Skip to main content

Available Energy: Powering the Energetic and Societal Needs of Sustainable Communities

  • Living reference work entry
  • First Online:
  • 237 Accesses

Part of the book series: Encyclopedia of the UN Sustainable Development Goals ((ENUNSDG))

Definition

Societal Needs:

Any society, rural or city, small or large, has fundamental needs that need to be met if this society and its members is a healthy community, prospering, and being resilient. These needs include healthy and sufficient food (SDG 2), good shelter and housing for all (as part of SDFG 1), healthcare and a healthy environment (SDG 3), sufficient education for all (SDG 4), and a safe society for all (SDG 5 and SDG 16).

Available Energy:

In a longer perspective, all available energy for humanity will be renewable again. The amount of renewable energy that can be harvested in a specific region depends on many factors. What can be harvested is usually summarized over a year, as this takes into account the dominating cycles and time frame for all kinds of harvesting activities. Available energy is here understood as the maximum amount of energy that can be safely harvested without endangering the long-term possibility to harvest in the future, i.e., without destroying...

This is a preview of subscription content, log in via an institution.

References

  • Ansar A, Flyvbjerg B, Budzier A, Lunn D (2014) Should we build more large dams? The actual cost of hydropower megaproject development. Energy Policy 69:43–56

    Article  Google Scholar 

  • Bardi U (2016) What future for the anthropocene? A biophysical interpretation. Biophys Econ Resour Qual 1:2

    Article  Google Scholar 

  • Barnhart CJ, Dale M, Brandt AR, Benson SM (2013) The energetic implications of curtailing versus storing solar- and wind-generated electricity. Energy Environ Sci 6:2804–2810

    Article  Google Scholar 

  • Caroll AR (2015) Geofuels. Energy and the earth. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Coady D, Parry I, Sears L, Shang B (2015) How large are global energy subsidies? IMF working papers. International Monetary Fund. https://www.imf.org/external/pubs/ft/wp/2015/wp15105.pdf

  • Curry JA, Webster PJ (1999) Thermodynamics of atmospheres and oceans. Academic, San Diego

    Google Scholar 

  • Fizaine F, Court V (2014) Renewable electricity producing technologies and metal depletion: a sensitivity analysis using the EROI. Ecol Econ 110:106–118

    Article  Google Scholar 

  • Fizaine F, Court V (2016) Energy expenditure, economic growth, and the minimum EROI of society. Energy Policy 95:172–186

    Article  Google Scholar 

  • Fritsche U et al (2017) Energy and land use. Global land outlook working paper. United Nations. http://iinas.org/tl_files/iinas/downloads/land/IINAS_2017_UNCCD-IRENA_Energy-Land_paper.pdf

  • Fthenakis V, Frischknecht R, Raugei M et al (2011) Methodology guidelines on life cycle assessment of photovoltaic electricity. International Energy Agency. http://www.iea-pvps.org/fileadmin/dam/public/report/technical/rep12_11.pdf

  • Hall CAS, Klitgard K (2018) Energy and the wealth of nations. Springer, Cham

    Book  Google Scholar 

  • Healy N, Stephens JC, Malin SA (2019) Enbodied energy injustices: Unveiling and politicizing the transboundary harms of fossil fuel extractivism and fossil fuels supply chains. Energy Researcha & Social Sciences 48:219–234

    Google Scholar 

  • IEC 61400-1, Wind turbines – part 1: design requirements

    Google Scholar 

  • IPCC (2018) Global warming of 1.5°C. An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. https://www.ipcc.ch/sr15/

  • IPCC (2019) Climate change and land. An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. https://www.ipcc.ch/report/srccl/

  • Jaffe RL, Taylor W (2018) The physics of energy. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kleidon A (2016) Thermodynamic foundations of the earth system. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Linow S (2019) Energie - Klima - Ressourcen. Quantitative Methoden zur Lösungsbewertung von Energiesystemen. Hanser, München

    Google Scholar 

  • Makarieva AM, Gorshkov VG, Li B-L (2013) Revisiting forest impact on atmospheric water vapor transport and precipitation. Theor Appl Climatol 111:79–96

    Article  Google Scholar 

  • McGlade C, Ekins P (2015) The geographical distribution of fossil fuels unused when limiting global warming to 2 °C. Nature 517:187–190

    Article  Google Scholar 

  • Mitscherlich EA (1909) Das Gesetz des Minimums und das Gesetz des abnehmenden Bodenertrages. Landwirtschaftliche Jahrbücher: Zeitschr. für d. wissenschaftl. Landbau 38:537–552

    Google Scholar 

  • Moriarty P, Honnery P (2016) Can renewable energy power the future? Energy Policy 93:3–7

    Article  Google Scholar 

  • Murphy DJ, Carbajales-Dale M, Moeller D (2016) Comparing apples to apples: why the net energy analysis community needs to adopt the life-cycle analysis framework. Energies 9:917

    Article  Google Scholar 

  • Narbel PA, Hansen JP, Lien RR (2014) Energy technologies and economics. Springer, Heidelberg

    Book  Google Scholar 

  • Pearce JM (2009) Optimizing greenhouse gas mitigation strategies to suppress energy cannibalism. In: 2nd climate change technology conference, Hamilton

    Google Scholar 

  • Ramankutty N, Evan AT, Monfreda C, Foley JA (2008) Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob Biogeochem Cycles 22:GB1003

    Article  Google Scholar 

  • Rao ND, Min J, Mastrucci A (2019) Energy requirements for decent living in India, Brazil and South Africa. Nat Energy 4:1025–1032

    Article  Google Scholar 

  • Raugei M, Sgouridis S, Murphy D et al (2017) Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation: a comprehensive response. Energy Policy 102:377–384

    Article  Google Scholar 

  • Rothman DH (2017) Thresholds of catastrophe in the earth system. Sci Adv 3:e1700906

    Article  Google Scholar 

  • Rühle S (2016) Tabulated values of the Shockley–Queisser limit for single junction solar cells. Sol Energy 130:139

    Article  Google Scholar 

  • Schmitt RJP, Kittner N, Kondolf GM et al (2019) Deploy diverse renewables to save tropical rivers. Nature 569:330–332

    Article  Google Scholar 

  • Sgouridis S, Csala D, Bardi U (2016) The sower’s way: quantifying the narrowing net-energy pathways to a global energy transition. Environ Res Lett 11:1–8

    Article  Google Scholar 

  • Shill GH (2019) Should law subsidize driving? https://ssrn.com/abstract=3345366

  • Smil V (2016) Still the Iron Age: iron and steel in the modern world. Elsevier, Amsterdam

    Google Scholar 

  • Smil V (2017) Energy and civilization. A history. MIT Press, Cambridge, MA

    Book  Google Scholar 

  • Steffen W, Richardson K, Rockström J et al (2015) Planetary boundaries: guiding human development on a changing planet. Science 347:736–746

    Article  Google Scholar 

  • Steffen W, Rockström N, Richardson K et al (2018) Trajectories of the earth system in the anthropocene. Proc Natl Acad Sci U S A 115:8252–8259

    Article  Google Scholar 

  • Stephens GL, Li J, Wild M et al (2012) An update on Earth’s energy balance in light of the latest global observations. Nat Geosci 5:691–696

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Linow .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Linow, S. (2020). Available Energy: Powering the Energetic and Societal Needs of Sustainable Communities. In: Leal Filho, W., Azul, A., Brandli, L., Özuyar, P., Wall, T. (eds) Affordable and Clean Energy. Encyclopedia of the UN Sustainable Development Goals. Springer, Cham. https://doi.org/10.1007/978-3-319-71057-0_80-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71057-0_80-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71057-0

  • Online ISBN: 978-3-319-71057-0

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics