Advertisement

Off-the-Shelf Tissue-Engineered Vascular Conduits: Clinical Translation

  • Emanuela S. Fioretta
  • Lisa von Boehmer
  • Melanie Generali
  • Simon P. Hoerstrup
  • Maximilian Y. EmmertEmail author
Living reference work entry
Part of the Reference Series in Biomedical Engineering book series (RSBE)

Abstract

Vascular bypass is a surgical procedure which aims at restoring normal blood circulation in cardiovascular diseases affecting small (e.g., coronary artery disease) and/or large diameter (e.g., congenital heart disease, peripheral vascular disease) blood vessels. After outlining some of the major medical conditions where vascular grafts represent a therapeutic approach, we review the current gold standards for surgical bypass grafting as well as their limitations. We subsequently provide an overview of in vitro tissue engineering approaches which may offer a solution for achieving autologous vascular replacement. We first describe cell sources – including induced pluripotent stem cells – and scaffold materials used for in vitro tissue engineering and give a summary of clinical trials using this approach. After reviewing the limitations of in vitro tissue-engineered vascular grafts (extensive production times, interpatient variability, difficulties in storage and preservation), we describe the emerging in situ tissue engineering approach – one which recognizes off-the-shelf availability as a fundamental prerequisite to facilitate broad clinical adoption. Off-the-shelf solutions, such as polymer-only-based grafts and decellularized ECM-based conduits, have shown promising results in preclinical studies. However, further studies are required to assess the long-term functionality of such implants, to better understand the immune response they elicit and how they remodel, both in healthy and diseased individuals.

References

  1. Achilli M, Lagueux J, Mantovani D (2010) On the effects of UV-C and pH on the mechanical behavior, molecular conformation and cell viability of collagen-based scaffold for vascular tissue engineering. Macromol Biosci 10:307–316.  https://doi.org/10.1002/mabi.200900248CrossRefGoogle Scholar
  2. Al Shakarchi J, Inston N (2018) Early cannulation grafts for haemodialysis: an updated systematic review. J Vasc Access 112972981877657.  https://doi.org/10.1177/1129729818776571.CrossRefGoogle Scholar
  3. Athanasiou T, Saso S, Rao C, Vecht J, Grapsa J, Dunning J, Lemma M, Casula R (2011) Radial artery versus saphenous vein conduits for coronary artery bypass surgery: forty years of competition – which conduit offers better patency? A systematic review and meta-analysis. Eur J Cardio-Thoracic Surg 40:208–220.  https://doi.org/10.1016/j.ejcts.2010.11.012CrossRefGoogle Scholar
  4. Babczyk P, Conzendorf C, Klose J, Schulze M, Harre K, Tobiasch E (2014) Stem cells on biomaterials for synthetic grafts to promote vascular healing. J Clin Med 3:39–87.  https://doi.org/10.3390/jcm3010039CrossRefGoogle Scholar
  5. Balguid A, Mol A, van Marion MH, Bank RA, Bouten CVC, Baaijens FPT (2009) Tailoring fiber diameter in electrospun poly(epsilon-caprolactone) scaffolds for optimal cellular infiltration in cardiovascular tissue engineering. Tissue Eng Part A 15:437–444.  https://doi.org/10.1089/ten.tea.2007.0294CrossRefGoogle Scholar
  6. Bartneck M, Schulte VA, Paul NE, Diez M, Lensen MC, Zwadlo-Klarwasser G (2010) Induction of specific macrophage subtypes by defined micro-patterned structures. Acta Biomater 6:3864–3872.  https://doi.org/10.1016/j.actbio.2010.04.025.CrossRefGoogle Scholar
  7. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C, Isasi CR, Jiménez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Mackey RH, Matsushita K, Mozaffarian D, Mussolino ME, Nasir K, Neumar RW, Palaniappan L, Pandey DK, Thiagarajan RR, Reeves MJ, Ritchey M, Rodriguez CJ, Roth GA, Rosamond WD, Sasson C, Towfighi A, Tsao CW, Turner MB, Virani SS, Voeks JH, Willey JZ, Wilkins JT, Wu JHY, Alger HM, Wong SS, Muntner P (2017) Heart disease and stroke statistics – 2017 update: a report from the American Heart Association. Circulation 135:e146–e603.  https://doi.org/10.1161/CIR.0000000000000485CrossRefGoogle Scholar
  8. Berardinelli L (2006) Grafts and graft materials as vascular substitutes for haemodialysis access construction. Eur J Vasc Endovasc Surg 32:203–211.  https://doi.org/10.1016/j.ejvs.2006.01.001CrossRefGoogle Scholar
  9. Bindroo S, Challa HJ (2018) Renal failure. http://www.ncbi.nlm.nih.gov/pubmed/30085554. Accessed 30 Aug 2018
  10. Bockeria L, Svanidze O, Kim A, Shatalov K, Makarenko V, Cox M, Carrel T (2017) Total cavopulmonary connection with a new bioabsorbable vascular graft: first clinical experience. J Thorac Cardiovasc Surg 153:1542–1550CrossRefGoogle Scholar
  11. Boehler RM, Graham JG, Shea LD (2011) Tissue engineering tools for modulation of the immune response. Biotechniques 51:239–240, 242, 244 passim.  https://doi.org/10.2144/000113754CrossRefGoogle Scholar
  12. Bonito V, Smits AIPM, Goor OJGM, Ippel BD, Driessen-Mol A, Münker TJAG, Bosman AW, Mes T, Dankers PYW, Bouten CVC (2018) Modulation of macrophage phenotype and protein secretion via heparin-IL-4 functionalized supramolecular elastomers. Acta Biomater 71:247–260.  https://doi.org/10.1016/j.actbio.2018.02.032CrossRefGoogle Scholar
  13. Brewster DC (1997) Current controversies in the management of aortoiliac occlusive disease. J Vasc Surg 25:365–379. http://www.ncbi.nlm.nih.gov/pubmed/9052572. Accessed 3 Sept 2018CrossRefGoogle Scholar
  14. Brugmans MMCP, Soekhradj-Soechit RS, van Geemen D, Cox M, Bouten CVC, Baaijens FPT, Driessen-Mol A (2016) Superior tissue evolution in slow-degrading scaffolds for valvular tissue engineering. Tissue Eng Part A 22:123–132.  https://doi.org/10.1089/ten.tea.2015.0203CrossRefGoogle Scholar
  15. Bunt TJ (2001) Vascular graft infections: an update. Cardiovasc Surg 9:225–233. http://www.ncbi.nlm.nih.gov/pubmed/11336845. Accessed 3 Sept 2018CrossRefGoogle Scholar
  16. Butler HG, Baker LD, Johnson JM (1977) Vascular access for chronic hemodialysis: polytetrafluoroethylene (PTFE) versus bovine heterograft. Am J Surg 134:791–793.  https://doi.org/10.1016/0002-9610(77)90326-9CrossRefGoogle Scholar
  17. Buttafoco L, Engbers-Buijtenhuijs P, Poot AA, Dijkstra PJ, Vermes I, Feijen J (2006) Physical characterization of vascular grafts cultured in a bioreactor. Biomaterials 27:2380–2389.  https://doi.org/10.1016/j.biomaterials.2005.10.017CrossRefGoogle Scholar
  18. Cao Y, Sun Z, Liao L, Meng Y, Han Q, Zhao RC (2005) Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem Biophys Res Commun 332:370–379.  https://doi.org/10.1016/j.bbrc.2005.04.135CrossRefGoogle Scholar
  19. Carrabba M, Madeddu P (2018) Current strategies for the manufacture of small size tissue engineering vascular grafts. Front Bioeng Biotechnol 6:41.  https://doi.org/10.3389/fbioe.2018.00041CrossRefGoogle Scholar
  20. Casper CL, Yamaguchi N, Kiick KL, Rabolt JF (2007) Functionalizing electrospun fibers with biologically relevant macromolecules. Biomacromolecules 6:1998–2007.  https://doi.org/10.1021/bm050007eCrossRefGoogle Scholar
  21. Cebotari S, Lichtenberg A, Tudorache I, Hilfiker A, Mertsching H, Leyh R, Breymann T, Kallenbach K, Maniuc L, Batrinac A, Repin O, Maliga O, Ciubotaru A, Haverich A (2006) Clinical application of tissue engineered human heart valves using autologous progenitor cells. Circulation 114:132–138.  https://doi.org/10.1161/CIRCULATIONAHA.105.001065.CrossRefGoogle Scholar
  22. Chew DKW, Owens CD, Belkin M, Donaldson MC, Whittemore AD, Mannick JA, Conte MS (2002) Bypass in the absence of ipsilateral greater saphenous vein: safety and superiority of the contralateral greater saphenous vein. J Vasc Surg 35:1085–1092. http://www.ncbi.nlm.nih.gov/pubmed/12042718. Accessed 30 Aug 2018CrossRefGoogle Scholar
  23. Chlupác J, Filová E, Bacáková L (2009) Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery. Physiol Res 58(Suppl 2):S119–S139. http://www.ncbi.nlm.nih.gov/pubmed/20131930. Accessed 3 Sept 2018Google Scholar
  24. Cho S-W, Lim SH, Kim I-K, Hong YS, Kim S-S, Yoo KJ, Park H-Y, Jang Y, Chang BC, Choi CY, Hwang K-C, Kim B-S (2005) Small-diameter blood vessels engineered with bone marrow-derived cells. Ann Surg 241:506–515. http://www.ncbi.nlm.nih.gov/pubmed/15729075. Accessed 14 Jan 2019CrossRefGoogle Scholar
  25. Cigliano A, Gandaglia A, Lepedda AJ, Zinellu E, Naso F, Gastaldello A, Aguiari P, De Muro P, Gerosa G, Spina M, Formato M (2012) Fine structure of glycosaminoglycans from fresh and decellularized porcine cardiac valves and pericardium. Biochem Res Int 2012:1–10.  https://doi.org/10.1155/2012/979351CrossRefGoogle Scholar
  26. Colazzo F, Chester AH, Taylor PM, Yacoub MH (2010) Induction of mesenchymal to endothelial transformation of adipose-derived stem cells. J Heart Valve Dis 19:736–744. http://www.ncbi.nlm.nih.gov/pubmed/21214098. Accessed 4 Sept 2018Google Scholar
  27. Critser PJ, Voytik-Harbin SL, Yoder MC (2011) Isolating and defining cells to engineer human blood vessels. Cell Prolif 44(Suppl 1):15–21.  https://doi.org/10.1111/j.1365-2184.2010.00719.x.CrossRefGoogle Scholar
  28. Cummings I, George S, Kelm J, Schmidt D, Emmert MY, Weber B, Zünd G, Hoerstrup SP (2012) Tissue-engineered vascular graft remodeling in a growing lamb model: expression of matrix metalloproteinases. Eur J Cardiothorac Surg 41:167–172.  https://doi.org/10.1016/j.ejcts.2011.02.077.CrossRefGoogle Scholar
  29. Dahl SLM, Kypson AP, Lawson JH, Blum JL, Strader JT, Li Y, Manson RJ, Tente WE, DiBernardo L, Hensley MT, Carter R, Williams TP, Prichard HL, Dey MS, Begelman KG, Niklason LE (2011) Readily available tissue-engineered vascular grafts. Sci Transl Med 3:68ra9.  https://doi.org/10.1126/scitranslmed.3001426CrossRefGoogle Scholar
  30. de Jonge N, Muylaert DE, Fioretta ES, Baaijens FP, Fledderus JO, Verhaar MC, Bouten CV (2013) Matrix production and organization by endothelial colony forming cells in mechanically strained engineered tissue constructs. PLoS One 8(9):e73161CrossRefGoogle Scholar
  31. de Mel A, Jell G, Stevens MM, Seifalian AM (2008) Biofunctionalization of biomaterials for accelerated in situ endothelialization: a review. Biomacromolecules 9:2969–2979.  https://doi.org/10.1021/bm800681kCrossRefGoogle Scholar
  32. de Valence S, Tille J-C, Mugnai D, Mrowczynski W, Gurny R, Möller M, Walpoth BH (2012) Long term performance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model. Biomaterials 33:38–47.  https://doi.org/10.1016/j.biomaterials.2011.09.024CrossRefGoogle Scholar
  33. Dijkman PE, Driessen-Mol A, Frese L, Hoerstrup SP, Baaijens FPT (2012) Decellularized homologous tissue-engineered heart valves as off-the-shelf alternatives to xeno- and homografts. Biomaterials 33:4545–4554.  https://doi.org/10.1016/j.biomaterials.2012.03.015CrossRefGoogle Scholar
  34. Dirany M, Ayzac V, Isare B, Raynal M, Bouteiller L (2015) Structural control of bisurea-based supramolecular polymers: influence of an ester moiety. Langmuir 31:11443–11451.  https://doi.org/10.1021/acs.langmuir.5b02974CrossRefGoogle Scholar
  35. Dong X, Wei X, Yi W, Gu C, Kang X, Liu Y, Li Q, Yi D (2009) RGD-modified acellular bovine pericardium as a bioprosthetic scaffold for tissue engineering. J Mater Sci Mater Med 20:2327–2336.  https://doi.org/10.1007/s10856-009-3791-4CrossRefGoogle Scholar
  36. Donohue KG, Carson P, Iriondo M, Zhou L, Saap L, Gibson K, Falanga V (2005) Safety and efficacy of a bilayered skin construct in full-thickness surgical wounds. J Dermatol 32:626–631. http://www.ncbi.nlm.nih.gov/pubmed/16334861. Accessed 30 Aug 2018CrossRefGoogle Scholar
  37. Driessen-Mol A, Emmert MY, Dijkman PE, Frese L, Sanders B, Weber B, Cesarovic N, Sidler M, Leenders J, Jenni R, Grünenfelder J, Falk V, Baaijens FPT, Hoerstrup SP (2014) Transcatheter implantation of homologous “off-the-shelf” tissue-engineered heart valves with self-repair capacity: long-term functionality and rapid in vivo remodeling in sheep. J Am Coll Cardiol 63:1320–1329.  https://doi.org/10.1016/j.jacc.2013.09.082CrossRefGoogle Scholar
  38. Du L, Wu X, Pang K, Yang Y (2011) Histological evaluation and biomechanical characterisation of an acellular porcine cornea scaffold. Br J Ophthalmol 95:410–414.  https://doi.org/10.1136/bjo.2008.142539CrossRefGoogle Scholar
  39. Dukkipati R, Peck M, Dhamija R, Hentschel DM, Reynolds T, Tammewar G, McAllister T (2013) Biological grafts for hemodialysis access: historical lessons, state-of-the-art and future directions. Semin Dial 26:233–239.  https://doi.org/10.1111/j.1525-139X.2012.01106.xCrossRefGoogle Scholar
  40. Elder BD, Kim DH, Athanasiou KA (2010) Developing an articular cartilage decellularization process toward facet joint cartilage replacement. Neurosurgery 66:722–727.  https://doi.org/10.1227/01.NEU.0000367616.49291.9FCrossRefGoogle Scholar
  41. Emmert MY, Schmitt BA, Loerakker S, Sanders B, Spriestersbach H, Fioretta ES, Bruder L, Brakmann K, Motta SE, Lintas V, Dijkman PE, Frese L, Berger F, Baaijens FPT, Hoerstrup SP (2018) Computational modeling guides tissue-engineered heart valve design for long-term in vivo performance in a translational sheep model. Sci Transl Med 10.  https://doi.org/10.1126/scitranslmed.aan4587CrossRefGoogle Scholar
  42. Enomoto S, Sumi M, Kajimoto K, Nakazawa Y, Takahashi R, Takabayashi C, Asakura T, Sata M (2010) Long-term patency of small-diameter vascular graft made from fibroin, a silk-based biodegradable material. J Vasc Surg 51:155–164.  https://doi.org/10.1016/j.jvs.2009.09.005CrossRefGoogle Scholar
  43. Ercolani E, Del Gaudio C, Bianco A (2013) Vascular tissue engineering of small-diameter blood vessels: reviewing the electrospinning approach. J Tissue Eng Regen Med.  https://doi.org/10.1002/term.1697CrossRefGoogle Scholar
  44. Fioretta ES, Fledderus JO, Burakowska-Meise EA, Baaijens FPT, Verhaar MC, Bouten CVC (2012a) Polymer-based scaffold designs for in situ vascular tissue engineering: controlling recruitment and differentiation behavior of endothelial colony forming cells. Macromol Biosci 12.  https://doi.org/10.1002/mabi.201100315CrossRefGoogle Scholar
  45. Fioretta ES, Fledderus JO, Baaijens FPT, Bouten CVC (2012b) Influence of substrate stiffness on circulating progenitor cell fate. J Biomech 45.  https://doi.org/10.1016/j.jbiomech.2011.11.013CrossRefGoogle Scholar
  46. Fioretta ES, Simonet M, Smits AIPM, Baaijens FPT, Bouten CVC (2014) Differential response of endothelial and endothelial colony forming cells on electrospun scaffolds with distinct microfiber diameters. Biomacromolecules 15.  https://doi.org/10.1021/bm4016418CrossRefGoogle Scholar
  47. Freed LE, Vunjak-Novakovic G, Biron RJ, Eagles DB, Lesnoy DC, Barlow SK, Langer R (1994) Biodegradable polymer scaffolds for tissue engineering. Biotechnology (N Y) 12:689–693. http://www.ncbi.nlm.nih.gov/pubmed/7764913. Accessed 4 Sept 2018Google Scholar
  48. Fukunishi T, Best CA, Sugiura T, Shoji T, Yi T, Udelsman B, Ohst D, Ong CS, Zhang H, Shinoka T, Breuer CK, Johnson J, Hibino N (2016) Tissue-engineered small diameter arterial vascular grafts from cell-free nanofiber PCL/chitosan scaffolds in a sheep model. PLoS One 11.  https://doi.org/10.1371/journal.pone.0158555CrossRefGoogle Scholar
  49. Funamoto S, Nam K, Kimura T, Murakoshi A, Hashimoto Y, Niwaya K, Kitamura S, Fujisato T, Kishida A (2010) The use of high-hydrostatic pressure treatment to decellularize blood vessels. Biomaterials 31:3590–3595.  https://doi.org/10.1016/j.biomaterials.2010.01.073CrossRefGoogle Scholar
  50. Garg K, Pullen NA, Oskeritzian CA, Ryan JJ, Bowlin GL (2013) Macrophage functional polarization (M1/M2) in response to varying fiber and pore dimensions of electrospun scaffolds. Biomaterials 34:4439–4451.  https://doi.org/10.1016/j.biomaterials.2013.02.065CrossRefGoogle Scholar
  51. Giannico S, Hammad F, Amodeo A, Michielon G, Drago F, Turchetta A, Di Donato R, Sanders SP (2006) Clinical outcome of 193 extracardiac Fontan patients: the first 15 years. J Am Coll Cardiol 47:2065–2073.  https://doi.org/10.1016/j.jacc.2005.12.065.CrossRefGoogle Scholar
  52. Gilpin SE, Guyette JP, Gonzalez G, Ren X, Asara JM, Mathisen DJ, Vacanti JP, Ott HC (2014) Perfusion decellularization of human and porcine lungs: bringing the matrix to clinical scale. J Heart Lung Transplant 33:298–308.  https://doi.org/10.1016/j.healun.2013.10.030CrossRefGoogle Scholar
  53. Girton TS, Oegema TR, Grassl ED, Isenberg BC, Tranquillo RT (2000) Mechanisms of stiffening and strengthening in media-equivalents fabricated using glycation. J Biomech Eng 122:216–223. http://www.ncbi.nlm.nih.gov/pubmed/10923288. Accessed 4 Sept 2018CrossRefGoogle Scholar
  54. Gong Z, Niklason LE (2008) Small-diameter human vessel wall engineered from bone marrow-derived mesenchymal stem cells (hMSCs). FASEB J 22:1635–1648.  https://doi.org/10.1096/fj.07-087924CrossRefGoogle Scholar
  55. Gorschewsky O, Puetz A, Riechert K, Klakow A, Becker R (2005) Quantitative analysis of biochemical characteristics of bone-patellar tendon-bone allografts. Biomed Mater Eng 15:403–411. http://www.ncbi.nlm.nih.gov/pubmed/16308456. Accessed 3 Sept 2018Google Scholar
  56. Gui L, Chan SA, Breuer CK, Niklason LE (2010) Novel utilization of serum in tissue decellularization. Tissue Eng Part C Methods 16:173–184.  https://doi.org/10.1089/ten.TEC.2009.0120CrossRefGoogle Scholar
  57. Gui L, Dash BC, Luo J, Qin L, Zhao L, Yamamoto K, Hashimoto T, Wu H, Dardik A, Tellides G, Niklason LE, Qyang Y (2016) Implantable tissue-engineered blood vessels from human induced pluripotent stem cells. Biomaterials 102:120–129.  https://doi.org/10.1016/j.biomaterials.2016.06.010CrossRefGoogle Scholar
  58. Guyette JP, Charest JM, Mills RW, Jank BJ, Moser PT, Gilpin SE, Gershlak JR, Okamoto T, Gonzalez G, Milan DJ, Gaudette GR, Ott HC (2016) Bioengineering human myocardium on native extracellular matrixnovelty and significance. Circ Res 118:56–72.  https://doi.org/10.1161/CIRCRESAHA.115.306874CrossRefGoogle Scholar
  59. Haisch A, Loch A, David J, Pruss A, Hansen R, Sittinger M (2000) Preparation of a pure autologous biodegradable fibrin matrix for tissue engineering. Med Biol Eng Comput 38:686–689. http://www.ncbi.nlm.nih.gov/pubmed/11217888. Accessed 4 Sept 2018CrossRefGoogle Scholar
  60. Hansbrough JF, Mozingo DW, Kealey GP, Davis M, Gidner A, Gentzkow GD (n.d.) Clinical trials of a biosynthetic temporary skin replacement, Dermagraft-Transitional Covering, compared with cryopreserved human cadaver skin for temporary coverage of excised burn wounds. J Burn Care Rehabil 18:43–51. http://www.ncbi.nlm.nih.gov/pubmed/9063787. Accessed 30 Aug 2018CrossRefGoogle Scholar
  61. Harris LJ, Abdollahi H, Zhang P, McIlhenny S, Tulenko TN, DiMuzio PJ (2011) Differentiation of adult stem cells into smooth muscle for vascular tissue engineering. J Surg Res 168:306–314.  https://doi.org/10.1016/j.jss.2009.08.001CrossRefGoogle Scholar
  62. Harskamp RE, Lopes RD, Baisden CE, de Winter RJ, Alexander JH (2013) Saphenous vein graft failure after coronary artery bypass surgery. Ann Surg 257:824–833.  https://doi.org/10.1097/SLA.0b013e318288c38dCrossRefGoogle Scholar
  63. Hashimoto Y, Funamoto S, Sasaki S, Honda T, Hattori S, Nam K, Kimura T, Mochizuki M, Fujisato T, Kobayashi H, Kishida A (2010) Preparation and characterization of decellularized cornea using high-hydrostatic pressurization for corneal tissue engineering. Biomaterials 31:3941–3948.  https://doi.org/10.1016/j.biomaterials.2010.01.122CrossRefGoogle Scholar
  64. He W, Nieponice A, Soletti L, Hong Y, Gharaibeh B, Crisan M, Usas A, Peault B, Huard J, Wagner WR, Vorp DA (2010) Pericyte-based human tissue engineered vascular grafts. Biomaterials 31:8235–8244.  https://doi.org/10.1016/j.biomaterials.2010.07.034CrossRefGoogle Scholar
  65. Heydarkhan-Hagvall S, Schenke-Layland K, Yang JQ, Heydarkhan S, Xu Y, Zuk PA, MacLellan WR, Beygui RE (2008) Human adipose stem cells: a potential cell source for cardiovascular tissue engineering. Cells Tissues Organs 187:263–274.  https://doi.org/10.1159/000113407CrossRefGoogle Scholar
  66. Hibino N, McGillicuddy E, Matsumura G, Ichihara Y, Naito Y, Breuer C, Shinoka T (2010) Late-term results of tissue-engineered vascular grafts in humans. J Thorac Cardiovasc Surg 139:431–436.e2.  https://doi.org/10.1016/j.jtcvs.2009.09.057CrossRefGoogle Scholar
  67. Hibino N, Yi T, Duncan DR, Rathore A, Dean E, Naito Y, Dardik A, Kyriakides T, Madri J, Pober JS, Shinoka T, Breuer CK (2011) A critical role for macrophages in neovessel formation and the development of stenosis in tissue-engineered vascular grafts. FASEB J 25:4253–4263.  https://doi.org/10.1096/fj.11-186585CrossRefGoogle Scholar
  68. Hielscher D, Kaebisch C, Braun BJV, Gray K, Tobiasch E (2018) Stem cell sources and graft material for vascular tissue engineering. Stem Cell Rev Rep 14:642–667.  https://doi.org/10.1007/s12015-018-9825-xCrossRefGoogle Scholar
  69. Himmelfarb J, Ikizler TA (2010) Hemodialysis. N Engl J Med 363:1833–1845.  https://doi.org/10.1056/NEJMra0902710CrossRefGoogle Scholar
  70. Hoerstrup SP, Cummings Mrcs I, Lachat M, Schoen FJ, Jenni R, Leschka S, Neuenschwander S, Schmidt D, Mol A, Günter C, Gössi M, Genoni M, Zund G (2006) Functional growth in tissue-engineered living, vascular grafts: follow-up at 100 weeks in a large animal model. Circulation 114:I-159-I-166.  https://doi.org/10.1161/CIRCULATIONAHA.105.001172CrossRefGoogle Scholar
  71. Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4:518–524.  https://doi.org/10.1038/nmat1421CrossRefGoogle Scholar
  72. Homann M, Haehnel JC, Mendler N, Paek SU, Holper K, Meisner H, Lange R (2000) Reconstruction of the RVOT with valved biological conduits: 25 years experience with allografts and xenografts. Eur J Cardio-Thoracic Surg 17:624–630.  https://doi.org/10.1016/S1010-7940(00)00414-0CrossRefGoogle Scholar
  73. Hristov M, Erl W, Weber PC (2003) Endothelial progenitor cells: mobilization, differentiation, and homing. Arterioscler Thromb Vasc Biol 23:1185–1189.  https://doi.org/10.1161/01.ATV.0000073832.49290.B5CrossRefGoogle Scholar
  74. Hu J-J, Chao W-C, Lee P-Y, Huang C-H (2012) Construction and characterization of an electrospun tubular scaffold for small-diameter tissue-engineered vascular grafts: a scaffold membrane approach. J Mech Behav Biomed Mater 13:140–155.  https://doi.org/10.1016/j.jmbbm.2012.04.013CrossRefGoogle Scholar
  75. Hurt AV, Batello-Cruz M, Skipper BJ, Teaf SR, Sterling WA (1983) Bovine carotid artery heterografts versus polytetrafluoroethylene grafts. a prospective, randomized study. Am J Surg 146:844–847. http://www.ncbi.nlm.nih.gov/pubmed/6650773. Accessed 3 Sept 2018CrossRefGoogle Scholar
  76. Hvass U, Pansard Böhm YG, Depoix JP, Enguerrand D, Worms AM (1992) Bicaval pulmonary connection in tricuspid atresia using an extracardiac tube of autologous pediculated pericardium to bridge inferior vena cava. Eur J Cardio-Thoracic Surg 6:49–51.  https://doi.org/10.1016/1010-7940(92)90099-JCrossRefGoogle Scholar
  77. Iwai S, Sawa Y, Ichikawa H, Taketani S, Uchimura E, Chen G, Hara M, Miyake J, Matsuda H (2004) Biodegradable polymer with collagen microsponge serves as a new bioengineered cardiovascular prosthesis. J Thorac Cardiovasc Surg 128:472–479.  https://doi.org/10.1016/j.jtcvs.2004.04.013CrossRefGoogle Scholar
  78. Iwai S, Sawa Y, Taketani S, Torikai K, Hirakawa K, Matsuda H (2005) Novel tissue-engineered biodegradable material for reconstruction of vascular wall. Ann Thorac Surg 80:1821–1827.  https://doi.org/10.1016/j.athoracsur.2005.03.139CrossRefGoogle Scholar
  79. Iwasaki K, Kojima K, Kodama S, Paz AC, Chambers M, Umezu M, Vacanti CA (2008) Bioengineered three-layered robust and elastic artery using hemodynamically-equivalent pulsatile bioreactor. Circulation 118:S52–S57.  https://doi.org/10.1161/CIRCULATIONAHA.107.757369CrossRefGoogle Scholar
  80. Jantzen AE, Lane WO, Gage SM, Haseltine JM, Galinat LJ, Jamiolkowski RM, Lin F-H, Truskey GA, Achneck HE (2011) Autologous endothelial progenitor cell-seeding technology and biocompatibility testing for cardiovascular devices in large animal model. J Vis Exp.  https://doi.org/10.3791/3197
  81. Jockenhoevel S, Zund G, Hoerstrup SP, Chalabi K, Sachweh JS, Demircan L, Messmer BJ, Turina M (2001) Fibrin gel – advantages of a new scaffold in cardiovascular tissue engineering. Eur J Cardiothorac Surg 19:424–430. http://www.ncbi.nlm.nih.gov/pubmed/11306307. Accessed 4 Sept 2018CrossRefGoogle Scholar
  82. Jokinen E (2015) Obesity and cardiovascular disease. Minerva Pediatr 67:25–32. http://www.ncbi.nlm.nih.gov/pubmed/25387321. Accessed 30 Aug 2018Google Scholar
  83. Jones SG, Hu Y, Xu Q, Jahangiri M (2014) Stem cells accumulate on a decellularized arterial xenograft in vivo. Ann Thorac Surg 97:2104–2110.  https://doi.org/10.1016/j.athoracsur.2014.02.023CrossRefGoogle Scholar
  84. Kakisis JD, Liapis CD, Breuer C, Sumpio BE (2005) Artificial blood vessel: the Holy Grail of peripheral vascular surgery. J Vasc Surg 41:349–354.  https://doi.org/10.1016/j.jvs.2004.12.026CrossRefGoogle Scholar
  85. Kao WJ, Lee D (2001) In vivo modulation of host response and macrophage behavior by polymer networks grafted with fibronectin-derived biomimetic oligopeptides: the role of RGD and PHSRN domains. Biomaterials 22:2901–2909. http://www.ncbi.nlm.nih.gov/pubmed/11561896. Accessed 27 Aug 2018CrossRefGoogle Scholar
  86. Katzman HE, Glickman MH, Schild AF, Fujitani RM, Lawson JH (2005) Multicenter evaluation of the bovine mesenteric vein bioprostheses for hemodialysis access in patients with an earlier failed prosthetic graft. J Am Coll Surg 201:223–230.  https://doi.org/10.1016/j.jamcollsurg.2005.03.040CrossRefGoogle Scholar
  87. Kaushal S, Amiel GE, Guleserian KJ, Shapira OM, Perry T, Sutherland FW, Rabkin E, Moran AM, Schoen FJ, Atala A, Soker S, Bischoff J, Mayer JE (2001) Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat Med 7:1035–1040.  https://doi.org/10.1038/nm0901-1035CrossRefGoogle Scholar
  88. Kelm JM, Emmert MY, Zürcher A, Schmidt D, Begus Nahrmann Y, Rudolph KL, Weber B, Brokopp CE, Frauenfelder T, Leschka S, Odermatt B, Jenni R, Falk V, Zünd G, Hoerstrup SP (2012) Functionality, growth and accelerated aging of tissue engineered living autologous vascular grafts. Biomaterials 33:8277–8285.  https://doi.org/10.1016/j.biomaterials.2012.07.049CrossRefGoogle Scholar
  89. Klinkert P, Post P, Breslau P, van Bockel J (2004) Saphenous vein versus PTFE for above-knee femoropopliteal bypass. A review of the literature. Eur J Vasc Endovasc Surg 27:357–362.  https://doi.org/10.1016/j.ejvs.2003.12.027CrossRefGoogle Scholar
  90. Kluin J, Talacua H, Smits AIPM, Emmert MY, Brugmans MCP, Fioretta ES, Dijkman PE, Söntjens SHM, Duijvelshoff R, Dekker S, Janssen-van den Broek MWJT, Lintas V, Vink A, Hoerstrup SP, Janssen HM, Dankers PYW, Baaijens FPT, Bouten CVC (2017) In situ heart valve tissue engineering using a bioresorbable elastomeric implant – from material design to 12 months follow-up in sheep. Biomaterials 125.  https://doi.org/10.1016/j.biomaterials.2017.02.007CrossRefGoogle Scholar
  91. Kohlová M, Amorim CG, Araújo A, Santos-Silva A, Solich P, Montenegro MCBSM (2018) The biocompatibility and bioactivity of hemodialysis membranes: their impact in end-stage renal disease. J Artif Organs.  https://doi.org/10.1007/s10047-018-1059-9CrossRefGoogle Scholar
  92. Koobatian MT, Row S, Smith RJ, Koenigsknecht C, Andreadis ST, Swartz DD (2016) Successful endothelialization and remodeling of a cell-free small-diameter arterial graft in a large animal model. Biomaterials 76:344–358.  https://doi.org/10.1016/j.biomaterials.2015.10.020CrossRefGoogle Scholar
  93. Kovalic AJ, Beattie DK, Davies AH (2002) Outcome of ProCol, a bovine mesenteric vein graft, in infrainguinal reconstruction. Eur J Vasc Endovasc Surg 24:533–534. http://www.ncbi.nlm.nih.gov/pubmed/12443750. Accessed 3 Sept 2018CrossRefGoogle Scholar
  94. L’Heureux N, McAllister TN, de la Fuente LM (2007) Tissue-engineered blood vessel for adult arterial revascularization. N Engl J Med 357:1451–1453.  https://doi.org/10.1056/NEJMc071536CrossRefGoogle Scholar
  95. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926.  https://doi.org/10.1126/science.8493529. (80-.)CrossRefGoogle Scholar
  96. Lawson JH, Glickman MH, Ilzecki M, Jakimowicz T, Jaroszynski A, Peden EK, Pilgrim AJ, Prichard HL, Guziewicz M, Przywara S, Szmidt J, Turek J, Witkiewicz W, Zapotoczny N, Zubilewicz T, Niklason LE (2016) Bioengineered human acellular vessels for dialysis access in patients with end-stage renal disease: two phase 2 single-arm trials. Lancet 387:2026–2034.  https://doi.org/10.1016/S0140-6736(16)00557-2CrossRefGoogle Scholar
  97. Lee RC (2005) Cell injury by electric forces. Ann N Y Acad Sci 1066:85–91.  https://doi.org/10.1196/annals.1363.007CrossRefGoogle Scholar
  98. Lee RC, Kolodney MS (1987) Electrical injury mechanisms: electrical breakdown of cell membranes. Plast Reconstr Surg 80:672–679. http://www.ncbi.nlm.nih.gov/pubmed/3671558. Accessed 3 Sept 2018CrossRefGoogle Scholar
  99. Li L, Terry CM, Shiu Y-TE, Cheung AK (2008) Neointimal hyperplasia associated with synthetic hemodialysis grafts. Kidney Int 74:1247–1261.  https://doi.org/10.1038/ki.2008.318CrossRefGoogle Scholar
  100. LifeMatrix: Tissue-engineered human matrices to repair and regenerate the heart (n.d.). http://www.wysszurich.uzh.ch/projects/wyss-zurich-projects/lifematrix/
  101. Lintas V, Fioretta ES, Motta SE, Dijkman PE, Pensalfini M, Mazza E, Caliskan E, Rodriguez H, Lipiski M, Sauer M, Cesarovic N, Hoerstrup SP, Emmert MY (2018) Development of a novel human cell-derived tissue-engineered heart valve for transcatheter aortic valve replacement: an in vitro and in vivo feasibility study. J Cardiovasc Transl Res.  https://doi.org/10.1007/s12265-018-9821-1CrossRefGoogle Scholar
  102. Liu J, Swartz D, Peng H, Gugino S, Russell J, Andreadis S (2007) Functional tissue-engineered blood vessels from bone marrow progenitor cells. Cardiovasc Res 75:618–628.  https://doi.org/10.1016/j.cardiores.2007.04.018CrossRefGoogle Scholar
  103. Lovett M, Eng G, Kluge JA, Cannizzaro C, Vunjak-Novakovic G, Kaplan DL (2010) Tubular silk scaffolds for small diameter vascular grafts. Organogenesis 6:217–224.  https://doi.org/10.4161/org.6.4.13407CrossRefGoogle Scholar
  104. Lynn AD, Kyriakides TR, Bryant SJ (2009) Characterization of the in vitro macrophage response and in vivo host response to poly(ethylene glycol)-based hydrogels. J Biomed Mater Res Part A 9999A:NA–NA.  https://doi.org/10.1002/jbm.a.32595Google Scholar
  105. Madden RL, Lipkowitz GS, Browne BJ, Kurbanov A (2004) Experience with cryopreserved cadaveric femoral vein allografts used for hemodialysis access. Ann Vasc Surg 18:453–458.  https://doi.org/10.1007/s10016-004-0055-0CrossRefGoogle Scholar
  106. Manson RJ, Unger JM, Ali A, Gage SM, Lawson JH (2012) Tissue-engineered vascular grafts: autologous off-the-shelf vascular access? Semin Nephrol 32:582–591.  https://doi.org/10.1016/j.semnephrol.2012.10.010CrossRefGoogle Scholar
  107. Matsumura G, Miyagawa-Tomita S, Shin’oka T, Ikada Y, Kurosawa H (2003) First evidence that bone marrow cells contribute to the construction of tissue-engineered vascular autografts in vivo. Circulation 108:1729–1734.  https://doi.org/10.1161/01.CIR.0000092165.32213.61CrossRefGoogle Scholar
  108. Matsumura G, Isayama N, Matsuda S, Taki K, Sakamoto Y, Ikada Y, Yamazaki K (2013) Long-term results of cell-free biodegradable scaffolds for in situ tissue engineering of pulmonary artery in a canine model. Biomaterials 34:6422–6428.  https://doi.org/10.1016/j.biomaterials.2013.05.037CrossRefGoogle Scholar
  109. McAllister TN, Maruszewski M, Garrido SA, Wystrychowski W, Dusserre N, Marini A, Zagalski K, Fiorillo A, Avila H, Manglano X, Antonelli J, Kocher A, Zembala M, Cierpka L, de la Fuente LM, L’heureux N (2009) Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study. Lancet (London, England) 373:1440–1446.  https://doi.org/10.1016/S0140-6736(09)60248-8CrossRefGoogle Scholar
  110. Meezan E, Hjelle JT, Brendel K, Carlson EC (1975) A simple, versatile, nondisruptive method for the isolation of morphologically and chemically pure basement membranes from several tissues. Life Sci 17:1721–1732. http://www.ncbi.nlm.nih.gov/pubmed/1207385. Accessed 3 Sept 2018CrossRefGoogle Scholar
  111. Milleret V, Hefti T, Hall H, Vogel V, Eberli D (2012) Influence of the fiber diameter and surface roughness of electrospun vascular grafts on blood activation. Acta Biomater 8:4349–4356.  https://doi.org/10.1016/j.actbio.2012.07.032CrossRefGoogle Scholar
  112. Mol A, Smits AIPM, Bouten CVC, Baaijens FPT (2009) Tissue engineering of heart valves: advances and current challenges. Expert Rev Med Devices 6:259–275.  https://doi.org/10.1586/erd.09.12CrossRefGoogle Scholar
  113. Moran AE, Forouzanfar MH, Roth GA, Mensah GA, Ezzati M, Flaxman A, Murray CJL, Naghavi M (2014) The Global Burden of ischemic heart disease in 1990 and 2010: the Global Burden of Disease 2010 Study. Circulation 129:1493–1501.  https://doi.org/10.1161/CIRCULATIONAHA.113.004046CrossRefGoogle Scholar
  114. Motta SE, Fioretta ES, Dijkman PE, Lintas V, Behr L, Hoerstrup SP, Emmert MY (2018) Development of an off-the-shelf tissue-engineered sinus valve for transcatheter pulmonary valve replacement: a proof-of-concept study. J Cardiovasc Transl Res 11:182–191.  https://doi.org/10.1007/s12265-018-9800-6CrossRefGoogle Scholar
  115. Muschler GF, Nakamoto C, Griffith LG (2004) Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg Am 86–A:1541–1558. http://www.ncbi.nlm.nih.gov/pubmed/15252108. Accessed 4 Sept 2018CrossRefGoogle Scholar
  116. Muylaert DEP, van Almen GC, Talacua H, Fledderus JO, Kluin J, Hendrikse SIS, van Dongen JLJ, Sijbesma E, Bosman AW, Mes T, Thakkar SH, Smits AIPM, Bouten CVC, Dankers PYW, Verhaar MC (2016) Early in-situ cellularization of a supramolecular vascular graft is modified by synthetic stromal cell-derived factor-1α derived peptides. Biomaterials 76:187–195.  https://doi.org/10.1016/j.biomaterials.2015.10.052CrossRefGoogle Scholar
  117. Naito Y, Imai Y, Shin’oka T, Kashiwagi J, Aoki M, Watanabe M, Matsumura G, Kosaka Y, Konuma T, Hibino N, Murata A, Miyake T, Kurosawa H (2003) Successful clinical application of tissue-engineered graft for extracardiac Fontan operation. J Thorac Cardiovasc Surg 125:419–420.  https://doi.org/10.1067/mtc.2003.134CrossRefGoogle Scholar
  118. Naito Y, Shinoka T, Duncan D, Hibino N, Solomon D, Cleary M, Rathore A, Fein C, Church S, Breuer C (2011) Vascular tissue engineering: towards the next generation vascular grafts. Adv Drug Deliv Rev 63:312–323.  https://doi.org/10.1016/j.addr.2011.03.001CrossRefGoogle Scholar
  119. Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, Langer R (1999) Functional arteries grown in vitro. Science 284:489–493. http://www.ncbi.nlm.nih.gov/pubmed/10205057. Accessed 30 Aug 2018CrossRefGoogle Scholar
  120. Nocon M, Hiemann T, Müller-Riemenschneider F, Thalau F, Roll S, Willich SN (2008) Association of physical activity with all-cause and cardiovascular mortality: a systematic review and meta-analysis. Eur J Cardiovasc Prev Rehabil 15:239–246.  https://doi.org/10.1097/HJR.0b013e3282f55e09CrossRefGoogle Scholar
  121. Noishiki Y, Tomizawa Y, Yamane Y, Matsumoto A (1996) Autocrine angiogenic vascular prosthesis with bone marrow transplantation. Nat Med 2:90–93. http://www.ncbi.nlm.nih.gov/pubmed/8564850. Accessed 30 Aug 2018CrossRefGoogle Scholar
  122. O’Neill JD, Anfang R, Anandappa A, Costa J, Javidfar J, Wobma HM, Singh G, Freytes DO, Bacchetta MD, Sonett JR, Vunjak-Novakovic G (2013) Decellularization of human and porcine lung tissues for pulmonary tissue engineering. Ann Thorac Surg 96:1046–1056.  https://doi.org/10.1016/j.athoracsur.2013.04.022CrossRefGoogle Scholar
  123. Olausson M, Patil PB, Kuna VK, Chougule P, Hernandez N, Methe K, Kullberg-Lindh C, Borg H, Ejnell H, Sumitran-Holgersson S (2012) Transplantation of an allogeneic vein bioengineered with autologous stem cells: a proof-of-concept study. Lancet (London, England) 380:230–237.  https://doi.org/10.1016/S0140-6736(12)60633-3CrossRefGoogle Scholar
  124. Partington L, Mordan NJ, Mason C, Knowles JC, Kim H-W, Lowdell MW, Birchall MA, Wall IB (2013) Biochemical changes caused by decellularization may compromise mechanical integrity of tracheal scaffolds. Acta Biomater 9:5251–5261.  https://doi.org/10.1016/j.actbio.2012.10.004CrossRefGoogle Scholar
  125. Pashneh-Tala S, MacNeil S, Claeyssens F (2015) The tissue-engineered vascular graft-past, present, and future. Tissue Eng Part B Rev 22:68.  https://doi.org/10.1089/ten.teb.2015.0100CrossRefGoogle Scholar
  126. Patterson JT, Gilliland T, Maxfield MW, Church S, Naito Y, Shinoka T, Breuer CK (2012) Tissue-engineered vascular grafts for use in the treatment of congenital heart disease: from the bench to the clinic and back again. Regen Med 7:409–419.  https://doi.org/10.2217/rme.12.12CrossRefGoogle Scholar
  127. Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz C, Hicklin DJ, Witte L, Moore MAS, Rafii S, Oz MC (2009) Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Hematology:952–958Google Scholar
  128. Portalska KJ, Leferink A, Groen N, Fernandes H, Moroni L, Van Blitterswijk C, De Boer J (n.d.) Endothelial differentiation of mesenchymal stromal cells.  https://doi.org/10.1371/journal.pone.0046842.CrossRefGoogle Scholar
  129. Reimer J, Syedain Z, Haynie B, Lahti M, Berry J, Tranquillo R (2017) Implantation of a tissue-engineered tubular heart valve in growing lambs. Ann Biomed Eng 45:439–451.  https://doi.org/10.1007/s10439-016-1605-7CrossRefGoogle Scholar
  130. Rieder E, Kasimir M-T, Silberhumer G, Seebacher G, Wolner E, Simon P, Weigel G (2004) Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J Thorac Cardiovasc Surg 127:399–405.  https://doi.org/10.1016/j.jtcvs.2003.06.017CrossRefGoogle Scholar
  131. Roeder RA, Lantz GC, Geddes LA (n.d.) Mechanical remodeling of small-intestine submucosa small-diameter vascular grafts – a preliminary report. Biomed Instrum Technol 35:110–120. http://www.ncbi.nlm.nih.gov/pubmed/11383308. Accessed 3 Sept 2018
  132. Roh JD, Sawh-Martinez R, Brennan MP, Jay SM, Devine L, Rao DA, Yi T, Mirensky TL, Nalbandian A, Udelsman B, Hibino N, Shinoka T, Saltzman WM, Snyder E, Kyriakides TR, Pober JS, Breuer CK (2010) Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proc Natl Acad Sci U S A 107:4669–4674.  https://doi.org/10.1073/pnas.0911465107CrossRefGoogle Scholar
  133. Romanov YA, Svintsitskaya VA, Smirnov VN (2003) Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 21:105–110.  https://doi.org/10.1634/stemcells.21-1-105.CrossRefGoogle Scholar
  134. Rotmans JI, Heyligers JMM, Verhagen HJM, Velema E, Nagtegaal MM, de Kleijn DPV, de Groot FG, Stroes ESG, Pasterkamp G (2005) In vivo cell seeding with anti-CD34 antibodies successfully accelerates endothelialization but stimulates intimal hyperplasia in porcine arteriovenous expanded polytetrafluoroethylene grafts. Circulation 112:12–18.  https://doi.org/10.1161/CIRCULATIONAHA.104.504407CrossRefGoogle Scholar
  135. Row S, Peng H, Schlaich EM, Koenigsknecht C, Andreadis ST, Swartz DD (2015) Arterial grafts exhibiting unprecedented cellular infiltration and remodeling in vivo: the role of cells in the vascular wall. Biomaterials 50:115–126.  https://doi.org/10.1016/j.biomaterials.2015.01.045CrossRefGoogle Scholar
  136. Roy-Chaudhury P, El-Khatib M, Campos-Naciff B, Wadehra D, Ramani K, Leesar M, Mistry M, Wang Y, Chan JS, Lee T, Munda R (2012) Back to the future: how biology and technology could change the role of ptfe grafts in vascular access management. Semin Dial 25:495–504.  https://doi.org/10.1111/j.1525-139X.2012.01091.xCrossRefGoogle Scholar
  137. Sales VL, Engelmayr GC, Mettler BA, Johnson JA, Sacks MS, Mayer JE (2006) Transforming growth factor-beta1 modulates extracellular matrix production, proliferation, and apoptosis of endothelial progenitor cells in tissue-engineering scaffolds. Circulation 114:I193–I199.  https://doi.org/10.1161/CIRCULATIONAHA.105.001628CrossRefGoogle Scholar
  138. Samánek M (1992) Children with congenital heart disease: probability of natural survival. Pediatr Cardiol 13:152–158.  https://doi.org/10.1007/BF00793947.CrossRefGoogle Scholar
  139. Sanders B, Loerakker S, Fioretta ESES, Bax DJP, Driessen-Mol A, Hoerstrup SPSP, Baaijens FPTFPT (2016) Improved geometry of decellularized tissue engineered heart valves to prevent leaflet retraction. Ann Biomed Eng 44:1061–1071.  https://doi.org/10.1007/s10439-015-1386-4CrossRefGoogle Scholar
  140. Sandusky GE, Lantz GC, Badylak SF (1995) Healing comparison of small intestine submucosa and ePTFE grafts in the canine carotid artery. J Surg Res 58:415–420.  https://doi.org/10.1006/jsre.1995.1064CrossRefGoogle Scholar
  141. Schaner PJ, Martin ND, Tulenko TN, Shapiro IM, Tarola NA, Leichter RF, Carabasi RA, DiMuzio PJ (2004) Decellularized vein as a potential scaffold for vascular tissue engineering. J Vasc Surg 40:146–153.  https://doi.org/10.1016/j.jvs.2004.03.033CrossRefGoogle Scholar
  142. Seliktar D, Black RA, Vito RP, Nerem RM (2000) Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro. Ann Biomed Eng 28:351–362. http://www.ncbi.nlm.nih.gov/pubmed/10870892. Accessed 4 Sept 2018CrossRefGoogle Scholar
  143. Shafiq M, Jung Y, Kim SH (2015a) Stem cell recruitment, angiogenesis, and tissue regeneration in substance P-conjugated poly(l -lactide- co -ɛ-caprolactone) nonwoven meshes. J Biomed Mater Res Part A 103:2673–2688.  https://doi.org/10.1002/jbm.a.35400CrossRefGoogle Scholar
  144. Shafiq M, Jung Y, Kim SH (2015b) In situ vascular regeneration using substance P-immobilised poly(L-lactide-co-ε-caprolactone) scaffolds: stem cell recruitment, angiogenesis, and tissue regeneration. Eur Cell Mater 30:282–302. http://www.ncbi.nlm.nih.gov/pubmed/26614483. Accessed 23 Aug 2018CrossRefGoogle Scholar
  145. Sharifpoor S, Simmons CA, Labow RS, Paul Santerre J (2011) Functional characterization of human coronary artery smooth muscle cells under cyclic mechanical strain in a degradable polyurethane scaffold. Biomaterials 32:4816–4829.  https://doi.org/10.1016/j.biomaterials.2011.03.034CrossRefGoogle Scholar
  146. Shin’oka T, Imai Y, Ikada Y (2001) Transplantation of a tissue-engineered pulmonary artery. N Engl J Med 344:532–533.  https://doi.org/10.1056/NEJM200102153440717CrossRefGoogle Scholar
  147. Shin’oka T, Matsumura G, Hibino N, Naito Y, Watanabe M, Konuma T, Sakamoto T, Nagatsu M, Kurosawa H (2005) Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J Thorac Cardiovasc Surg 129.  https://doi.org/10.1016/j.jtcvs.2004.12.047CrossRefGoogle Scholar
  148. Shinoka T, Breuer C (2008) Tissue-engineered blood vessels in pediatric cardiac surgery. Yale J Biol Med 81:161–166. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2605305&tool=pmcentrez&rendertype=abstractGoogle Scholar
  149. Siow KS, Britcher L, Kumar S, Griesser HJ (2006) Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization – a review. Plasma Process Polym 3:392–418.  https://doi.org/10.1002/ppap.200600021CrossRefGoogle Scholar
  150. Smits AIPM, Ballotta V, Driessen-Mol A, Bouten CVC, Baaijens FPT (2014) Shear flow affects selective monocyte recruitment into MCP-1-loaded scaffolds. J Cell Mol Med 18:2176–2188.  https://doi.org/10.1111/jcmm.12330CrossRefGoogle Scholar
  151. Sofi F, Abbate R, Gensini GF, Casini A (2010) Accruing evidence on benefits of adherence to the Mediterranean diet on health: an updated systematic review and meta-analysis. Am J Clin Nutr 92:1189–1196.  https://doi.org/10.3945/ajcn.2010.29673CrossRefGoogle Scholar
  152. Sparks C (1969) Autogenous grafts made to order. Ann Thorac Surg 8:104–113CrossRefGoogle Scholar
  153. Sugiura T, Tara S, Nakayama H, Yi T, Lee YU, Shoji T, Breuer CK, Shinoka T (2017) Fast-degrading bioresorbable arterial vascular graft with high cellular infiltration inhibits calcification of the graft. J Vasc Surg 66:243–250.  https://doi.org/10.1016/j.jvs.2016.05.096CrossRefGoogle Scholar
  154. Sullivan DC, Mirmalek-Sani S-H, Deegan DB, Baptista PM, Aboushwareb T, Atala A, Yoo JJ (2012) Decellularization methods of porcine kidneys for whole organ engineering using a high-throughput system. Biomaterials 33:7756–7764.  https://doi.org/10.1016/j.biomaterials.2012.07.023CrossRefGoogle Scholar
  155. Sundaram S, One J, Siewert J, Teodosescu S, Zhao L, Dimitrievska S, Qian H, Huang AH, Niklason L (2014) Tissue-engineered vascular grafts created from human induced pluripotent stem cells. Stem Cells Transl Med 3:1535–1543.  https://doi.org/10.5966/sctm.2014-0065CrossRefGoogle Scholar
  156. Swartz DD, Russell JA, Andreadis ST (2005) Engineering of fibrin-based functional and implantable small-diameter blood vessels. Am J Physiol Circ Physiol 288:H1451–H1460.  https://doi.org/10.1152/ajpheart.00479.2004CrossRefGoogle Scholar
  157. Syed O, Walters NJ, Day RM, Kim H-W, Knowles JC (2014) Evaluation of decellularization protocols for production of tubular small intestine submucosa scaffolds for use in oesophageal tissue engineering. Acta Biomater 10:5043–5054.  https://doi.org/10.1016/j.actbio.2014.08.024CrossRefGoogle Scholar
  158. Syedain ZH, Meier LA, Lahti MT, Johnson SL, Tranquillo RT (2014) Implantation of completely biological engineered grafts following decellularization into the sheep femoral artery. Tissue Eng Part A 20:1726–1734.  https://doi.org/10.1089/ten.TEA.2013.0550CrossRefGoogle Scholar
  159. Syedain Z, Reimer J, Schmidt J, Lahti M, Berry J, Bianco R, Tranquillo RT (2015) 6-month aortic valve implantation of an off-the-shelf tissue-engineered valve in sheep. Biomaterials 73:175–184.  https://doi.org/10.1016/j.biomaterials.2015.09.016CrossRefGoogle Scholar
  160. Syedain Z, Reimer J, Lahti M, Berry J, Johnson S, Tranquillo RT (2016) Tissue engineering of acellular vascular grafts capable of somatic growth in young lambs. Nat Commun 7:1–9.  https://doi.org/10.1038/ncomms12951.CrossRefGoogle Scholar
  161. Syedain ZH, Graham ML, Dunn TB, O’Brien T, Johnson SL, Schumacher RJ, Tranquillo RT (2017) A completely biological “off-the-shelf” arteriovenous graft that recellularizes in baboons. Sci Transl Med 9:eaan4209.  https://doi.org/10.1126/scitranslmed.aan4209CrossRefGoogle Scholar
  162. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676.  https://doi.org/10.1016/j.cell.2006.07.024CrossRefGoogle Scholar
  163. Talacua H, Smits AIP, Muylaert DEP, van Rijswijk JW, Vink A, Verhaar MC, Driessen-Mol A, van Herwerden LA, Bouten CVC, Kluin J, Baaijens FPT (2015) In Situ tissue engineering of functional small-diameter blood vessels by host circulating cells only. Tissue Eng Part A 21:2583–2594.  https://doi.org/10.1089/ten.tea.2015.0066CrossRefGoogle Scholar
  164. Tamariz E, Grinnell F (2002) Modulation of fibroblast morphology and adhesion during collagen matrix remodeling. Mol Biol Cell 13:3915–3929.  https://doi.org/10.1091/mbc.e02-05-0291CrossRefGoogle Scholar
  165. Tara S, Kurobe H, Rocco KA, Maxfield MW, Best CA, Yi T, Naito Y, Breuer CK, Shinoka T (2014) Well-organized neointima of large-pore poly(l-lactic acid) vascular graft coated with poly(l-lactic-co-ε-caprolactone) prevents calcific deposition compared to small-pore electrospun poly(l-lactic acid) graft in a mouse aortic implantation model. Atherosclerosis 237:684–691.  https://doi.org/10.1016/j.atherosclerosis.2014.09.030CrossRefGoogle Scholar
  166. Tara S, Kurobe H, Maxfield MW, Rocco KA, Yi T, Naito Y, Breuer CK, Shinoka T (2015) Evaluation of remodeling process in small-diameter cell-free tissue-engineered arterial graft. J Vasc Surg 62:734–743.  https://doi.org/10.1016/j.jvs.2014.03.011CrossRefGoogle Scholar
  167. Tasev D, Koolwijk P, van Hinsbergh VWM (2016) Therapeutic potential of human-derived endothelial colony-forming cells in animal models. Tissue Eng Part B Rev 22:371–382.  https://doi.org/10.1089/ten.teb.2016.0050CrossRefGoogle Scholar
  168. Tillman BW, Yazdani SK, Neff LP, Corriere MA, Christ GJ, Soker S, Atala A, Geary RL, Yoo JJ (2012) Bioengineered vascular access maintains structural integrity in response to arteriovenous flow and repeated needle puncture. J Vasc Surg 56:783–793.  https://doi.org/10.1016/j.jvs.2012.02.030CrossRefGoogle Scholar
  169. Tomizawa Y (1995) Vascular prostheses for aortocoronary bypass grafting: a review. Artif Organs 19:39–45. http://www.ncbi.nlm.nih.gov/pubmed/7741637. Accessed 30 Aug 2018CrossRefGoogle Scholar
  170. Torikai K, Ichikawa H, Hirakawa K, Matsumiya G, Kuratani T, Iwai S, Saito A, Kawaguchi N, Matsuura N, Sawa Y (2008) A self-renewing, tissue-engineered vascular graft for arterial reconstruction. J Thorac Cardiovasc Surg 136:37–45.e1.  https://doi.org/10.1016/j.jtcvs.2007.06.039CrossRefGoogle Scholar
  171. Tsai T-N, Kirton JP, Campagnolo P, Zhang L, Xiao Q, Zhang Z, Wang W, Hu Y, Xu Q (2012) Contribution of stem cells to neointimal formation of decellularized vessel grafts in a novel mouse model. Am J Pathol 181:362–373.  https://doi.org/10.1016/j.ajpath.2012.03.021CrossRefGoogle Scholar
  172. Tseng YC, Roan JN, Ho YC, Lin CC, Yeh ML (2017) An in vivo study on endothelialized vascular grafts produced by autologous biotubes and adipose stem cells (ADSCs). J Mater Sci Mater Med 28:166.  https://doi.org/10.1007/s10856-017-5986-4CrossRefGoogle Scholar
  173. Udelsman BV, Maxfield MW, Breuer CK (2013) Tissue engineering of blood vessels in cardiovascular disease: moving towards clinical translation. Heart 99:454–460.  https://doi.org/10.1136/heartjnl-2012-302984CrossRefGoogle Scholar
  174. Vachharajani TJ, Agarwal AK, Asif A (2018) Vascular access of last resort. Kidney Int 93:797–802.  https://doi.org/10.1016/j.kint.2017.10.030CrossRefGoogle Scholar
  175. Valencia Rivero KT, Jaramillo Escobar J, Galvis Forero SD, Miranda Saldaña MC, Panqueva R del PL, Sandoval Reyes NF, Briceño Triana JC (2018) New regenerative vascular grafts for hemodialysis access: evaluation of a preclinical animal model. J Investig Surg 31:192–200.  https://doi.org/10.1080/08941939.2017.1303100CrossRefGoogle Scholar
  176. Van Camp G (2014) Cardiovascular disease prevention. Acta Clin Belg 69:407–411.  https://doi.org/10.1179/2295333714Y.0000000069CrossRefGoogle Scholar
  177. van Loon S, Smits A, Driessen-Mol A, Baaijens FPT, Bouten CVC (2013) The immune response in in situ tissue engineering of aortic heart valves. In E. Aikawa (ed.), Calcific aortic valve disease, pp 207–239. InTech. London, UK.  https://doi.org/10.5772/54354Google Scholar
  178. van Son JA, Reddy M, Hanley FL (1995) Extracardiac modification of the Fontan operation without use of prosthetic material. J Thorac Cardiovasc Surg 110:1766–1768. http://www.ncbi.nlm.nih.gov/pubmed/8523891. Accessed 30 Aug 2018CrossRefGoogle Scholar
  179. van Steenberghe M, Schubert T, Guiot Y, Bouzin C, Bollen X, Gianello P (2017) Enhanced vascular biocompatibility of decellularized xeno−/allogeneic matrices in a rodent model. Cell Tissue Bank 18:249–262.  https://doi.org/10.1007/s10561-017-9610-0CrossRefGoogle Scholar
  180. van Steenberghe M, Schubert T, Xhema D, Bouzin C, Guiot Y, Duisit J, Abdelhamid K, Gianello P (2018a) Enhanced vascular regeneration with chemically/physically treated bovine/human pericardium in rodents. J Surg Res 222:167–179.  https://doi.org/10.1016/j.jss.2017.09.043CrossRefGoogle Scholar
  181. van Steenberghe M, Schubert T, Bouzin C, Caravaggio C, Guiot Y, Xhema D, Gianello P (2018b) Enhanced vascular biocompatibility and remodeling of decellularized and secured xenogeneic/allogeneic matrices in a porcine model. Eur Surg Res 59:58–71.  https://doi.org/10.1159/000487591CrossRefGoogle Scholar
  182. Vartanian K (2009) Distinct extracellular matrix microenvironments of progenitor and carotid endothelial cells. J Res Biomed Mater Part A 91A:528–539CrossRefGoogle Scholar
  183. Wagner DE, Bonenfant NR, Parsons CS, Sokocevic D, Brooks EM, Borg ZD, Lathrop MJ, Wallis JD, Daly AB, Lam YW, Deng B, DeSarno MJ, Ashikaga T, Loi R, Weiss DJ (2014) Comparative decellularization and recellularization of normal versus emphysematous human lungs. Biomaterials 35:3281–3297.  https://doi.org/10.1016/j.biomaterials.2013.12.103CrossRefGoogle Scholar
  184. Wang Y, Hu J, Jiao J, Liu Z, Zhou Z, Zhao C, Chang L-J, Chen YE, Ma PX, Yang B (2014a) Engineering vascular tissue with functional smooth muscle cells derived from human iPS cells and nanofibrous scaffolds. Biomaterials 35:8960–8969.  https://doi.org/10.1016/j.biomaterials.2014.07.011CrossRefGoogle Scholar
  185. Wang Z, Cui Y, Wang J, Yang X, Wu Y, Wang K, Gao X, Li D, Li Y, Zheng X-L, Zhu Y, Kong D, Zhao Q (2014b) The effect of thick fibers and large pores of electrospun poly(ε-caprolactone) vascular grafts on macrophage polarization and arterial regeneration. Biomaterials 35:5700–5710.  https://doi.org/10.1016/j.biomaterials.2014.03.078CrossRefGoogle Scholar
  186. Wang K, Zheng W, Pan Y, Ma S, Guan Y, Liu R, Zhu M, Zhou X, Zhang J, Zhao Q, Zhu Y, Wang L, Kong D (2016) Three-layered PCL grafts promoted vascular regeneration in a rabbit carotid artery model. Macromol Biosci 16:608–918.  https://doi.org/10.1002/mabi.201500355CrossRefGoogle Scholar
  187. Wanjare M, Kusuma S, Gerecht S (2013) Perivascular cells in blood vessel regeneration. Biotechnol J 8:434–447.  https://doi.org/10.1002/biot.201200199CrossRefGoogle Scholar
  188. Weber B, Dijkman PE, Scherman J, Sanders B, Emmert MY, Grünenfelder J, Verbeek R, Bracher M, Black M, Franz T, Kortsmit J, Modregger P, Peter S, Stampanoni M, Robert J, Kehl D, van Doeselaar M, Schweiger M, Brokopp CE, Wälchli T, Falk V, Zilla P, Driessen-Mol A, Baaijens FPT, Hoerstrup SP (2013) Off-the-shelf human decellularized tissue-engineered heart valves in a non-human primate model. Biomaterials 34:7269–7280.  https://doi.org/10.1016/j.biomaterials.2013.04.059CrossRefGoogle Scholar
  189. Weinberg CB, Bell E (1986) A blood vessel model constructed from collagen and cultured vascular cells. Science 231:397–400. http://www.ncbi.nlm.nih.gov/pubmed/2934816. Accessed 30 Aug 2018CrossRefGoogle Scholar
  190. Wissing TB, Bonito V, Bouten CVC, Smits AIPM (2017) Biomaterial-driven in situ cardiovascular tissue engineering – a multi-disciplinary perspective. NPJ Regen Med 2:18.  https://doi.org/10.1038/s41536-017-0023-2CrossRefGoogle Scholar
  191. Wu W, Allen RA, Wang Y (2012) Fast-degrading elastomer enables rapid remodeling of a cell-free synthetic graft into a neoartery. Nat Med 18:1148–1153.  https://doi.org/10.1038/nm.2821CrossRefGoogle Scholar
  192. Wystrychowski W, McAllister TN, Zagalski K, Dusserre N, Cierpka L, L’Heureux N (2014) First human use of an allogeneic tissue-engineered vascular graft for hemodialysis access. J Vasc Surg 60:1353–1357.  https://doi.org/10.1016/j.jvs.2013.08.018CrossRefGoogle Scholar
  193. Xie C, Hu J, Ma H, Zhang J, Chang L-J, Chen YE, Ma PX (2011) Three-dimensional growth of iPS cell-derived smooth muscle cells on nanofibrous scaffolds. Biomaterials 32:4369–4375.  https://doi.org/10.1016/j.biomaterials.2011.02.049CrossRefGoogle Scholar
  194. Xing Q, Yates K, Tahtinen M, Shearier E, Qian Z, Zhao F (2015) Decellularization of fibroblast cell sheets for natural extracellular matrix scaffold preparation. Tissue Eng Part C Methods 21:77–87.  https://doi.org/10.1089/ten.tec.2013.0666CrossRefGoogle Scholar
  195. Yokota T, Ichikawa H, Matsumiya G, Kuratani T, Sakaguchi T, Iwai S, Shirakawa Y, Torikai K, Saito A, Uchimura E, Kawaguchi N, Matsuura N, Sawa Y (2008) In situ tissue regeneration using a novel tissue-engineered, small-caliber vascular graft without cell seeding. J Thorac Cardiovasc Surg 136:900–907.  https://doi.org/10.1016/j.jtcvs.2008.02.058CrossRefGoogle Scholar
  196. Young MH, Upchurch GR, Malani PN (2012) Vascular graft infections. Infect Dis Clin N Am 26:41–56.  https://doi.org/10.1016/j.idc.2011.09.004CrossRefGoogle Scholar
  197. Yu J, Wang A, Tang Z, Henry J, Li-Ping Lee B, Zhu Y, Yuan F, Huang F, Li S (2012) The effect of stromal cell-derived factor-1α/heparin coating of biodegradable vascular grafts on the recruitment of both endothelial and smooth muscle progenitor cells for accelerated regeneration. Biomaterials 33:8062–8074.  https://doi.org/10.1016/j.biomaterials.2012.07.042CrossRefGoogle Scholar
  198. Zavan B, Vindigni V, Lepidi S, Iacopetti I, Avruscio G, Abatangelo G, Cortivo R (2008) Neoarteries grown in vivo using a tissue-engineered hyaluronan-based scaffold. FASEB J 22:2853–2861.  https://doi.org/10.1096/fj.08-107284CrossRefGoogle Scholar
  199. Zaveri TD, Lewis JS, Dolgova NV, Clare-Salzler MJ, Keselowsky BG (2014) Integrin-directed modulation of macrophage responses to biomaterials. Biomaterials 35:3504–3515.  https://doi.org/10.1016/j.biomaterials.2014.01.007CrossRefGoogle Scholar
  200. Zhang Y, Khan D, Delling J, Tobiasch E (2012) Mechanisms underlying the osteo- and adipo-differentiation of human mesenchymal stem cells. Sci World J 2012:793823.  https://doi.org/10.1100/2012/793823CrossRefGoogle Scholar
  201. Zheng W, Wang Z, Song L, Zhao Q, Zhang J, Li D, Wang S, Han J, Zheng X-L, Yang Z, Kong D (2012) Endothelialization and patency of RGD-functionalized vascular grafts in a rabbit carotid artery model. Biomaterials 33:2880–2891.  https://doi.org/10.1016/j.biomaterials.2011.12.047CrossRefGoogle Scholar
  202. Zhou M, Liu Z, Wei Z, Liu C, Qiao T, Ran F, Bai Y, Jiang X, Ding Y (2009) Development and validation of small-diameter vascular tissue from a decellularized scaffold coated with heparin and vascular endothelial growth factor. Artif Organs 33:230–239.  https://doi.org/10.1111/j.1525-1594.2009.00713.xCrossRefGoogle Scholar
  203. Zhou J, Fritze O, Schleicher M, Wendel H-P, Schenke-Layland K, Harasztosi C, Hu S, Stock UA (2010) Impact of heart valve decellularization on 3-D ultrastructure, immunogenicity and thrombogenicity. Biomaterials 31:2549–2554.  https://doi.org/10.1016/j.biomaterials.2009.11.088CrossRefGoogle Scholar
  204. Zhu M, Wang Z, Zhang J, Wang L, Yang X, Chen J, Fan G, Ji S, Xing C, Wang K, Zhao Q, Zhu Y, Kong D, Wang L (2015) Circumferentially aligned fibers guided functional neoartery regeneration in vivo. Biomaterials 61:85–94.  https://doi.org/10.1016/j.biomaterials.2015.05.024CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Emanuela S. Fioretta
    • 1
  • Lisa von Boehmer
    • 1
  • Melanie Generali
    • 1
  • Simon P. Hoerstrup
    • 1
    • 2
  • Maximilian Y. Emmert
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Institute for Regenerative Medicine (IREM)University of ZurichZurichSwitzerland
  2. 2.Wyss Translational Center ZurichUniversity and ETH ZurichZurichSwitzerland
  3. 3.Department of Cardiovascular SurgeryCharité Universitätsmedizin BerlinBerlinGermany
  4. 4.Department of Cardiothoracic and Vascular SurgeryGerman Heart Center BerlinBerlinGermany

Personalised recommendations