Advertisement

Controllers Using the Saturation of Iron for AC Network Control

  • David J. YoungEmail author
Living reference work entry

Latest version View entry history

  • 10 Downloads
Part of the CIGRE Green Books book series (CIGREGB)

Abstract

Before the advent of FACTS controllers, breaker-switched capacitors and inductors were used to provide a stepwise balance of vars (reactive power) for transmission and distribution systems; synchronous compensators were installed at some substations to provide a continuously variable reactive power output, but these machines were expensive and needed regular maintenance.

Prior to the availability of power electronic devices, Dr. E S Friedlander developed the first static voltage stabilizers, based on the properties and characteristics of saturated iron. Similarly to synchronous compensators, these “static var compensators” (SVCs) had a continuously variable output, but they were capable of a much faster response than synchronous compensators and had other advantages. For over two decades, they found widespread use in transmission and distribution systems. This chapter describes saturated reactor-based var controllers and provides application examples.

References

  1. Ainsworth, J.D., Cooper, C.B., Friedlander, E., Thanawala H.L.: Long distance AC transmission using static voltage stabilisers and switched linear reactors. CIGRE, 31–01 (1974)Google Scholar
  2. Allon, H., Gardner, G.E., Harris, L.A., Thanawala, H.L., Welch, I.M., Young, D.J.: Dynamic compensation for the England-France 2000 MW Link. CIGRE, 14–04 (1982)Google Scholar
  3. Baum, F.G.: Voltage regulation and insulation for large power long distance transmission systems. J. AIEE. 40, 1017–1077 (1921)Google Scholar
  4. Brewer, G.L., Horwill, C., Thanawala, H.L., Welch, I.M., Young, D.J.: The application of static var compensators to the English terminal of the 2000 MW HVDC cross channel link. CIGRE, 14–07 (1986)Google Scholar
  5. CIGRE TB 25: Static var compensators; WG 38-01, Task Force 2, (1986)Google Scholar
  6. Clegg, E., Heath, A.J., Young, D.J.: The static compensator for the British Steel Corporation – anchor project. In: IEE International Conference on Sources and Effects of Power System Disturbances, IEE Conference Publication 110, (1974)Google Scholar
  7. Concordia, C., Levoy, L.G., Thomas, C.H.: Selection of buffer reactors and synchronous condensers on power systems supplying arc furnace loads. AIEE Trans. 76(part 2), 170–183 (1957)Google Scholar
  8. Dixon, G.F.L., Friedlander, E., Seddon, F., Young, D.J.: Static shunt compensation for voltage-flicker suppression. In: IEE Symposium on Transient, Fluctuating and Distorting Loads and their Effects on Power Systems and Communications; paper no 7, February 1963. IEE Conference Report Series No 8, Abnormal loads on power systems, p. 49. (1964)Google Scholar
  9. DRP 592510, Friedlander, (1931)Google Scholar
  10. Easton, V., Fisher, F.J., Friedlander, E.: A 100 MVA Transductor for Testing Alternators; paper 117, CIGRE (1958)Google Scholar
  11. Friedlander, E.: Uber Kippschwingungen, insbesondere bei Elektronenrohren; Doctoral thesis, Berlin 1926, also Archiv fur Elektrotechnik, vol 16, p 273 and vol 17, p 1. (1926)Google Scholar
  12. Friedlander, E.: Selbstattige Blindstromkompensation auf langen Hochspannungsleitungen; Siemens Zeitschrift, p. 494. (1930)Google Scholar
  13. Friedlander, E.: Der Spannungsgleichhalten, ein verzögerungsarmes, statisches Regelgerät zum Ausgleich von Wechselspannungschwankungen; Siemens Zeitschrift 15, 177–181 (1935)Google Scholar
  14. Friedlander, E.: Grundlagen der Ausnutzung hochster Eisensattigungen fur die starkstrom technik; ETZ, Ausgabe A, 11 Feb 1958Google Scholar
  15. Friedlander, E.: Static network stabilization: recent progress in reactive power control. GEC J. Sci. Technol. 33(2), 58–65 (1966)Google Scholar
  16. Friedlander, E, Jones, K.M.: Saturated reactors for long distance bulk transmission lines. Electr. Rev., 27 June 1969Google Scholar
  17. Friedlander, E., Young, D.J.: The Quin-reactor for Voltage Stabilisation. Electr. Rev. 126–9, 22 July 1966Google Scholar
  18. Friedlander, E., Telahun, A., Young, D.J.: Arc-furnace flicker compensation in Ethiopia. GEC J. Sci. Technol. 32(1), 2–10 (1965)Google Scholar
  19. Griscom, S.B.: A mechanical analogy to the problem of transmission stability. Pittsburgh, Electr J. 23, 230–5 (1926)Google Scholar
  20. Kennedy, M.W., Loughran, J., Young, D.J.: Application of a static suppressor to reduce voltage fluctuations caused by a multiple arc furnace installation. In: IEE Conference on Sources and Effects of Power System Disturbances, IEE Conference Publication No 110, (1974)Google Scholar
  21. Lowe, S.K.: Static var compensators and their applications in Australia. IEE Power Eng. J. 3(5), 247–256 (1989)MathSciNetCrossRefGoogle Scholar
  22. Rudenberg, R.: Elektrische Hochleistungsubertragung auf weite Entfernung; pp. 182–239. Springer, Berlin (1932)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019 2020

Authors and Affiliations

  1. 1.ConsultantStaffordUK

Personalised recommendations