Encyclopedia of Gerontology and Population Aging

Living Edition
| Editors: Danan Gu, Matthew E. Dupre

Somatic Cell Nuclear Transfer

  • Parker Y. L. TsangEmail author
  • Deborah M. S. Tai
  • Libby C. W. Li
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-69892-2_1043-1
  • 8 Downloads

Synonyms

Definition

Somatic cell nuclear transfer (SCNT) is a technique which transfers the nucleus of a donor somatic cell to the cytoplasm of an oocyte with its own nucleus removed. The somatic nucleus is reprogrammed in the oocyte, in which it contains the entire genomic information of the somatic cell and progressively develops into the blastocyst. Successive development of the blastocyst with proper stimuli can result in generation of cloned animals in reproductive cloning or embryonic stem cells (ESC) for cloning specific tissues and cell types.

Overview

Somatic cell nuclear transfer is a classical technique in biotechnology for reprogramming the nucleus of a somatic cell (Singh et al. 2019). The cell can resume pluripotency and further differentiate from the embryonic state into specific tissues and cell types that inherited the original genotype in the donor nucleus. With the embryotic cell being grown in a surrogate mother, a...

This is a preview of subscription content, log in to check access.

References

  1. Blackburn EH et al (2006) Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat Med 12:1133–1138.  https://doi.org/10.1038/nm1006-1133CrossRefGoogle Scholar
  2. Blasco MA (2002) Immunosenescence phenotypes in the telomerase knockout mouse. Springer Semin Immunopathol 24:75–85.  https://doi.org/10.1007/s00281-001-0096-1CrossRefGoogle Scholar
  3. Bondioli KR (2018) Cloning of livestock by somatic cell nuclear transfer. In: Niemann H, Wrenzycki C (eds) Animal biotechnology 2: emerging breeding technologies. Springer International Publishing, Cham, pp 1–20.  https://doi.org/10.1007/978-3-319-92348-2_1CrossRefGoogle Scholar
  4. Boonekamp JJ et al (2013) Telomere length behaves as biomarker of somatic redundancy rather than biological age. Aging Cell 12:330–332.  https://doi.org/10.1111/acel.12050CrossRefGoogle Scholar
  5. Briggs R, King TJ (1952) Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proc Natl Acad Sci U S A 38:455–463.  https://doi.org/10.1073/pnas.38.5.455CrossRefGoogle Scholar
  6. Campbell KH et al (1996) Sheep cloned by nuclear transfer from a cultured cell line. Nature 380:64–66.  https://doi.org/10.1038/380064a0CrossRefGoogle Scholar
  7. Chung YG et al (2015) Histone demethylase expression enhances human somatic cell nuclear transfer efficiency and promotes derivation of pluripotent stem cells. Cell Stem Cell 17:758–766.  https://doi.org/10.1016/j.stem.2015.10.001CrossRefGoogle Scholar
  8. Cibelli JB et al (1998) Transgenic bovine chimeric offspring produced from somatic cell-derived stem-like cells. Nat Biotechnol 16:642–646.  https://doi.org/10.1038/nbt0798-642CrossRefGoogle Scholar
  9. Cyranoski D (2018) First monkeys cloned with technique that made Dolly the sheep. Nature 553:387–388.  https://doi.org/10.1038/d41586-018-01027-zCrossRefGoogle Scholar
  10. D’Amour KA et al (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24:1392–1401.  https://doi.org/10.1038/nbt1259CrossRefGoogle Scholar
  11. French AJ et al (2006) Human therapeutic cloning (NTSC): applying research from mammalian reproductive cloning. Stem Cell Rev 2:265–276.  https://doi.org/10.1007/BF02698053CrossRefGoogle Scholar
  12. Guarente L (2007) Sirtuins in aging and disease. Cold Spring Harb Symp Quant Biol 72:483–488.  https://doi.org/10.1101/sqb.2007.72.024CrossRefGoogle Scholar
  13. Gurdon JB (1962) The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol 10:622–640Google Scholar
  14. Gurdon JB, Byrne JA (2003) The first half-century of nuclear transplantation. Proc Natl Acad Sci U S A 100:8048–8052.  https://doi.org/10.1073/pnas.1337135100CrossRefGoogle Scholar
  15. Gurdon JB et al (1958) Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 182:64–65.  https://doi.org/10.1038/182064a0CrossRefGoogle Scholar
  16. Jaskelioff M et al (2011) Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature 469:102–106.  https://doi.org/10.1038/nature09603CrossRefGoogle Scholar
  17. Karlseder J et al (2002) Senescence induced by altered telomere state, not telomere loss. Science 295:2446–2449.  https://doi.org/10.1126/science.1069523CrossRefGoogle Scholar
  18. Kawase E et al (2000) Mouse embryonic stem (ES) cell lines established from neuronal cell-derived cloned blastocysts. Genesis 28:156–163.  https://doi.org/10.1016/j.reprotox.2018.07.080CrossRefGoogle Scholar
  19. Kfoury C (2007) Therapeutic cloning: promises and issues. Mcgill J Med 10:112–120Google Scholar
  20. Kwon D et al (2017) Reprogramming enhancers in somatic cell nuclear transfer, iPSC technology, and direct conversion. Stem Cell Rev 13:24–34.  https://doi.org/10.1007/s12015-016-9697-xCrossRefGoogle Scholar
  21. Lanza RP et al (1999a) Human therapeutic cloning. Nat Med 5:975–977.  https://doi.org/10.1038/12404CrossRefGoogle Scholar
  22. Lanza RP et al (1999b) Prospects for the use of nuclear transfer in human transplantation. Nat Biotechnol 17:1171–1174.  https://doi.org/10.1038/70709CrossRefGoogle Scholar
  23. Liu GH et al (2011) Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature 472:221–225.  https://doi.org/10.1038/nature09879CrossRefGoogle Scholar
  24. Liu Z et al (2018) Cloning of macaque monkeys by somatic cell nuclear transfer. Cell 174:245.  https://doi.org/10.1016/j.cell.2018.01.036CrossRefGoogle Scholar
  25. Lopez-Otin C et al (2013) The hallmarks of aging. Cell 153:1194–1217.  https://doi.org/10.1016/j.cell.2013.05.039CrossRefGoogle Scholar
  26. Matoba S, Zhang Y (2018) Somatic cell nuclear transfer reprogramming: mechanisms and applications. Cell Stem Cell 23:471–485.  https://doi.org/10.1016/j.stem.2018.06.018CrossRefGoogle Scholar
  27. Munsie MJ et al (2000) Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei. Curr Biol 10:989–992.  https://doi.org/10.1016/s0960-9822(00)00648-5CrossRefGoogle Scholar
  28. Ocampo A et al (2016) Anti-aging strategies based on cellular reprogramming. Trends Mol Med 22:725–738.  https://doi.org/10.1016/j.molmed.2016.06.005CrossRefGoogle Scholar
  29. Schaetzlein S et al (2004) Telomere length is reset during early mammalian embryogenesis. Proc Natl Acad Sci U S A 101:8034–8038.  https://doi.org/10.1073/pnas.0402400101CrossRefGoogle Scholar
  30. Shay JW, Wright WE (2000) Hayflick, his limit, and cellular ageing. Nat Rev Mol Cell Biol 1:72–76.  https://doi.org/10.1038/35036093CrossRefGoogle Scholar
  31. Shiels PG et al (1999) Analysis of telomere lengths in cloned sheep. Nature 399:316–317.  https://doi.org/10.1038/20580CrossRefGoogle Scholar
  32. Sinclair KD et al (2016) Healthy ageing of cloned sheep. Nat Commun 7:12359.  https://doi.org/10.1038/ncomms12359CrossRefGoogle Scholar
  33. Singh B et al (2019) Somatic cell nuclear transfer. In: Advances in animal biotechnology. Springer, Cham, pp 109–122.  https://doi.org/10.1007/978-3-030-21309-1_10CrossRefGoogle Scholar
  34. Spemann H (1938) Embryonic development and induction. Yale University Press/H. Milford/Oxford University Press, London/New HavenCrossRefGoogle Scholar
  35. Sullivan EJ et al (2004) Cloned calves from chromatin remodeled in vitro. Biol Reprod 70:146–153.  https://doi.org/10.1095/biolreprod.103.021220CrossRefGoogle Scholar
  36. Tabar V et al (2008) Therapeutic cloning in individual parkinsonian mice. Nat Med 14:379–381.  https://doi.org/10.1038/nm1732CrossRefGoogle Scholar
  37. Tachibana M et al (2013) Human embryonic stem cells derived by somatic cell nuclear transfer. Cell 153:1228–1238.  https://doi.org/10.1016/j.cell.2013.05.006CrossRefGoogle Scholar
  38. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676.  https://doi.org/10.1016/j.cell.2006.07.024CrossRefGoogle Scholar
  39. Takahashi K et al (2007a) Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2:3081–3089.  https://doi.org/10.1038/nprot.2007.418CrossRefGoogle Scholar
  40. Takahashi K et al (2007b) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872.  https://doi.org/10.1016/j.cell.2007.11.019CrossRefGoogle Scholar
  41. Thomson JA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147.  https://doi.org/10.1126/science.282.5391.1145CrossRefGoogle Scholar
  42. Wakayama T et al (2000) Cloning of mice to six generations. Nature 407:318–319.  https://doi.org/10.1038/35030301CrossRefGoogle Scholar
  43. Wilmut I et al (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813.  https://doi.org/10.1038/385810a0CrossRefGoogle Scholar
  44. Wilmut I et al (2015) Somatic cell nuclear transfer: origins, the present position and future opportunities. Philos Trans R Soc Lond Ser B Biol Sci 370:20140366.  https://doi.org/10.1098/rstb.2014.0366CrossRefGoogle Scholar
  45. Wolf DP et al (2017) Concise review: embryonic stem cells derived by somatic cell nuclear transfer: a horse in the race? Stem Cells 35:26–34.  https://doi.org/10.1002/stem.2496CrossRefGoogle Scholar
  46. Zhang S et al (2016) Aberrant DNA methylation reprogramming in bovine SCNT preimplantation embryos. Sci Rep 6:30345.  https://doi.org/10.1038/srep30345CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Parker Y. L. Tsang
    • 1
    Email author
  • Deborah M. S. Tai
    • 1
  • Libby C. W. Li
    • 1
  1. 1.Emerging viral diagnostics (HK) LimitedHong KongChina

Section editors and affiliations

  • Lok Ting Lau
    • 1
  1. 1.Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityKowloonHong Kong