Encyclopedia of Gerontology and Population Aging

Living Edition
| Editors: Danan Gu, Matthew E. Dupre


  • Bonnie M. Scott
  • Sable Thompson
  • Dawn BowersEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-69892-2_672-1



Neurochemistry is a branch of neuroscience concerned with chemical processes within the central nervous system (CNS) that influence the structure and function of individual neurons and neural networks. Such processes include a number of chemical messengers involved in neurotransmission, changes in DNA expression and the actions of psychotropic medications, which all play an important role in regulating CNS function. Thanks to remarkable advances in technology, there are now several methods available to investigate these neurochemical processes, such as positron emission tomography (PET) and various in vitro and in vivo preparations (for review, see Finlay and Smith 2000).


The aging process is accompanied by considerable changes in neurochemistry and cognitive function. Molecular alterations at the cellular level can have a profound impact on neurotransmission, signal transduction cascades and subsequent genetic expression. In turn, such...

This is a preview of subscription content, log in to check access.


  1. Berger M, Gray JA, Roth BL (2009) The expanded biology of serotonin. Annu Rev Med 60:355–366.  https://doi.org/10.1146/annurev.med.60.042307.110802CrossRefGoogle Scholar
  2. Billard JM (2015) D-Serine in the aging hippocampus. J Pharm Biomed Anal 116:18–24.  https://doi.org/10.1016/j.jpba.2015.02.013CrossRefGoogle Scholar
  3. Braak H, Braak E, Bohl J (1993) Staging of Alzheimer-related cortical destruction. Eur Neurol 33(6):403–408.  https://doi.org/10.1159/000116984CrossRefGoogle Scholar
  4. Ebner NC, Maura GM, MacDonald K et al (2013) Oxytocin and socioemotional aging: current knowledge and future trends. Front Hum Neurosci 7.  https://doi.org/10.3389/fnhum.2013.00487
  5. Finlay JM, Smith GS (2000) A critical analysis of neurochemical methods for monitoring transmitter dynamics in the brain. http://www.acnp.org/g4/GN401000004/CH004.html
  6. Karrer TM, Josef AK, Mata R et al (2017) Reduced dopamine receptors and transporters but not synthesis capacity in normal aging adults: a meta-analysis. Neurobiol Aging 57:36–46.  https://doi.org/10.1016/j.neurobiolaging.2017.05.006CrossRefGoogle Scholar
  7. Khan ZU, Martín-Montañez E, Navarro-Lobato I et al (2014) Memory deficits in aging and neurological diseases. Prog Mol Biol Transl Sci 122:1–29.  https://doi.org/10.1016/B978-0-12-420170-5.00001-5CrossRefGoogle Scholar
  8. Kovacs Z, Juhasz G, Dobolyi A et al (2010) Gender- and age-dependent changes in nucleoside levels in the cerebral cortex and white matter of the human brain. Brain Res Bull 81(6):579–584.  https://doi.org/10.1016/j.brainresbull.2009.10.010CrossRefGoogle Scholar
  9. Li F, Tsien JZ (2009) Memory and the NMDA receptors. N Engl J Med 361(3):302.  https://doi.org/10.1056/NEJMcibr0902052CrossRefGoogle Scholar
  10. Manjunath S, Sakhare PM (2009) Adenosine and adenosine receptors: newer therapeutic perspective. Indian J Pharm 41(3):97.  https://doi.org/10.4103/0253-7613.55202CrossRefGoogle Scholar
  11. Mather M, Harley CW (2016) The locus coeruleus: essential for maintaining cognitive function and the aging brain. Trends Cogn Sci 20(3):214–226.  https://doi.org/10.1016/j.tics.2016.01.001CrossRefGoogle Scholar
  12. McKinney M (2005) Brain cholinergic vulnerability: relevance to behavior and disease. Biochem Pharmacol 70(8):1115–1124.  https://doi.org/10.1016/j.bcp.2005.05.019CrossRefGoogle Scholar
  13. Nyman MJ, Eskola O, Kajander J et al (2007) Gender and age affect NK1 receptors in the human brain – a positron emission tomography study with [18F]SPA-RQ. Int J Neuropsychopharmacol 10(2):219–229.  https://doi.org/10.1017/S1461145706006572CrossRefGoogle Scholar
  14. Puglielli L, Mattson MP (2009) Cellular and neurochemical aspects of the aging brain. In: Hazzard’s geriatric medicine and gerontology, 7th edn. McGraw-Hill Education, New YorkGoogle Scholar
  15. Sambataro F, Kingshott E, Das S et al (2005) Effect of catechol-O-methyl transferase val (158) Met polymorphism on information processing in the prefrontal cortex during working memory in the elderly. Neuropsychopharmacology 30:S81–S82Google Scholar
  16. Schliebs R, Arendt T (2011) The cholinergic system in aging and neuronal degeneration. Behav Brain Res 221(2):555–563.  https://doi.org/10.1016/j.bbr.2010.11.058CrossRefGoogle Scholar
  17. Shan L, Swaab DF, Bao AM (2013) Neuronal histaminergic system in aging and age-related neurodegenerative disorders. Exp Gerontol 48(7):603–607.  https://doi.org/10.1016/j.exger.2012.08.002CrossRefGoogle Scholar
  18. Stahl SM (2013) Stahl’s essential psychopharmacology: neuroscientific basis and practical applications. Cambridge University Press, CambridgeGoogle Scholar
  19. Stephan BC, Harrison SL, Keage HA et al (2017) Cardiovascular disease, the nitric oxide pathway and risk of cognitive impairment and dementia. Curr Cardiol Rep 19(9):87.  https://doi.org/10.1007/s11886-017-0898-yCrossRefGoogle Scholar
  20. Theurey P, Pizzo P (2018) The aging mitochondria. Genes 9(1):22.  https://doi.org/10.3390/genes9010022CrossRefGoogle Scholar
  21. Vergallo A, Bun RS, Toschi N et al (2018) Association of cerebrospinal fluid α-synuclein with total and phospho-tau181 protein concentrations and brain amyloid load in cognitively normal subjective memory complainers stratified by Alzheimer’s disease biomarkers. Alzheimers Dement 14(12):1623–1631.  https://doi.org/10.1016/j.jalz.2018.06.3053CrossRefGoogle Scholar
  22. Walhovd KB, Fjell AM, Espeseth T (2014) Cognitive decline and brain pathology in aging–need for a dimensional, lifespan and systems vulnerability view. Scand J Psychol 55(3):244–254.  https://doi.org/10.1111/sjop.12120CrossRefGoogle Scholar
  23. Wong YC, Krainc D (2017) α-synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies. Nat Med 23(2):1.  https://doi.org/10.1038/nm.4269CrossRefGoogle Scholar
  24. Yoon JH, Grandelis A, Maddock RJ (2016) Dorsolateral prefrontal cortex GABA concentration in humans predicts working memory load processing capacity. J Neurosci 36(46):11788–11794.  https://doi.org/10.1523/JNEUROSCI.1970-16.2016CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Clinical and Health Psychology, College of Public Health and Health ProfessionsUniversity of FloridaGainesvilleUSA

Section editors and affiliations

  • Adam J. Woods
    • 1
    • 2
  1. 1.Department of Clinical and Health Psychology, College of Public Health and Health Professions, Center for Cognitive Aging and MemoryMcKnight Brain Institute, University of FloridaGainesvilleUSA
  2. 2.Department of NeuroscienceUniversity of FloridaGainesvilleUSA