Advertisement

Methanotrophy, Methylotrophy, the Human Body, and Disease

  • Rich BodenEmail author
Living reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Methylotrophic Bacteria use one-carbon (C1) compounds as their carbon source. They have been known to be associated to the human body for almost 20 years as part of the normal flora and were identified as pathogens in the early 1990s in end-stage HIV patients and chemotherapy patients. In this chapter, I look at C1 compounds in the human body and exposure from the environment and then consider Methylobacterium spp. and Methylorubrum spp. in terms of infections and its role in breast and bowel cancers, Methylococcus capsulatus and its role in inflammatory bowel disease, and Brevibacterium casei and Hyphomicrobium sulfonivorans as part of the normal human flora. I also consider the abundance of methylotrophs from the Actinobacteria being identified in human studies and the potential bias of the ionic strength of culture media and the needs for future work. Within the scope of future work, I consider the need for the urgent assessment of the pathogenic, oncogenic, mutagenic, and teratogenic potential of Methylobacterium spp. and Methylorubrum spp. and the need to handle them at higher containment levels until more data are available.

Notes

Acknowledgments

I thank Dr. Ann P Wood (formerly of King’s College London, UK) for stimulating discussions on methylotrophy and human disease and Dr. Michael J Cox (Imperial College London, UK) for insight on methylotrophic contamination of molecular studies. I also thank Dr. Lee P Hutt (University of Plymouth, UK) for reading and commenting on the manuscript.

References

  1. Amiri H (2007) Chemical composition and antibacterial activity of the essential oil of Allium jesdianum Boiss. & Buhse from Iran. J Med Plants 6:39–44+65Google Scholar
  2. Anesti V, Vohra J, Goonetilleka S, McDonald IR, Sträubler B, Stackebrandt E, Kelly DP, Wood AP (2004) Molecular detection and isolation of facultatively methylotrophy, including Methylobacterium podarium sp. nov., from the human foot. Environ Microbiol 6:820–830PubMedCrossRefGoogle Scholar
  3. Anesti V, McDonald IR, Ramaswamy M, Wade WG, Kelly DP, Wood AP (2005) Isolation and molecular detection of methylotrophic bacteria occurring in the human mouth. Environ Microbiol 7:1227–1238PubMedCrossRefGoogle Scholar
  4. Aslam Z, Lee CS, Kim KH, Im WT, Ten LN, Lee ST (2007) Methylobacterium jeotgali sp. nov., a non-pigmented, facultatively methylotrophic bacterium isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 57:566–571PubMedCrossRefGoogle Scholar
  5. Austin B, Goodfellow M (1979) Pseudomonas mesophilica, a new species of pink bacteria isolated from leaf surfaces. Int J Syst Bacteriol 29:373–378CrossRefGoogle Scholar
  6. Barbeau J, Tanguay R, Faucher E, Avezard C, Trudel L, Côté L, Prévost A (1996) Multiparametric analysis of waterline contamination in dental units. Appl Environ Microbiol 62:3954–3959PubMedPubMedCentralGoogle Scholar
  7. Bellesia F, Pinetti A, Bianchi A, Tirillini B (1996) Volatile compounds of the white truffle (Tuber magnatum Pico) from Middle Italy. Flavour Fragr J 11:239–243CrossRefGoogle Scholar
  8. Bills DD, Keenan TW (1968) Dimethyl sulfide and its precursor in sweetcorn. J Agric Food Chem 16:643–645CrossRefGoogle Scholar
  9. Boden R, Thomas E, Savani P, Kelly DP, Wood AP (2008) Novel methylotrophic bacteria isolated from the River Thames (London, UK). Environ Microbiol 10:3225–3236PubMedCrossRefGoogle Scholar
  10. Boden R, Borodina E, Wood AP, Kelly DP, Murrell JC, Schäfer H (2011) Purification and characterization of dimethylsulfide monooxygenase from Hyphomicrobium sulfonivorans. J Bacteriol 193:1250–1258PubMedPubMedCentralCrossRefGoogle Scholar
  11. Borodina E, Kelly DP, Rainey FA, Ward-Rainey NL, Wood AP (2000) Dimethylsulfone as a growth substrate for novel methylotrophic species of Hyphomicrobium and Arthrobacter. Arch Microbiol 173:425–437PubMedCrossRefPubMedCentralGoogle Scholar
  12. Borodina E, Kelly DP, Schumann P, Rainey FA, Ward-Rainey NL, Wood AP (2002) Enzymes of dimethylsulfone metabolism and the phylogenetic characterization of the facultative methylotrophs Arthrobacter sulfonivorans sp. nov., Arthrobacter methylotrophus sp. nov., and Hyphomicrobium sulfonivorans sp. nov. Arch Microbiol 177:173–183PubMedCrossRefPubMedCentralGoogle Scholar
  13. Brown MA, Green JN, Sandin RL, Heimenz JW, Sinnott JT (1996) Methylobacterium bacteremia after infusion with contaminated autologous bone marrow. Clin Infect Dis 23:1191–1192PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bystedt J, Swenne L, Aas HW (1959) Determination of trimethylamine oxide in fish muscle. J Sci Food Agric 10:301–304CrossRefGoogle Scholar
  15. Callwewaert C, De Maeseneire E, Kerckhof F-M, Verliefde A, van de Wiele T, Boon N (2014) Microbial odour profile of polyester and cotton clothes after a fitness session. Appl Environ Microbiol 80:6611–6619Google Scholar
  16. Carvajal TM, Galvez JB (2015) Current research status on the biology of pink pigmented facultative methylotrophic (PPFM) bacteria belonging to the genus Methylobacterium in the Philippines. Philipp J Syst Biol 9Google Scholar
  17. Carvajal TM, Tan RL, Lee AC (2011) Methylobacterium zatmanii, a pink pigmented facultative methylotrophic (PPFM) bacterium isolated from the human oral cavity. Philipp J Syst Biol 5:1–9Google Scholar
  18. Castaño-Rodriguez N, Goh K-L, Fock KM, Mitchell HM, Kaakoush NO (2017) Dysbiosis of the microbiome in gastric carcinogenesis. Sci Rep 7:15957PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chen W, Liu F, Ling Z, Tong Z, Xiang C (2012) Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS One 7:e39743PubMedPubMedCentralCrossRefGoogle Scholar
  20. Christoffersen TE, Olsen Hult LT, Solberg H, Bakke A, Kuczkowska K, Huseby E, Jacobsen M, Lea T, Kleiveland CR (2015) Effects of the non-commensal Methylococcus capsulatus Bath on mammalian immune cells. Mol Immunol 66:107–116PubMedCrossRefPubMedCentralGoogle Scholar
  21. Cold CJ, Taylor JR (1999) The prepuce. Br J Urol 83:34–44CrossRefGoogle Scholar
  22. Dalton H, Whittenbury R (1976) The acetylene reduction technique as an assay for nitrogenase activity in the methane oxidizing bacterium Methylococcus capsulatus (Bath). Arch Microbiol 109:147–151CrossRefGoogle Scholar
  23. David AKS, Diongzon NEM (2013) Phenotypic and genotypic characterization of pink pigmented facultative methylotrophic (PPFM) bacteria isolated from the human belly button. Undergraduate thesis, De La Salle University, ManilaGoogle Scholar
  24. Debye P, Hückel E (1923) Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen. Phys Z 24:185–206Google Scholar
  25. Edgar RC (2004) Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797PubMedPubMedCentralCrossRefGoogle Scholar
  26. Engel E, Baty C, LeCorre D, Souchen I, Martin N (2002) Flavor-active compounds potentially implicated in cooked cauliflower acceptance. J Agric Food Chem 50:6459–6467PubMedCrossRefPubMedCentralGoogle Scholar
  27. Engelke UF, Tangerman A, Willemsen MA, Moskau D, Loss S, Mudd SH, Wevers RA (2005) Dimethyl sulfone in human cerebrospinal fluid and blood plasma confirmed by one-dimensional 1H and two-dimensional 1H-13C NMR. NMR Biomed 18(5):331–336PubMedCrossRefPubMedCentralGoogle Scholar
  28. Falkinham JO 3rd, Williams MD, Kwait R, Lande L (2016) Methylobacterium spp. as an indicator for the presence or absence of Mycobacterium spp. Int J Mycobacteriol 5:240–243PubMedCrossRefPubMedCentralGoogle Scholar
  29. Florin TG, Neale G, Gibson GR, Christi SU, Cummings JH (1991) Metabolism of dietary sulphate: absorption and excretion in humans. Gut 32:766–773PubMedPubMedCentralCrossRefGoogle Scholar
  30. Gallagher M, Wysocki CJ, Leyden JJ, Spielman AI, Sun X, Preti G (2008) Analyses of volatile organic compounds from human skin. Br J Dermatol 159:780–791PubMedPubMedCentralCrossRefGoogle Scholar
  31. Gallego V, García MT, Ventosa A (2005a) Methylobacterium hispanicum sp. nov. and Methylobacterium aquaticum sp. nov., isolated from drinking water. Int J Syst Evol Microbiol 55:281–287PubMedCrossRefGoogle Scholar
  32. Gallego V, García MT, Ventosa A (2005b) Methylobacterium isbiliense sp. nov., isolated from the drinking water system of Sevilla, Spain. Int J Syst Evol Microbiol 55:2333–2337PubMedCrossRefGoogle Scholar
  33. Gallego V, García MT, Ventosa A (2006) Methylobacterium adhaesivum sp. nov., a novel methylotrophic bacterium isolated from drinking water. Int J Syst Evol Microbiol 56:339–342PubMedCrossRefPubMedCentralGoogle Scholar
  34. Gilardi GL, Faur YC (1984) Pseudomonas mesophilica and an unnamed taxon, clinical isolates of pink-pigmented oxidative bacteria. J Clin Microbiol 20:626–629PubMedPubMedCentralGoogle Scholar
  35. Gilchrist MJR, Kraft JA, Hammon JG, Connelly BL, Myers MG (1986) Detection of Pseudomonas mesophilica as a source of nosocomial infections in a bone marrow transplant unit. J Clin Microbiol 23:1052–1055PubMedPubMedCentralGoogle Scholar
  36. Green P, Ardley JK (2018) Review of the genus Methylobacterium and closely related organisms: a proposal that some Methylobacterium species be reclassified into a new genus, Methylorubrum gen. nov. Int J Syst Evol Microbiol 68:2727PubMedCrossRefGoogle Scholar
  37. Hoffman DR (2010) Ant venoms. Curr Opin Allergy Clin Immunol 10:342–346PubMedCrossRefGoogle Scholar
  38. Hong JC, Rahimy E, Gross CP, Shafman T, Hu X, Yu JB, Ross R, Finkelstein SE, Dosortez A, Park HS, Soulos PR, Evans SB (2018) Radiation dose and cardiac cancer risk in breast cancer treatment: an analysis of modern radiation therapy including community settings. Pract Radiat Oncol.  https://doi.org/10.1016/j.prro.2017.07.005PubMedCrossRefGoogle Scholar
  39. Hung W-L, Wade WG, Boden R, Kelly DP, Wood AP (2011) Facultative methylotrophs from the human oral cavity and methylotrophy in strains of Gordonia, Leifsonia, and Microbacterium. Arch Microbiol 193:407–417PubMedCrossRefGoogle Scholar
  40. Indrelid S, Kleiveland C, Holst R, Jacobsen M, Lea T (2017) The soil bacterium Methylococcus capsulatus Bath interacts with human dendritic cells to modulate immune function. Front Microbiol 8:230CrossRefGoogle Scholar
  41. Ito H, Iizuka H (1971) Taxonomic studies on a radio-resistant Pseudomonas. J Agric Biol Chem 35:1566–1571Google Scholar
  42. Kato Y, Ashara M, Arai D, Goto K, Yokata A (2005) Reclassification of Methylobacterium chloromethanicum and Methylobacterium dichloromethanicum as later subjective synonyms of Methylobacterium extorquens and of Methylobacterium lusitanum as a later subjective synonym of Methylobacterium rhodesianum. J Gen Appl Microbiol 51:287–299PubMedCrossRefPubMedCentralGoogle Scholar
  43. Kelly DP, Anthony C, Murrell JC (2005) Insights into the obligate methanotroph Methylococcus capsulatus. Trends Microbiol 13:195–198PubMedCrossRefPubMedCentralGoogle Scholar
  44. Kim KY, Ko HJ, Kim HT, Kim YS, Roh YM, Lee CM, Kim HS, Kim CN (2007) Sulfuric odorous compounds emitted from pig-feeding operations. Atmos Environ 41:4811–4818CrossRefGoogle Scholar
  45. Klaessen C (2013) Casarett & Doull’s toxicology: the basic science of poisons, 8th edn. McGraw Hill, New YorkGoogle Scholar
  46. Kleiveland CR, Hult LT, Spetalen S, Kaldhusdal M, Christoffersen TE, Bengtsson O, Romarheim OH, Jacobsen M, Lea T (2013) The noncommensal bacterium Methylococcus capsulatus (Bath) ameliorates dextran sulfate (sodium salt)-induced ulcerative colitis by influencing mechanisms essential for maintenance of the colonic barrier function. Appl Environ Microbiol 79:48–56PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kovaleva J, Degener JE, van der Mei HC (2014) Methylobacterium and its role in health care-associated infection. J Clin Microbiol 52:1317–1321PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kulakov LA, McAlister MB, Ogden KL, Larkin MJ, O’Hanlon JF (2002) Analysis of bacteria contaminating ultrapure water in industrial systems. Appl Environ Microbiol 68:1548–1555PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetic Analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefGoogle Scholar
  50. Lai C-C, Cheng A, Liu W-L, Tan C-K, Huang Y-T, Chung K-P, Lee M-R, Hsueh P-R (2011) Infections caused by unusual Methylobacterium species. J Clin Microbiol 49:3329–3331PubMedPubMedCentralCrossRefGoogle Scholar
  51. Lauder AP, Roche AM, Sherrill-Mix S, Bailey A, Laughlin AL, Bittinger K, Leite R, Elovitz MA, Perry A, Bushman FD (2016) Comparison of placenta samples with contamination controls does not provide evidence for a distinct placenta microbiome. Microbiome 4:29PubMedPubMedCentralCrossRefGoogle Scholar
  52. Lawson LD, Wang ZH, Hughes BG (1991) Identification and HPLC quantitation of the sulfides and dialk(en)yl thiosulfinates in commercial garlic products. Planta Med 57:363–370PubMedCrossRefPubMedCentralGoogle Scholar
  53. Leach JM, Chung LTK (1982) Gas concentrations and occupational health in Kraft mills. TAPPI J 65:95–98Google Scholar
  54. Lee C-H, Tang Y-F, Liu J-W (2004) Underdiagnosis of urinary tract infection caused by Methylobacterium species with current standard processing of urine culture and its clinical implications. J Med Microbiol 53:755–759PubMedCrossRefPubMedCentralGoogle Scholar
  55. Leonardos G, Kendall D, Barnard N (1969) Odor threshold determination of 53 odorant chemicals. J Air Pollut Control Assoc 19:91–95CrossRefGoogle Scholar
  56. Lindinger W, Taucher J, Jordan A, Hansel A, Vogel W (1997) Endogenous production of methanol after the consumption of fruit. Alcohol Clin Exp Res 21:939–943PubMedCrossRefPubMedCentralGoogle Scholar
  57. Ljunggren G, Norberg B (1948) On the effect and toxicity of dimethyl-sulphide, dimethyl-sulphoxide and methyl-mercaptan. Acta Physiol Scand 5:248–255CrossRefGoogle Scholar
  58. McFeters GA, Broadaway SC, Pyle BH, Egozy Y (1993) Distribution of bacteria within operating laboratory water purification systems. Appl Environ Microbiol 59:1410–1415PubMedPubMedCentralGoogle Scholar
  59. Mitchell SC, Smith RL (2001) Trimethylaminuria: the fish malodor syndrome. Drug Metab Dispos 29:517–521PubMedPubMedCentralGoogle Scholar
  60. Moore JG, Jessop LD, Osborne DN (1987) Gas-chromatographic and mass-spectrometric analysis of the odor of human feces. Gastroenterology 93:1321–1329PubMedCrossRefPubMedCentralGoogle Scholar
  61. Musilova M, Wright G, Ward JM, Dartnell LR (2015) Isolation of radiation-resistant bacteria from Mars analog Antarctic dry valleys by preselection, and the correlation between radiation and desiccation resistance. Astrobiology 15:1076–1090PubMedPubMedCentralCrossRefGoogle Scholar
  62. Nešvera J, Pátek M, Hochmannová J, Chibisova E, Sererijski I, Tsyganov T, Netrusov A (1991) Transformation of a new Gram-positive methylotroph, Brevibacterium methylicum, by plasmid DNA. Appl Microbiol Biotechnol 35:777–780CrossRefGoogle Scholar
  63. Pino A, Giunta G, Randazzo CL, Caruso S, Caggia C, Cianci A (2017) Bacterial biota of women with bacterial vaginosis treated with lactoferrin: an open prospective randomized trial. Microbial Ecol Health Dis 28:1357417CrossRefGoogle Scholar
  64. Preti G, Huggins GR, Bares J (1978) Analysis of human vaginal secretions by gas chromatography-mass spectrometry. Isr J Chem 17:215–222CrossRefGoogle Scholar
  65. Qiagen (2013) Vaginal flora DNA qPCR array (BAID-1902ZRA) product information leafletGoogle Scholar
  66. Rutherford PC, Narkowicz JE, Wood JC, Peel MM (1988) Peritonitis caused by Pseudomonas mesophilica in a patient undergoing continuous ambulatory peritoneal dialysis. J Clin Microbiol 26:2441–2443PubMedPubMedCentralGoogle Scholar
  67. Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, Turner P, Parkhill J, Loman NJ, Walker AW (2014) Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol 12:87PubMedPubMedCentralCrossRefGoogle Scholar
  68. Sanhueza E, Andreae MO (1991) Emission of formic acid and acetic acids from tropical Savanna soils. Geophys Res Lett 18:1707–1710CrossRefGoogle Scholar
  69. Schäfer H, Myronova N, Boden R (2010) Microbial degradation of dimethylsulphide and related C1-sulphur compounds: organisms and pathways controlling fluxes of sulphur in the biosphere. J Exp Bot 61:315–334PubMedCrossRefPubMedCentralGoogle Scholar
  70. Schellenberg JJ, Links MG, Hill JE, Dumonceaux TJ, Kimani J, Jaoko W, Wachihi C, Mungai JN, Peters GA, Tyler S, Graham M, Severini A, Fowke KR, Ball TB, Plummer FA (2011) Molecular detection of vaginal microbiota in East African commercial sex workers. Appl Environ Microbiol 77:4066–4074PubMedPubMedCentralCrossRefGoogle Scholar
  71. Shirasu M, Nagai S, Hayashi R, Ochiai A, Touhara K (2009) Dimethyl trisulfide as a characteristic odor associated with fungating cancer wounds. Biosci Biotechnol Biochem 73:2117–2120PubMedCrossRefGoogle Scholar
  72. Smet E, Lens E, van Langenhove H (1998) Treatment of waste gases contaminated with odorous sulfur compounds. Crit Rev Environ Sci Technol 28:89–117CrossRefGoogle Scholar
  73. Smith TJ, Murrell JC (2011) Mutagenesis of soluble methane monooxygenase. Methods Enzymol 495:135–147PubMedCrossRefGoogle Scholar
  74. Smith SM, Eng RHK, Forrester C (1985) Pseudomonas mesophilica infections in humans. J Clin Microbiol 21:314–317PubMedPubMedCentralGoogle Scholar
  75. Suarez FL, Springfeld J, Levitt MD (1999) Identification of gases responsible for the odour of human flatus and evaluation of a device purported to reduce this odour. Gut 43:100–104CrossRefGoogle Scholar
  76. Talou T, Gaset A, Delmas M, Kulifaj M, Montant C (1990) Dimethyl sulfide: the secret for black truffle hunting by animals? Mycol Res 94:277–278CrossRefGoogle Scholar
  77. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526PubMedPubMedCentralGoogle Scholar
  78. Tonzetich J (1973) The uptake and metabolism of 35 S-labeled volatile sulfur compounds by putrescent saliva. Biochem Med 7:52–60PubMedCrossRefGoogle Scholar
  79. Truant AL, Gulati R, Giger O, Satishchandran V, Caya JG (1998) Methylobacterium species: an increasingly important opportunistic pathogen. Lab Med 29:704–710CrossRefGoogle Scholar
  80. Turner C, Spanel P, Smith D (2006) A longitudinal study of methanol in the exhaled breath of healthy volunteers using selected ion flow tube mass spectrometry, SIFT-MS. Physiol Meas 27:637–648PubMedCrossRefGoogle Scholar
  81. Tymczyna L, Chmielowiec-Korzeniowska A, Drabik A, Skórska C, Sitkowska J, Cholewa G, Dutkiewicz J (2007) Efficacy of a novel biofilter in hatchery sanitation: II. Removal of odorogenous pollutants. Ann Agric Environ Med 14:151–157PubMedPubMedCentralGoogle Scholar
  82. Usha PR, Naidu MU (2004) Randomised, double-blind, parallel, placebo-controlled study of oral glucosamine, methylsulfonylmethane and their combination in osteoarthritis. Clin Drug Investig 24:353–363PubMedCrossRefPubMedCentralGoogle Scholar
  83. Uy MM, Uy J, Castro CZR, Carvajal TM, Ho HT, Lee AC (2013) Pink pigmented facultative methylotrophic (PPFM) bacteria isolated from the human scale and nasal cavity. Philipp J Syst Biol 7:13–21Google Scholar
  84. van Langenhove HR, van Wassenhove FA, Coppin JK, van Acker MR, Schamp NM (1982) Gas chromatography/mass spectrometry identification of organic volatiles contributing to rendering odors. Environ Sci Technol 16:883–886PubMedCrossRefPubMedCentralGoogle Scholar
  85. Wang H, Altemus J, Niazi F, Green H, Calhoun BC, Sturgis C, Grobmyer SR, Eng C (2017) Breast tissue, oral and urinary microbiomes in breast cancer. Oncotarget 8:88122–88138PubMedPubMedCentralGoogle Scholar
  86. Warnke PH, Terheyden H, Açil Y, Springer IN, Sherry E, Reynolds M, Russo PAJ, Bredee JP, Podschun R (2003) Tumor smell reduction with antibacterial essential oils. Cancer 100:879–880CrossRefGoogle Scholar
  87. Waturangi DE, Nicholas CD, Susanto DO, Suhartono MT (2011) Isolation and identification of methylotrophic bacteria producing methanol dehydrogenase from human feet and mouth. HAYATI J Biosci 18:11–15CrossRefGoogle Scholar
  88. Weon HY, Kim BY, Joa JH, Son JA, Song MH, Kwon SW, Go SJ, Yoon SH (2008) Methylobacterium iners sp. nov. and Methylobacterium aerolatum sp. nov., isolated from air samples in Korea. Int J Syst Evol Microbiol 58:93–96PubMedCrossRefPubMedCentralGoogle Scholar
  89. Weyers S, Verstraelen H, Gerris J, Monstrey S, dos Santos Lopes Santiago G, Saerens B, De Backer E, Claeys G, Vaneechoutte M, Verhelst R (2009) Microflora of the penile skin-lined neovagina of transsexual women. BMC Microbiol 9:102PubMedPubMedCentralCrossRefGoogle Scholar
  90. Williams MP (1973) Dimethyl sulfide: methodology, precursor kinetics and vegetable production evaluation. PhD thesis, Perdue University, USAGoogle Scholar
  91. Wolrath H, Forsum U, Larsson PG, Borén H (2001) Analysis of bacterial vaginosis-related amines in vaginal fluid by gas chromatography and mass spectrometry. J Clin Microbiol 39:4026–4031PubMedPubMedCentralCrossRefGoogle Scholar
  92. Wood AP, Kelly DP (2010) Skin microbiology, body odor, and methylotrophic bacteria. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, BerlinGoogle Scholar
  93. Wood AP, Warren FJ, Kelly DP (2010) Methylotrophic bacteria in trimethylaminuria and bacterial vaginosis. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, BerlinGoogle Scholar
  94. Xuan C, Shamonki JM, Chung A, DiNome ML, Chung M, Sieling PA, Lee DJ (2016) Microbial dysbiosis is associated with human breast cancer. PLoS One 9:e83744CrossRefGoogle Scholar
  95. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T, Yamamoto H (1990) Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 34:99–199PubMedCrossRefPubMedCentralGoogle Scholar
  96. Yadzi HR, Movafagh A, Fallah F, Shargh SA, Mansouri N, Pour AH, Hashemi M (2016) Evaluation of Methylobacterium radiotolerance [sic.] and Sphingomonas yanoikuyae in sentinel lymph nodes of breast cancer cases. Asian Pac J Cancer Prev 17:279–285CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Biological and Marine Sciences, Faculty of Science and EngineeringUniversity of PlymouthPlymouthUK
  2. 2.Sustainable Earth Institute, Faculty of Science and EngineeringUniversity of PlymouthPlymouthUK

Personalised recommendations