (2014) Synthesis of a 2″-deoxy-beta-GalCer. Molecules 19:10090–10102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tregoning JS, Russell RF, Kinnear E (2018) Adjuvanted influenza vaccines. Hum Vaccin Immunother 14:550–564

    Article  PubMed  PubMed Central  Google Scholar 

  • Uehori J, Fukase K, Akazawa T et al (2005) Dendritic cell maturation induced by muramyl dipeptide (MDP) derivatives: monoacylated MDP confers TLR2/TLR4 activation. J Immunol 174:7096–7103

    Article  CAS  PubMed  Google Scholar 

  • Van Doorn E, Liu H, Huckriede A et al (2016) Safety and tolerability evaluation of the use of Montanide ISA51 as vaccine adjuvant: a systematic review. Hum Vaccin Immunother 12:159–169

    Article  PubMed  Google Scholar 

  • Van Hoeven N, Joshi SW, Nana GI et al (2016) A novel synthetic TLR-4 agonist adjuvant increases the protective response to a clinical-stage West Nile virus vaccine antigen in multiple formulations. PLoS One 11:e0149610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vidya MK, Kumar VG, Sejian V et al (2018) Toll-like receptors: significance, ligands, signaling pathways, and functions in mammals. Int Rev Immunol 37:20–36

    Article  CAS  PubMed  Google Scholar 

  • Vorobiof DA, Rapoport BL, Chasen MR et al (2004) First line therapy with paclitaxel (Taxol) and pegylated liposomal doxorubicin (Caelyx) in patients with metastatic breast cancer: a multicentre phase II study. Breast 13:219–226

    Article  CAS  PubMed  Google Scholar 

  • Wack A, Baudner BC, Hilbert AK et al (2008) Combination adjuvants for the induction of potent, long-lasting antibody and T-cell responses to influenza vaccine in mice. Vaccine 26:552–561

    Article  CAS  PubMed  Google Scholar 

  • Wakabayashi T, Natsume A, Hashizume Y et al (2008) A phase I clinical trial of interferon-beta gene therapy for high-grade glioma: novel findings from gene expression profiling and autopsy. J Gene Med 10:329–339

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Chen R (2013) A problem in an article called “Immunoregulatory effects of alpha-GalCer in a murine model of autoimmune myocarditis” published in experimental and molecular pathology 91 (2011) 636–642. Exp Mol Pathol 95:393

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Wang T, Zhang M et al (2014) Mannose derivative and lipid A dually decorated cationic liposomes as an effective cold chain free oral mucosal vaccine adjuvant-delivery system. Eur J Pharm Biopharm 88:194–206

    Article  CAS  PubMed  Google Scholar 

  • Wang YH, Jia JC, Liu G et al (2015) Research on the influence of alpha-GalCer activating experimental autoimmune myasthenia gravis mice NKT cells at different times on myasthenia gravis. J Biol Regul Homeost Agents 29:195–200

    CAS  PubMed  Google Scholar 

  • Wedlock DN, Denis M, Painter GF et al (2008) Enhanced protection against bovine tuberculosis after coadministration of Mycobacterium bovis BCG with a Mycobacterial protein vaccine-adjuvant combination but not after coadministration of adjuvant alone. Clin Vaccine Immunol 15:765–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weigt H, Muhlradt PF, Emmendorffer A et al (2003) Synthetic mycoplasma-derived lipopeptide MALP-2 induces maturation and function of dendritic cells. Immunobiology 207:223–233

    Article  CAS  PubMed  Google Scholar 

  • Weigt H, Muhlradt PF, Larbig M et al (2004) The toll-like receptor-2/6 agonist macrophage-activating lipopeptide-2 cooperates with IFN-gamma to reverse the Th2 skew in an in vitro allergy model. J Immunol 172:6080–6086

    Article  CAS  PubMed  Google Scholar 

  • Weinberger B (2018) Adjuvant strategies to improve vaccination of the elderly population. Curr Opin Pharmacol 41:34–41

    Article  CAS  PubMed  Google Scholar 

  • Wilde I, Lotz S, Engelmann D et al (2007) Direct stimulatory effects of the TLR2/6 ligand bacterial lipopeptide MALP-2 on neutrophil granulocytes. Med Microbiol Immunol 196:61–71

    Article  CAS  PubMed  Google Scholar 

  • Wilkins AL, Kazmin D, Napolitani G et al (2017) AS03- and MF59-Adjuvanted Influenza Vaccines in children. Front Immunol 8:1760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilson KD, Raney SG, Sekirov L et al (2007) Effects of intravenous and subcutaneous administration on the pharmacokinetics, biodistribution, cellular uptake and immunostimulatory activity of CpG ODN encapsulated in liposomal nanoparticles. Int Immunopharmacol 7:1064–1075

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2018) Immunization coverage. http://www.who.int/en/news-room/fact-sheets/detail/immunization-coverage

  • Yamamoto M, Sato S, Hemmi H et al (2002) Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 420:324–329

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki N, Yamakawa S, Sugimoto T et al (2017) Carboxylated phytosterol derivative-introduced liposomes for skin environment-responsive transdermal drug delivery system. J Liposome Res 5:1–10

    Google Scholar 

  • Youn HJ, Ko SY, Lee KA et al (2007) A single intranasal immunization with inactivated influenza virus and alpha-galactosylceramide induces long-term protective immunity without redirecting antigen to the central nervous system. Vaccine 25:5189–5198

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Xie Y, Zhang Y et al (2014) Thermo-sensitive liposomes loaded with doxorubicin and lysine modified single-walled carbon nanotubes as tumor-targeting drug delivery system. J Biomater Appl 29:769–779

    Article  CAS  PubMed  Google Scholar 

  • Zygmunt BM, Weissmann SF, Guzman CA (2012) NKT cell stimulation with alpha-galactosylceramide results in a block of Th17 differentiation after intranasal immunization in mice. PLoS One 7:e30382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Alberto Guzmán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ebensen, T., Fuchs, B., Schulze, K., Guzmán, C.A. (2019). Infection Prevention: Oil- and Lipid-Containing Products in Vaccinology. In: Goldfine, H. (eds) Health Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-72473-7_25-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72473-7_25-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72473-7

  • Online ISBN: 978-3-319-72473-7

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics