Encyclopedia of Gerontology and Population Aging

Living Edition
| Editors: Danan Gu, Matthew E. Dupre

Stress Theory of Aging

Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-69892-2_836-1



Stress theory of aging investigates the relationships between aging and biological/psychological stress. It studies how aging occurs at the cellular and molecular levels under the influences of stress (Lavretsky and Newhouse 2012).


Normal aging involves a gradual breakdown of physiological processes that leads to a decline in cognitive functions and brain integrity. Oxidative stress has been shown to be a key mechanism of the aging process that can cause direct damage to the cellular architecture within the brain (Mariani et al. 2005; Muller et al. 2007). Research has demonstrated that oxidative stress plays an important role in age-related Alzheimer’s disease, cerebrovascular disease, and decline of cognitive functioning (Fiorito et al. 2018; Zalba et al. 2007; Moreira et al. 2005; Perry et al. 2002).

People in older age also experience some typical age-related psychological stressors, such as chronic illnesses, cognitive...

This is a preview of subscription content, log in to check access.


  1. Adler NE, Stewart J (2010) Health disparities across the lifespan: meaning, methods, and mechanisms. Ann N Y Acad Sci 1186:5–23.  https://doi.org/10.1111/j.1749-6632.2009.05337.xCrossRefGoogle Scholar
  2. Blackburn EH (2000) Telomere states and cell fates. Nature 408(6808):53–56.  https://doi.org/10.1038/35040500CrossRefGoogle Scholar
  3. Blackburn EH, Epel ES, Lin J (2015) Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science 350(6265):1193–1198.  https://doi.org/10.1126/science.aab3389CrossRefGoogle Scholar
  4. Cawthon RM, Smith KR, O’Brien E, Sivatchenko A, Kerber RA (2003) Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 361(9355):393–395.  https://doi.org/10.1016/S0140-6736(03)12384-7CrossRefGoogle Scholar
  5. Cohen S, Janicki-Deverts D, Miller GE (2007) Psychological stress and disease. JAMA 298(14):1685–1687.  https://doi.org/10.1001/jama.298.14.1685CrossRefGoogle Scholar
  6. Fiorito G, Vlaanderen J, Polidoro S, Gulliver J, Galassi C, Ranzi A, Krogh V, Grioni S, Agnoli C, Sacerdote C, Panico S, Tsai MY, Probst-Hensch N, Hoek G, Herceg Z, Vermeulen R, Ghantous A, Vineis P, Naccarati A, EXPOsOMICS Consortium‡ (2018) Oxidative stress and inflammation mediate the effect of air pollution on cardio- and cerebrovascular disease: a prospective study in nonsmokers. Environ Mol Mutagen 59(3):234–246.  https://doi.org/10.1002/em.22153CrossRefGoogle Scholar
  7. Goronzy JJ, Fujii H, Weyand CM (2006) Telomeres, immune aging and autoimmunity. Exp Gerontol 41(3):246–251.  https://doi.org/10.1016/j.exger.2005.12.002CrossRefGoogle Scholar
  8. Gruenewald TL, Cohen S, Matthews KA, Tracy R, Seeman TE (2009) Association of socioeconomic status with inflammation markers in black and white men and women in the Coronary Artery Risk Development in Young Adults (CARDIA) study. Soc Sci Med 69(3):451–459.  https://doi.org/10.1016/j.socscimed.2009.05.018CrossRefGoogle Scholar
  9. Harris SE, Fox H, Wright AF, Hayward C, Starr JM, Whalley LJ, Deary IJ (2007) A genetic association analysis of cognitive ability and cognitive ageing using 325 markers for 109 genes associated with oxidative stress or cognition. BMC Genet 8(1):43.  https://doi.org/10.1186/1471-2156-8-43CrossRefGoogle Scholar
  10. Huang Y, Yim OS, Lai PS, Yu R, Chew SH, Gwee X, Nyunt MSZ, Gao Q, Ng TP, Ebstein RP, Gouin JP (2019) Successful aging, cognitive function, socioeconomic status, and leukocyte telomere length. Psychoneuroendocrinology 103:180–187.  https://doi.org/10.1016/j.psyneuen.2019.01.015CrossRefGoogle Scholar
  11. Janicki-Deverts D, Cohen S, Matthews KA, Gross MD, Jacobs DR Jr (2009) Socioeconomic status, antioxidant micronutrients, and correlates of oxidative damage: the Coronary Artery Risk Development in Young Adults (CARDIA) study. Psychosom Med 71(5):541CrossRefGoogle Scholar
  12. Kiecolt-Glaser JK, Preacher KJ, MacCallum RC, Atkinson C, Malarkey WB, Glaser R (2003) Chronic stress and age-related increases in the proinflammatory cytokine IL-6. Proc Natl Acad Sci U S A 100(15):9090–9095.  https://doi.org/10.1073/pnas.1531903100CrossRefGoogle Scholar
  13. Lavretsky H, Newhouse PA (2012) Stress, inflammation, and aging. Am J Geriatr Psychiatry 20(9):729–733.  https://doi.org/10.1097/JGP.0b013e31826573cfCrossRefGoogle Scholar
  14. Lim KTK, Yu R (2015) Aging and wisdom: age-related changes in economic and social decision making. Front Aging Neurosci 7:120.  https://doi.org/10.3389/fnagi.2015.00120CrossRefGoogle Scholar
  15. Maggio M, Guralnik JM, Longo DL, Ferrucci L (2006) Interleukin-6 in aging and chronic disease: a magnificent pathway. J Gerontol A Biol Sci Med Sci 61(6):575–584.  https://doi.org/10.1093/gerona/61.6.575CrossRefGoogle Scholar
  16. Mariani E, Polidori MC, Cherubini A, Mecocci P (2005) Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview. J Chromatogr B Anal Technol Biomed Life Sci 827(1):65–75.  https://doi.org/10.1016/j.jchromb.2005.04.023CrossRefGoogle Scholar
  17. Mawhinney LJ, de Rivero Vaccari JP, Dale GA, Keane RW, Bramlett HM (2011) Heightened inflammasome activation is linked to age-related cognitive impairment in Fischer 344 rats. BMC Neurosci 12:123.  https://doi.org/10.1186/1471-2202-12-123CrossRefGoogle Scholar
  18. McEwen BS (1998) Protective and damaging effects of stress mediators. N Engl J Med 338(3):171–179CrossRefGoogle Scholar
  19. Moreira PI, Siedlak SL, Aliev G, Zhu X, Cash AD, Smith MA, Perry G (2005) Oxidative stress mechanisms and potential therapeutics in Alzheimer disease. J Neural Transm (Vienna) 112(7):921–932.  https://doi.org/10.1007/s00702-004-0242-8CrossRefGoogle Scholar
  20. Muezzinler A, Zaineddin AK, Brenner H (2013) A systematic review of leukocyte telomere length and age in adults. Ageing Res Rev 12(2):509–519.  https://doi.org/10.1016/j.arr.2013.01.003CrossRefGoogle Scholar
  21. Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H (2007) Trends in oxidative aging theories. Free Radic Biol Med 43(4):477–503.  https://doi.org/10.1016/j.freeradbiomed.2007.03.034CrossRefGoogle Scholar
  22. Nicolle MM, Gonzalez J, Sugaya K, Baskerville KA, Bryan D, Lund K, Gallagher M, McKinney M (2001) Signatures of hippocampal oxidative stress in aged spatial learning-impaired rodents. Neuroscience 107(3):415–431.  https://doi.org/10.1016/s0306-4522(01)00374-8CrossRefGoogle Scholar
  23. O’Donovan A, Tomiyama AJ, Lin J, Puterman E, Adler NE, Kemeny M, Wolkowitz OM, Blackburn EH, Epel ES (2012) Stress appraisals and cellular aging: a key role for anticipatory threat in the relationship between psychological stress and telomere length. Brain Behav Immun 26(4):573–579.  https://doi.org/10.1016/j.bbi.2012.01.007CrossRefGoogle Scholar
  24. Perry G, Cash AD, Smith MA (2002) Alzheimer disease and oxidative stress. J Biomed Biotechnol 2(3):120–123.  https://doi.org/10.1155/S1110724302203010CrossRefGoogle Scholar
  25. Reiter RJ (1995) Oxidative processes and antioxidative defense mechanisms in the aging brain. FASEB J 9(7):526–533CrossRefGoogle Scholar
  26. Sahin E, Colla S, Liesa M, Moslehi J, Muller FL, Guo M, Cooper M, Kotton D, Fabian AJ, Walkey C, Maser RS, Tonon G, Foerster F, Xiong R, Wang YA, Shukla SA, Jaskelioff M, Martin ES, Heffernan TP, Protopopov A, Ivanova E, Mahoney JE, Kost-Alimova M, Perry SR, Bronson R, Liao R, Mulligan R, Shirihai OS, Chin L, DePinho RA (2011) Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 470(7334):359–365.  https://doi.org/10.1038/nature09787CrossRefGoogle Scholar
  27. Salminen LE, Paul RH (2014) Oxidative stress and genetic markers of suboptimal antioxidant defense in the aging brain: a theoretical review. Rev Neurosci 25(6):805–819.  https://doi.org/10.1515/revneuro-2014-0046CrossRefGoogle Scholar
  28. Serrano F, Klann E (2004) Reactive oxygen species and synaptic plasticity in the aging hippocampus. Ageing Res Rev 3(4):431–443.  https://doi.org/10.1016/j.arr.2004.05.002CrossRefGoogle Scholar
  29. Watson JB, Khorasani H, Persson A, Huang KP, Huang FL, O’Dell TJ (2002) Age-related deficits in long-term potentiation are insensitive to hydrogen peroxide: coincidence with enhanced autophosphorylation of Ca2+/calmodulin-dependent protein kinase II. J Neurosci Res 70(3):298–308.  https://doi.org/10.1002/jnr.10427CrossRefGoogle Scholar
  30. Willeit P, Willeit J, Mayr A, Weger S, Oberhollenzer F, Brandstatter A, Kronenberg F, Kiechl S (2010) Telomere length and risk of incident cancer and cancer mortality. JAMA 304(1):69–75.  https://doi.org/10.1001/jama.2010.897CrossRefGoogle Scholar
  31. Yu R (2016) Stress potentiates decision biases: a stress induced deliberation-to-intuition (SIDI) model. Neurobiol Stress 3:83–95.  https://doi.org/10.1016/j.ynstr.2015.12.006CrossRefGoogle Scholar
  32. Zalba G, Fortuno A, San Jose G, Moreno MU, Beloqui O, Diez J (2007) Oxidative stress, endothelial dysfunction and cerebrovascular disease. Cerebrovasc Dis 24(Suppl 1):24–29.  https://doi.org/10.1159/000107376CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of PennsylvaniaSingaporeSingapore

Section editors and affiliations

  • Rongjun Yu
    • 1
  1. 1.Department of Psychology and Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore