Encyclopedia of Gerontology and Population Aging

Living Edition
| Editors: Danan Gu, Matthew E. Dupre

Non-programmed (Nonadaptive) Aging Theories

Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-69892-2_50-1



Non-programmed or nonadaptive aging theories refer to explanations of aging that do not hypothesize an adaptive meaning for this phenomenon. For non-programmed theories, aging is seen as a set of degenerative phenomena that natural selection cannot contrast completely due to its insufficient strength or to opposing selective pressures.


Many non-programmed aging theories have been suggested, and this entry presents a general exposition of the main characteristics of the most convincing ones. Many of the earliest theories explained aging by taking into account only a restricted number of biological processes and without including any evolutionary mechanism. As a result, they were not able to explain the highly diverse types of mortality curves encountered within the tree of life (“Life Tables”). Nevertheless, when analyzing, from a systemic perspective, the biological processes related to aging (“Aging...

This is a preview of subscription content, log in to check access.


  1. Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495.  https://doi.org/10.1016/j.cell.2005.02.001CrossRefGoogle Scholar
  2. Bjorksten J, Tenhu H (1990) The crosslinking theory of aging-added evidence. Exp Gerontol 25:91–95.  https://doi.org/10.1016/0531-5565(90)90039-5CrossRefGoogle Scholar
  3. Blagosklonny MV (2006) Aging and immortality: quasi-programmed senescence and its pharmacologic inhibition. Cell Cycle 5:2087–2102.  https://doi.org/10.4161/cc.5.18.3288CrossRefGoogle Scholar
  4. Blagosklonny MV (2013a) MTOR-driven quasi-programmed aging as a disposable soma theory: blind watch-maker vs. intelligent designer. Cell Cycle 12:1842–1847.  https://doi.org/10.4161/cc.25062CrossRefGoogle Scholar
  5. Blagosklonny MV (2013b) Aging is not programmed. Cell Cycle 12(24):3736–3742.  https://doi.org/10.4161/cc.27188CrossRefGoogle Scholar
  6. Bohr VA, Anson RM (1995) DNA damage, mutation and fine structure DNA repair in aging. Mutat Res 338:25–34.  https://doi.org/10.1016/0921-8734(95)00008-TCrossRefGoogle Scholar
  7. Carrel A, Ebeling AH (1921) Antagonistic growth principles of serum and their relation to old age. J Exp Med 38:419–425.  https://doi.org/10.1084/jem.38.4.419CrossRefGoogle Scholar
  8. Croteau DL, Bohr VA (1997) Repair of oxidative damage to nuclear and mitochondrial DNA in mammalian cells. J Biol Chem 272:25409–25412.  https://doi.org/10.1074/jbc.272.41.25409CrossRefGoogle Scholar
  9. De Magalhaes JP, Toussaint O (2002) The evolution of mammalian aging. Exp Gerontol 37:769–775.  https://doi.org/10.1016/S0531-5565(02)00008-6CrossRefGoogle Scholar
  10. Franceschi C, Garagnani P, Parini P et al (2018) Inflammaging: a new immunemetabolic view-point for age- related diseases. Nat Rev Endocrinol 14(10):576–590.  https://doi.org/10.1038/s41574-018-0059-4CrossRefGoogle Scholar
  11. Gavrilov LA, Gavrilova NS (2002) Evolutionary theories of aging and longevity. ScientificWorldJournal 2:339–356.  https://doi.org/10.1100/tsw.2002.96CrossRefGoogle Scholar
  12. Gladyshev VN (2013) The origin of aging: imperfectness driven non-random damage defines the aging process and control of lifespan. Trends Genet 29(9):506–512.  https://doi.org/10.1016/j.tig.2013.05.004CrossRefGoogle Scholar
  13. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300.  https://doi.org/10.1093/geronj/11.3.298CrossRefGoogle Scholar
  14. Harman D (1972) The biologic clock: the mitochondria? J Am Geriatr Soc 20:145–147.  https://doi.org/10.1111/j.1532-5415.1972.tb00787.xCrossRefGoogle Scholar
  15. Heinze I, Bens M, Calzia E et al (2018) Species comparison of liver proteomes reveals links to naked mole-rat longevity and human aging. BMC Biol 16(1):82.  https://doi.org/10.1186/s12915-018-0547-yCrossRefGoogle Scholar
  16. Kirkwood TB (1977) Evolution of ageing. Nature 270:301–304.  https://doi.org/10.1038/270301a0CrossRefGoogle Scholar
  17. Kirkwood TB (2008) Understanding ageing from an evolutionary perspective. J Intern Med 263:117–127.  https://doi.org/10.1111/j.1365-2796.2007.01901.xCrossRefGoogle Scholar
  18. Kirkwood TB, Rose MR (1991) Evolution of senescence: late survival sacrificed for reproduction. Philos Trans R Soc Lond B 332:15–24.  https://doi.org/10.1098/rstb.1991.0028CrossRefGoogle Scholar
  19. Kowald A, Kirkwood TB (2016) Can aging be programmed? A critical literature review. Aging Cell 15:86–998.  https://doi.org/10.1111/acel.12510CrossRefGoogle Scholar
  20. Lansing AI (1948) Evidence for aging as a consequence of growth cessation. Proc Natl Acad Sci U S A 34:304–310CrossRefGoogle Scholar
  21. Libertini G (1988) An adaptive theory of the increasing mortality with increasing chronological age in populations in the wild. J Theor Biol 132:145–162.  https://doi.org/10.1016/S0022-5193(88)80153-XCrossRefGoogle Scholar
  22. Libertini G (2015) Non-programmed versus programmed aging paradigm. Curr Aging Sci 8:56–68.  https://doi.org/10.2174/1874609808666150422111623CrossRefGoogle Scholar
  23. Libertini G (2017) Sex and aging: a comparison between two phenoptotic phenomena. Biochem Mosc 82(12):1435–1455.  https://doi.org/10.1134/S0006297917120045CrossRefGoogle Scholar
  24. Libertini G, Rengo G, Ferrara N (2017) Aging and aging theories. JGG 65:59–77Google Scholar
  25. Ljubuncic P, Reznick AZ (2009) The evolutionary theories of aging revisited. A mini-review. Gerontology 55:205–216.  https://doi.org/10.1159/000200772CrossRefGoogle Scholar
  26. Madreiter-Sokolowski CT, Sokolowski AA, Waldeck-Weiermair M et al (2018) Targeting mitochondria to counteract age-related cellular dysfunction. Genes (Basel) 9(3):pii: E165.  https://doi.org/10.3390/genes9030165CrossRefGoogle Scholar
  27. Medawar PB (1952) An unsolved problem in biology. HK Lewis, London. Reprinted in: Medawar PB (1957) The uniqueness of the individual. Methuen, LondonGoogle Scholar
  28. Minot CS (1907) The problem of age, growth, and death; a study of cytomorphosis, based on lectures at the Lowell Institute, LondonGoogle Scholar
  29. Oliveira BF, Nogueira-Machado JA, Chaves MM (2010) The role of oxidative stress in the aging process. ScientificWorldJournal 10:1121–1128.  https://doi.org/10.1100/tsw.2010.94CrossRefGoogle Scholar
  30. Partridge L, Barton NH (1993) Optimality, mutation and the evolution of ageing. Nature 362:305–311.  https://doi.org/10.1038/362305a0CrossRefGoogle Scholar
  31. Pearl R (1928) The rate of living. University of London Press, LondonGoogle Scholar
  32. Picca A, Mankowski RT, Burman JL et al (2018) Mitochondrial quality control mechanisms as molecular targets in cardiac ageing. Nat Rev Cardiol 15(9):543–554.  https://doi.org/10.1038/s41569-018-0059-zCrossRefGoogle Scholar
  33. Redman LM, Smith SR, Burton JH et al (2018) Metabolic slowing and reduced oxidative damage with sustained caloric restriction support the rate of living and oxidative damage theories of aging. Cell Metab 27(4):805–815.  https://doi.org/10.1016/j.cmet.2018.02.019CrossRefGoogle Scholar
  34. Ricklefs RE (1998) Evolutionary theories of aging: confirmation of a fundamental prediction, with implications for the genetic basis and evolution of life span. Am Nat 152(1):24–44.  https://doi.org/10.1086/286147CrossRefGoogle Scholar
  35. Rodriguez JA, Marigorta UM, Hughes DA et al (2017) Antagonistic pleiotropy and mutation accumulation influence human senescence and disease. Nat Ecol Evol 1(3):55.  https://doi.org/10.1038/s41559-016-0055CrossRefGoogle Scholar
  36. Rose MR, Burke MK, Shahrestani P et al (2008) Evolution of ageing since Darwin. J Genet 87:363–371CrossRefGoogle Scholar
  37. Sanz A, Stefanatos RK (2008) The mitochondrial free radical theory of aging: a critical view. Curr Aging Sci 1:10–21.  https://doi.org/10.2174/1874609810801010010CrossRefGoogle Scholar
  38. Trindade LS, Aigaki T, Peixoto AA et al (2013) A novel classification system for evolutionary aging theories. Front Genet 4:25.  https://doi.org/10.3389/fgene.2013.00025CrossRefGoogle Scholar
  39. Vanhaelen Q (2015) Aging as an optimization between cellular maintenance requirements and evolutionary constraints. Curr Aging Sci 8:110–119.  https://doi.org/10.2174/1874609808666150422122958CrossRefGoogle Scholar
  40. Vanhaelen Q (2018) Evolutionary theories of aging: a systemic and mechanistic perspective. In: Ahmad SI (ed) Aging: exploring a complex phenomenon. CRC Press Taylor & Francis Group, Boca Raton, pp 43–72Google Scholar
  41. Wang J, Zhang S, Wang Y et al (2009) Disease-aging network reveals significant roles of aging genes in connecting genetic diseases. PLoS Comput Biol 5(9):e1000521.  https://doi.org/10.1371/journal.pcbi.1000521CrossRefGoogle Scholar
  42. Weinert BT, Timiras PS (2003) Invited review: theories of aging. J Appl Physiol 95:1706–1716.  https://doi.org/10.1152/japplphysiol.00288.2003CrossRefGoogle Scholar
  43. Williams GC (1957) Pleiotropy, natural selection and the evolution of senescence. Evolution 11:398–411CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Insilico Medicine Inc.RockvilleUSA

Section editors and affiliations

  • Giacinto Libertini
    • 1
  1. 1.ASL NA2 NordItalian National Health ServiceFrattamaggioreItaly