Encyclopedia of Gerontology and Population Aging

Living Edition
| Editors: Danan Gu, Matthew E. Dupre

DNA Chip

  • Parker Y. L. TsangEmail author
  • Sunny L. H. Chu
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-69892-2_927-1



A DNA chip is used for performing sequence analysis or detection of nucleic acids on a tiny footprint of substrate. Labeled nucleic acid samples are hybridized only with the spots on substrate fixed with their complementary sequences. Through identifying the address of signaled spots, existence of particular sequences of interest can be determined and interrogated. It is a time- and cost-effective analysis option alternative to other detection technology. To some extent, the DNA chip can also refer to an integration of conventional laboratory functions into a handy chip. This technology has broadly been utilized in the fields such as genomic analysis and disease detections.


Advancement in DNA sequencing technology has allowed scientists to decode the sequences of nucleic acids in the human genomes. Approximately 30,000 genes have already been discovered in the human genome project (Deloukas et al. 1998). It has...

This is a preview of subscription content, log in to check access.


  1. Bains W, Smith GC (1988) A novel method for nucleic acid sequence determination. J Theor Biol 135:303–307.  https://doi.org/10.1016/s0022-5193(88)80246-7CrossRefGoogle Scholar
  2. Berry NK et al (2019) Clinical use of SNP-microarrays for the detection of genome-wide changes in haematological malignancies. Crit Rev Oncol Hematol 142:58–67.  https://doi.org/10.1016/j.critrevonc.2019.07.016CrossRefGoogle Scholar
  3. Bibikova M et al (2011) High density DNA methylation array with single CpG site resolution. Genomics 98:288–295.  https://doi.org/10.1016/j.ygeno.2011.07.007CrossRefGoogle Scholar
  4. Chakchouk I et al (2015) NADf chip, a two-color microarray for simultaneous screening of multigene mutations associated with hearing impairment in North African Mediterranean countries. J Mol Diagn 17:155–161.  https://doi.org/10.1016/j.jmoldx.2014.11.003CrossRefGoogle Scholar
  5. Deloukas P et al (1998) A physical map of 30,000 human genes. Science 282:744–746.  https://doi.org/10.1126/science.282.5389.744CrossRefGoogle Scholar
  6. Ding X et al (2015) Surface plasmon resonance biosensor for highly sensitive detection of microRNA based on DNA super-sandwich assemblies and streptavidin signal amplification. Anal Chim Acta 874:59–65.  https://doi.org/10.1016/j.aca.2015.03.021CrossRefGoogle Scholar
  7. Divsar F (2019) A label-free photoelectrochemical DNA biosensor using a quantum dot–dendrimer nanocomposite. Anal Bioanal Chem.  https://doi.org/10.1007/s00216-019-02058-9
  8. Fodor SP et al (1991) Light-directed, spatially addressable parallel chemical synthesis. Science 251:767–773CrossRefGoogle Scholar
  9. Glass D et al (2013) Gene expression changes with age in skin, adipose tissue, blood and brain. Genome Biol 14:R75.  https://doi.org/10.1186/gb-2013-14-7-r75CrossRefGoogle Scholar
  10. Goryacheva OA et al (2018) Luminescent quantum dots for miRNA detection. Talanta 179:456–465.  https://doi.org/10.1016/j.talanta.2017.11.011CrossRefGoogle Scholar
  11. Henke L, Krull UJ (1999) Immobilization technologies used for nucleic acid biosensors: a review. Can J Anal Sci Spectrosc 44:61–70Google Scholar
  12. Hu W et al (2015) Hybrid ZnO nanorod-polymer brush hierarchically nanostructured substrate for sensitive antibody microarrays. Adv Mater 27:181–185.  https://doi.org/10.1002/adma.201403712CrossRefGoogle Scholar
  13. Jin F et al (2019) Enzyme-free fluorescence microarray for determination of hepatitis B virus DNA based on silver nanoparticle aggregates-assisted signal amplification. Anal Chim Acta 1077:297–304.  https://doi.org/10.1016/j.aca.2019.05.066CrossRefGoogle Scholar
  14. Kafatos FC et al (1979) Determination of nucleic acid sequence homologies and relative concentrations by a dot hybridization procedure. Nucleic Acids Res 7:1541–1552.  https://doi.org/10.1093/nar/7.6.1541CrossRefGoogle Scholar
  15. Khan MJ et al (2016) DNA microarray platform for detection and surveillance of viruses transmitted by small mammals and arthropods. PLoS Negl Trop Dis 10:e0005017.  https://doi.org/10.1371/journal.pntd.0005017CrossRefGoogle Scholar
  16. Kumar R et al (2012) Application of microarray in breast cancer: an overview. J Pharm Bioallied Sci 4:21–26.  https://doi.org/10.4103/0975-7406.92726CrossRefGoogle Scholar
  17. Kunze A et al (2016) On-chip isothermal nucleic acid amplification on flow-based chemiluminescence microarray analysis platform for the detection of viruses and bacteria. Anal Chem 88:898–905.  https://doi.org/10.1021/acs.analchem.5b03540CrossRefGoogle Scholar
  18. Li H et al (2019) Versatile digital polymerase chain reaction chip design, fabrication, and image processing. Sensors Actuators B Chem 283:677–684.  https://doi.org/10.1016/j.snb.2018.12.072CrossRefGoogle Scholar
  19. Lietard J et al (2018) High-density RNA microarrays synthesized in situ by photolithography. Angew Chem Int Ed Engl 57:15257–15261.  https://doi.org/10.1002/anie.201806895CrossRefGoogle Scholar
  20. Lu T et al (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429:883–891.  https://doi.org/10.1038/nature02661CrossRefGoogle Scholar
  21. Manickam A et al (2017) A fully integrated CMOS fluorescence biochip for DNA and RNA testing. IEEE J Solid State Circuits 52:2857–2870.  https://doi.org/10.1109/JSSC.2017.2754363CrossRefGoogle Scholar
  22. Marasso SL et al (2014) A polymer lab-on-a-chip for genetic analysis using the arrayed primer extension on microarray chips. Biomed Microdevices 16:661–670.  https://doi.org/10.1007/s10544-014-9869-xCrossRefGoogle Scholar
  23. Moran S et al (2016) Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics 8:389–399.  https://doi.org/10.2217/epi.15.114CrossRefGoogle Scholar
  24. Nguyen HT et al (2018) Microfluidic extraction and microarray detection of biomarkers from cancer tissue slides. J Micromech Microeng 28:034004.  https://doi.org/10.1088/1361-6439/aaa7a1CrossRefGoogle Scholar
  25. Okamoto T et al (2000) Microarray fabrication with covalent attachment of DNA using bubble jet technology. Nat Biotechnol 18:438.  https://doi.org/10.1038/74507CrossRefGoogle Scholar
  26. Okuma HS et al (2016) Clinical and microarray analysis of breast cancers of all subtypes from two prospective preoperative chemotherapy studies. Br J Cancer 115:411–419.  https://doi.org/10.1038/bjc.2016.184CrossRefGoogle Scholar
  27. Prasad A et al (2018) DNA microarray analysis using a smartphone to detect the BRCA-1 gene. Analyst 144:197–205.  https://doi.org/10.1039/c8an01020jCrossRefGoogle Scholar
  28. Raghunath S et al (2018) Quantitative electrochemical DNA microarray on a monolith electrode with ten attomolar sensitivity, 100% specificity, and zero background. ChemElectroChem 5:429–433.  https://doi.org/10.1002/celc.201700983CrossRefGoogle Scholar
  29. Saiki RK et al (1989) Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc Natl Acad Sci 86:6230–6234.  https://doi.org/10.1073/pnas.86.16.6230CrossRefGoogle Scholar
  30. Sanchez-Mut JV et al (2016) Human DNA methylomes of neurodegenerative diseases show common epigenomic patterns. Transl Psychiatry 6:e718.  https://doi.org/10.1038/tp.2015.214CrossRefGoogle Scholar
  31. Schena M et al (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470.  https://doi.org/10.1126/science.270.5235.467CrossRefGoogle Scholar
  32. Schneider AK, Niemeyer CM (2018) DNA surface technology: from gene sensors to integrated systems for life and materials sciences. Angew Chem Int Ed Engl 57:16959–16967.  https://doi.org/10.1002/anie.201811713CrossRefGoogle Scholar
  33. Sevenler D et al (2018) Digital microarrays: single-molecule readout with interferometric detection of plasmonic nanorod labels. ACS Nano.  https://doi.org/10.1021/acsnano.8b02036
  34. Sola L et al (2019) Array of multifunctional polymers for localized immobilization of biomolecules on microarray substrates. Anal Chim Acta 1047:188–196.  https://doi.org/10.1016/j.aca.2018.10.006CrossRefGoogle Scholar
  35. Tan JJ et al (2014) An integrated lab-on-chip for rapid identification and simultaneous differentiation of tropical pathogens. PLoS Negl Trop Dis 8:e3043.  https://doi.org/10.1371/journal.pntd.0003043CrossRefGoogle Scholar
  36. Telenti A et al (2016) Deep sequencing of 10,000 human genomes. Proc Natl Acad Sci USA 113:11901–11906.  https://doi.org/10.1073/pnas.1613365113CrossRefGoogle Scholar
  37. Thanthrige-Don N et al (2018) A novel multiplex PCR-electronic microarray assay for rapid and simultaneous detection of bovine respiratory and enteric pathogens. J Virol Methods 261:51–62.  https://doi.org/10.1016/j.jviromet.2018.08.010CrossRefGoogle Scholar
  38. Tortajada-Genaro LA et al (2019) Digital versatile discs as platforms for multiplexed genotyping based on selective ligation and universal microarray detection. Analyst 144:707–715.  https://doi.org/10.1039/c8an01830hCrossRefGoogle Scholar
  39. Tsougeni K et al (2019) A modular integrated lab-on-a-chip platform for fast and highly efficient sample preparation for foodborne pathogen screening. Sensors Actuators B Chem 288:171–179.  https://doi.org/10.1016/j.snb.2019.02.070CrossRefGoogle Scholar
  40. Turnbull C et al (2018) The 100,000 genomes project: bringing whole genome sequencing to the NHS. BMJ 361.  https://doi.org/10.1136/bmj.k1687
  41. van Ommen GJ (2002) The human genome project and the future of diagnostics, treatment and prevention. J Inherit Metab Dis 25:183–188.  https://doi.org/10.1023/a:1015673727498CrossRefGoogle Scholar
  42. Wang D et al (2002) Microarray-based detection and genotyping of viral pathogens. Proc Natl Acad Sci 99:15687–15692.  https://doi.org/10.1073/pnas.242579699CrossRefGoogle Scholar
  43. Weindruch R et al (2002) Gene expression profiling of aging using DNA microarrays. Mech Ageing Dev 123:177–193.  https://doi.org/10.1016/S0047-6374(01)00344-XCrossRefGoogle Scholar
  44. Zahn JM, Kim SK (2007) Systems biology of aging in four species. Curr Opin Biotechnol 18:355–359.  https://doi.org/10.1016/j.copbio.2007.07.004CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Emerging Viral Diagnostics (HK) LimitedHong KongChina

Section editors and affiliations

  • Lok Ting Lau
    • 1
  1. 1.Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityKowloonHong Kong