Extraordinary Young’s Interferences and Super-Diffraction Laser Lithography

  • Xiangang LuoEmail author
Living reference work entry


As a low-cost, high-efficient, and large-area nanofabrication approach, optical lithography has attracted a great deal of interests and shows promising applications in integrated circuit manufacturing. However, the diffraction limit of light leads to the resolution improvement of optical lithography relying on the shrinking wavelength of exposure source, which is hard to be maintained. Inspired by the extraordinary Young’s interference, the short wavelength property of M-wave, a special surface wave confined at the surface of structured materials, is discovered, which offers a potential way to surpass the traditional diffraction limit. During the past years, researchers have proposed a variety of plasmonic lithography methods in the manner of interference and imaging and have demonstrated that sub-diffraction resolution could be achieved by theoretical simulations or experiments. This chapter will give a review and some discussion about the advances in this realm.


Extraordinary Young’s interferences Surface plasmons Plasmonic lithography Sub-diffraction lithography 


  1. Bourke L, Blaikie RJ (2017a) Genetic algorithm optimization of grating coupled near-field interference lithography systems at extreme numerical apertures. J Opt 19:095003ADSCrossRefGoogle Scholar
  2. Bourke L, Blaikie RJ (2017b) Herpin effective media resonant underlayers and resonant overlayer designs for ultra-high NA interference lithography. J Opt Soc Am A 34:2243–2249ADSCrossRefGoogle Scholar
  3. Chen X, Yang F, Zhang C et al (2016) Large-area high aspect ratio plasmonic interference lithography utilizing a single high-k mode. ACS Nano 10:4039–4045CrossRefGoogle Scholar
  4. Dong J, Liu J, Kang G et al (2014) Pushing the resolution of photolithography down to 15nm by surface plasmon interference. Sci Rep 4:5618CrossRefGoogle Scholar
  5. Fang N, Lee H, Sun C, Zhang X (2005) Sub-diffraction-limited optical imaging with a silver superlens. Science 308:534–537ADSCrossRefGoogle Scholar
  6. Feng Q, Pu M, Hu C, Luo X (2012) Engineering the dispersion of metamaterial surface for broadband infrared absorption. Opt Lett 37:2133–2135ADSCrossRefGoogle Scholar
  7. Gao P, Yao N, Wang C et al (2015) Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens. Appl Phys Lett 106:093110ADSCrossRefGoogle Scholar
  8. Garcia-Vidal FJ, Martin-Moreno L, Ebbesen TW, Kuipers L (2010) Light passing through subwavelength apertures. Rev Mod Phys 82:729–787ADSCrossRefGoogle Scholar
  9. Guo Z, Zhao ZY, Yan LS et al (2014) Moiré fringes characterization of surface plasmon transmission and filtering in multi metal-dielectric films. Appl Phys Lett 105:141107ADSCrossRefGoogle Scholar
  10. Guo Y, Wang Y, Pu M et al (2015a) Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion. Sci Rep 5:8434CrossRefGoogle Scholar
  11. Guo Y, Yan L, Pan W, Luo B (2015b) Generation and manipulation of orbital angular momentum by all-dielectric metasurfaces. Plasmonics 11:337–344CrossRefGoogle Scholar
  12. Guo Y, Yan L, Pan W, Luo B (2015c) Achromatic polarization manipulation by dispersion management of anisotropic meta-mirror with dual-metasurface. Opt Express 23:27566–27575ADSCrossRefGoogle Scholar
  13. Guo Y, Pu M, Zhao Z et al (2016) Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation. ACS Photon 3:2022–2029CrossRefGoogle Scholar
  14. Guo Y, Ma X, Pu M et al (2018a) High-efficiency and wide-angle beam steering based on catenary optical fields in ultrathin metalens. Adv Opt Mater 6:1800592CrossRefGoogle Scholar
  15. Guo Y, Pu M, Li X et al (2018b) Functional metasurfaces based on metallic and dielectric subwavelength slits and stripes array. J Phys Condens Matter 30:144003ADSCrossRefGoogle Scholar
  16. Huang Q, Wang C, Yao N et al (2014) Improving imaging contrast of non-contacted plasmonic lens by off-axis illumination with high numerical aperture. Plasmonics 9:699–706CrossRefGoogle Scholar
  17. Huang Y, Luo J, Pu M et al (2018) Catenary electromagnetics for ultra-broadband lightweight absorbers and large-scale flat antennas. Adv Sci 6(7):1801691CrossRefGoogle Scholar
  18. Khorasaninejad M, Chen WT, Devlin RC et al (2016) Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352:1190ADSCrossRefGoogle Scholar
  19. Lee H, Xiong Y, Fang N et al (2005) Realization of optical superlens imaging below the diffraction limit. New J Phys 7:255CrossRefGoogle Scholar
  20. Li Y, Liu F, Xiao L et al (2013) Two-surface-plasmon-polariton-absorption based nanolithography. Appl Phys Lett 102:063113ADSCrossRefGoogle Scholar
  21. Liang G, Wang C, Zhao Z et al (2015) Squeezing bulk plasmon polaritons through hyperbolic metamaterial for large-area deep subwavelength interference lithography. Adv Opt Mater 3:1248–1256CrossRefGoogle Scholar
  22. Liu Z, Wei Q, Zhang X (2005) Surface plasmon interference nanolithography. Nano Lett 5:957–961ADSCrossRefGoogle Scholar
  23. Liu L, Liu K, Zhao Z et al (2016a) Sub-diffraction demagnification imaging lithography by hyperlens with plasmonic reflector layer. RSC Adv 6:95973–95978CrossRefGoogle Scholar
  24. Liu L, Luo Y, Zhao Z et al (2016b) Large area and deep sub-wavelength interference lithography employing odd surface plasmon modes. Sci Rep 6:30450ADSCrossRefGoogle Scholar
  25. Liu H, Kong W, Liu K et al (2017a) Deep subwavelength interference lithography with tunable pattern period based on bulk plasmon polaritons. Opt Express 25:20511–20521ADSCrossRefGoogle Scholar
  26. Liu L, Zhang X, Zhao Z et al (2017b) Batch fabrication of metasurface holograms enabled by plasmonic cavity lithography. Adv Opt Mater 5:1700429CrossRefGoogle Scholar
  27. Liu H, Luo Y, Kong W et al (2018) Large area deep subwavelength interference lithography with a 35 nm half-period based on bulk plasmon polaritons. Opt Mater Express 8:199–209ADSCrossRefGoogle Scholar
  28. Luo X (2015) Principles of electromagnetic waves in metasurfaces. Sci China-Phys Mech Astron 58:594201ADSCrossRefGoogle Scholar
  29. Luo X (2018a) Subwavelength optical engineering with metasurface waves. Adv Opt Mater 6:1701201CrossRefGoogle Scholar
  30. Luo X (2018b) Engineering optics 2.0: a revolution in optical materials, devices, and systems. ACS Photon 5:4724–4738CrossRefGoogle Scholar
  31. Luo X (2018c) Plasmonic metalens for nanofabrication. Natl Sci Rev 5:137–138CrossRefGoogle Scholar
  32. Luo X (2019) Subwavelength artificial structures: opening a new era for engineering optics. Adv Mater 31:1804680CrossRefGoogle Scholar
  33. Luo X, Ishihara T (2004a) Surface plasmon resonant interference nanolithography technique. Appl Phys Lett 84:4780–4782ADSCrossRefGoogle Scholar
  34. Luo X, Ishihara T (2004b) Subwavelength photolithography based on surface-plasmon polariton resonance. Opt Express 12:3055–3065ADSCrossRefGoogle Scholar
  35. Luo X, Yan L (2012) Surface plasmon polaritons and its applications. IEEE Photon J 4:590–595ADSCrossRefGoogle Scholar
  36. Luo J, Zeng B, Wang C et al (2015) Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography. Nanoscale 7:18805–18812ADSCrossRefGoogle Scholar
  37. Luo X, Tsai D, Gu M, Hong M (2019) Extraordinary optical fields in nanostructures: from sub-diffraction-limited optics to sensing and energy conversion. Chem Soc Rev 48:2458. Scholar
  38. Melville D, Blaikie R (2005) Super-resolution imaging through a planar silver layer. Opt Express 13:2127–2134ADSCrossRefGoogle Scholar
  39. Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85:3966–3969ADSCrossRefGoogle Scholar
  40. Pu M, Hu C, Wang M et al (2011) Design principles for infrared wide-angle perfect absorber based on plasmonic structure. Opt Express 19:17413–17420ADSCrossRefGoogle Scholar
  41. Pu M, Chen P, Wang Y et al (2013) Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation. Appl Phys Lett 102:131906ADSCrossRefGoogle Scholar
  42. Pu M, Ma X, Li X et al (2017) Merging plasmonics and metamaterials by two-dimensional subwavelength structures. J Mater Chem C 5:4361–4378CrossRefGoogle Scholar
  43. Pu M, Guo Y, Li X et al (2018a) Revisitation of extraordinary young’s interference: from catenary optical fields to spin-orbit interaction in metasurfaces. ACS Photon 5:3198–3204CrossRefGoogle Scholar
  44. Pu M, Ma X, Guo Y et al (2018b) Theory of microscopic meta-surface waves based on catenary optical fields and dispersion. Opt Express 26:19555–19562ADSCrossRefGoogle Scholar
  45. Pu M, Guo Y, Ma X et al (2019) Methodologies for on-demand dispersion engineering of waves in metasurfaces. Adv Opt Mater 7:1801376. Scholar
  46. Ramakrishna SA, Pendry JB, Schurig D et al (2002) The asymmetric lossy near-perfect lens. J Mod Opt 49:1747–1762ADSzbMATHCrossRefGoogle Scholar
  47. Ren G, Wang C, Yi G et al (2013) Subwavelength demagnification imaging and lithography using hyperlens with a plasmonic reflector layer. Plasmonics 8:1065–1072CrossRefGoogle Scholar
  48. Schouten HF, Kuzmin N, Dubois G et al (2005) Plasmon-assisted two-slit transmission: young’s experiment revisited. Phys Rev Lett 94:053901ADSCrossRefGoogle Scholar
  49. Shi H, Luo X, Du C (2007) Young’s interference of double metallic nanoslit with different widths. Opt Express 15:11321–11327ADSCrossRefGoogle Scholar
  50. Song M, Li X, Pu M et al (2018) Color display and encryption with a plasmonic polarizing metamirror. Nano 7:323Google Scholar
  51. Sun J, Xu T, Litchinitser NM (2016) Experimental demonstration of demagnifying hyperlens. Nano Lett 16:7905–7909ADSCrossRefGoogle Scholar
  52. Tao X, Wang C, Zhao Z et al (2014) A method for uniform demagnification imaging beyond the diffraction limit: cascaded planar hyperlens. Appl Phys B Lasers Opt 114:545–550ADSCrossRefGoogle Scholar
  53. Wang W, Xing H, Fang L et al (2008) Far-field imaging device: planar hyperlens with magnification using multi-layer metamaterial. Opt Express 16:21142–21148ADSCrossRefGoogle Scholar
  54. Wang C, Gao P, Tao X et al (2013a) Far field observation and theoretical analyses of light directional imaging in metamaterial with stacked metal-dielectric films. Appl Phys Lett 103:031911ADSCrossRefGoogle Scholar
  55. Wang C, Gao P, Zhao Z et al (2013b) Deep sub-wavelength imaging lithography by a reflective plasmonic slab. Opt Express 21:20683–20691ADSCrossRefGoogle Scholar
  56. Wang C, Zhang W, Zhao Z et al (2016) Plasmonic structures, materials and lenses for optical lithography beyond the diffraction limit: a review. Micromachines 7:118CrossRefGoogle Scholar
  57. Xie X, Pu M, Huang Y et al (2019) Heat resisting metallic meta-skin for simultaneous microwave broadband scattering and infrared invisibility based on catenary optical field. Adv Mater Technol 4:1800612CrossRefGoogle Scholar
  58. Xiong Y, Liu Z, Zhang X (2009) A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm. Appl Phys Lett 94:203108ADSCrossRefGoogle Scholar
  59. Xu T, Wang C, Du C, Luo X (2008a) Plasmonic beam deflector. Opt Express 16:4753–4759ADSCrossRefGoogle Scholar
  60. Xu T, Zhao Y, Gan D et al (2008b) Directional excitation of surface plasmons with subwavelength slits. Appl Phys Lett 92:101501ADSCrossRefGoogle Scholar
  61. Xu T, Zhao Y, Ma J et al (2008c) Sub-diffraction-limited interference photolithography with metamaterials. Opt Express 16:13579–13584ADSCrossRefGoogle Scholar
  62. Xu T, Fang L, Ma J et al (2009) Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns. Appl Phys B Lasers Opt 97:175–179ADSCrossRefGoogle Scholar
  63. Yan C, Li X, Pu M et al (2019) Generation of polarization-sensitive modulated optical vortices with all-dielectric metasurfaces. ACS Photon 6:628–633CrossRefGoogle Scholar
  64. Yao N, Wang C, Tao X et al (2013) Sub-diffraction phase-contrast imaging of transparent nano-objects by plasmonic lens structure. Nanotechnology 24:135203ADSCrossRefGoogle Scholar
  65. Zhang W, Wang H, Wang C et al (2015a) Elongating the air working distance of near-field plasmonic lens by surface plasmon illumination. Plasmonics 10:51–56CrossRefGoogle Scholar
  66. Zhang Z, Luo J, Song M, Yu H (2015b) Large-area, broadband and high-efficiency near-infrared linear polarization manipulating metasurface fabricated by orthogonal interference lithography. Appl Phys Lett 107:241904ADSCrossRefGoogle Scholar
  67. Zhang F, Pu M, Li X et al (2017) All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin-orbit interactions. Adv Funct Mater 27:1704295CrossRefGoogle Scholar
  68. Zhao Z, Luo Y, Zhang W et al (2015) Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination. Sci Rep 5:15320ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-EngineeringInstitute of Optics and Electronics, Chinese Academy of SciencesChengduChina

Section editors and affiliations

  • Minghui Hong
    • 1
  1. 1.Dept. of Electrical & Computer EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations