Advertisement

Pulsed Laser Deposition: Fundamentals, Applications, and Perspectives

  • Floriana Craciun
  • Thomas Lippert
  • Maria DinescuEmail author
Living reference work entry
  • 35 Downloads

Abstract

Pulsed laser deposition (PLD) has established itself as one of the pillar techniques for the growth of thin films and nanostructures. The fundamental aspects and applications of PLD described in this chapter do not aim to offer an exhaustive view about this field of science, but rather to describe a brief evolution of its conceptual background in order to settle on the most prominent state-of-the-art achievements. The fundamental discussion around the technique emphasizes how initial efforts to achieve a comprehensive picture that relates target laser ablation to plasma kinetics and to thin film growth were critical in understanding the overwhelming complexity of the relationship between these processes and experimental parameters, such as laser pulse properties, type of vacuum or ambient atmosphere, substrate characteristics, and others. With these in mind, state-of-the-art thin films grown by PLD came to rely on an ab initio design of interfacial characteristics that was achieved by correlating their underlying physical interactions to experimental conditions. This approach has yielded remarkable results, particularly for multicomponent thin films, in view of next-generation applications in ferroelectrics and multiferroics, superlattices, photocatalysis, photovoltaics, etc. The perspectives of PLD in relation to the latest developments in the field are also discussed.

Notes

Acknowledgements

One of the authors (M.D.) would like to acknowledge the funding and support received through the Romanian Ministry of Research and Innovation, PN-III-P4-ID-PCCF-2016-0033, 7/2018, as well as the collaboration between SSC Pacific and INFLPR in the frame of CRADA agreement NCRADA-SSCPacific -18-309.

References

  1. Agar JC, Damodaran AR, Okatan MB et al (2016) Highly mobile ferroelastic domain walls in compositionally graded ferroelectric thin films. Nat Mater 15:549–556ADSCrossRefGoogle Scholar
  2. Anisimov SI, Bäuerle D, Luk’yanchuk BS (1993) Gas dynamics and film profiles in pulsed-laser deposition of materials. Phys Rev B 48:12076ADSCrossRefGoogle Scholar
  3. Balke N, Choudhury S, Jesse S et al (2009) Deterministic control of ferroelastic switching in multiferroic materials. Nat Nanotechnol 4:868–875ADSCrossRefGoogle Scholar
  4. Bäuerle D (2011) Laser processing and chemistry, 3rd edn. Springer, Berlin/Heidelberg/New YorkCrossRefGoogle Scholar
  5. Benckiser E, Haverkort MW, Brück S et al (2011) Orbital reflectometry of oxide heterostructures. Nat Mater 10:189–193ADSCrossRefGoogle Scholar
  6. Brinkman A, Huijben M, Van Zalk M et al (2007) Magnetic effects at the interface between non-magnetic oxides. Nat Mater 6:493–496ADSCrossRefGoogle Scholar
  7. Choi WS, Rouleau CM, Seo SSA et al (2012) Atomic layer engineering of perovskite oxides for chemically sharp heterointerfaces. Adv Mater 24:6423–6428CrossRefGoogle Scholar
  8. Choi E-M, Fix T, Kursumovic A et al (2014) Room temperature ferrimagnetism and ferroelectricity in strained, thin films of BiFe0.5Mn0.5O3. Adv Funt Mater 24:7478–7487CrossRefGoogle Scholar
  9. Chrisey DB, Hubler GK (eds) (1994) Pulsed laser deposition of thin films. Wiley, New YorkGoogle Scholar
  10. Chu Y-H, Martin LW, Holkomb MB et al (2008) Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat Mater 7:478–482ADSCrossRefGoogle Scholar
  11. Craciun F, Verardi P, Dinescu M (2002) Piezoelectric thin films: processing and properties. In: Nalwa HS (ed) Handbook of thin film materials, Vol. 3. Ferroelectric and Dielectric Thin Films. Academic, San Diego, pp 231–309Google Scholar
  12. Damodaran AR, Clarkson JD, Hong Z et al (2017) Phase coexistence and electric-field control of toroidal order in oxide superlattices. Nat Mater 16:1003–1009ADSCrossRefGoogle Scholar
  13. Dinescu M, Verardi P (1996) ZnO thin film deposition by laser ablation of Zn target in oxygen reactive atmosphere. Appl Surf Science 106:149–153ADSCrossRefGoogle Scholar
  14. Dinescu M, Verardi P, Boulmer-Leborgne C, Gerardi C, Mirenghi L, Sandu V (1998) GaN thin films deposition by laser ablation of liquid Ga target in nitrogen reactive atmosphere. Appl Surf Sci 127–129:559–563ADSCrossRefGoogle Scholar
  15. Driza N, Blanco-Canosa S, Bakr M et al (2012) Long-range transfer of electro-phonon coupling in oxide superlattices. Nat Mater 11:675–681ADSCrossRefGoogle Scholar
  16. Eason R (2007) Pulsed laser deposition of thin films: applications-led growth of functional materials. Wiley, HobokenGoogle Scholar
  17. Eerenstein W, Wiora M, Prieto JL et al (2007) Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. Nat Mater 6:348–351ADSCrossRefGoogle Scholar
  18. Evans A, Martyczuk J, Stender D et al (2015) Low-temperature micro-solid oxide fuel cells with partially amorphous La0.6Sr0.4CoO3-δ cathodes. Adv Energy Mater 5:1400747-1-9CrossRefGoogle Scholar
  19. Franklin JB, Downing JM, Giuliani F et al (2012) Building on soft foundations: new possibilities for controlling hybrid photovoltaic architectures. Adv Energy Mater 2:528–531CrossRefGoogle Scholar
  20. Gajek M, Bibes M, Fusil S et al (2007) Tunnel junctions with multiferroic barriers. Nat Mater 6:296–302ADSCrossRefGoogle Scholar
  21. Harrington SA, Zhai J, Denev S et al (2011) Thick lead-free ferroelectric films with high curie temperatures through nanocomposite-induced strain. Nat Nanotechnol 6:491–495ADSCrossRefGoogle Scholar
  22. He B, Wang Z (2016) Enhancement of the electrical properties in BaTiO3/PbZr0.52Ti0.48O3 feroelectric superlattices. ACS Appl Mater Interfaces 8:6736–6742CrossRefGoogle Scholar
  23. Hu N, Lu C, Xia Z et al (2015) Multiferroelectricity and magnetoelectric coupling in TbMnO3 thin films. ACS Appl Mater Interfaces 7:26603–26607CrossRefGoogle Scholar
  24. Hwang HY, Ywasa Y, Kawasaki M et al (2012) Emergent phenomena at oxide interfaces. Nat Mater 11:103–113ADSCrossRefGoogle Scholar
  25. Ion V, Craciun F, Scarisoreanu ND et al (2018) Impact of thickness variation on structural, dielectric and piezoelectric properties of (Ba,Ca)(Ti,Zr)O3 epitaxial thin films. Sci Rep 8:2056-1-9ADSCrossRefGoogle Scholar
  26. Jia T, Fan Z, Yao J et al (2018) Multifield control of domains in a room-temperature multiferroic 0.85 BiTi0.1Fe0.8Mg0.1O3-0.15 CaTiO3 thin film. ACS Appl Mater Interfaces 10:20712–20719CrossRefGoogle Scholar
  27. Jiang J, Bai ZL, Chen ZH et al (2018) Temporary formation of highly conductive domain walls for non-destructive read-out of ferroelectric domain-wall resistance switching memories. Nat Mater 17:49–55ADSCrossRefGoogle Scholar
  28. Jiang J, Yang Q, Zhang Y et al (2019) Self-assembled ferroelectric nanoarray. ACS Appl Mater Interfaces 11:2205–2210CrossRefGoogle Scholar
  29. Kan D, Palova L, Anbusathaiah V et al (2010) Universal behavior and electric field induced structural transition in rare-earth-substituted BiFeO3. Adv Funct Mater 20:1108–1115CrossRefGoogle Scholar
  30. Kan D, Aso R, Sato R et al (2016) Tuning magnetic anisotropy by interfacially engineering the oxygen coordination environment in a transition metal oxide. Nat Mater 15:432–437ADSCrossRefGoogle Scholar
  31. Kim Y-M, Morozovska A, Eliseev E (2014) Direct observation of ferroelectric field effect and vacancy-controlled screening at the BiFeO3/LaxSr1-xMnO3 interface. Nat Mater 13:1019–1025ADSCrossRefGoogle Scholar
  32. Kupher B, Majhi K, Keller DA et al (2015) Thin film Co3O4/TiO2 heterojunction solar cells. Adv Energy Mater 5:1401007CrossRefGoogle Scholar
  33. Langenberg E, Guzman R, Maurel L et al (2015) Epitaxial stabilization of the perovskite phase in (Sr1-xBax)MnO3 thin films. ACS Appl Mater Interfaces 7:23967–23977CrossRefGoogle Scholar
  34. Lee S, Tarantini C, Gao P et al (2013a) Artificially engineered superlattices of pnictide superconductors. Nat Mater 12:392–396ADSCrossRefGoogle Scholar
  35. Lee J-S, Xie YW, Sato HK et al (2013b) Titanium dxy ferromagnetism at the LaAlO3/SrTiO3 interface. Nat Mater 12:703–706ADSCrossRefGoogle Scholar
  36. Lemée N, Infante IC, Hubault C et al (2015) Polarization rotation in ferroelectric tricolor PbTiO3/SrTiO3/PbZr0.2Ti0.8O3 superlattices. ACS Appl Mater Interfaces 7:19906–19913CrossRefGoogle Scholar
  37. Li Z, Guo X, Lu H-B et al (2014) An epitaxial ferroelectric tunnel junction on silicon. Adv Mater 26:7185–7189CrossRefGoogle Scholar
  38. Li L, Lu L, Zhang D et al (2016) Direct observation of magnetic field induced ferroelectric domain evolution in self-assembled quasi (0-3) BiFeO3-CoFe2O4 thin films. ACS Appl Mater Interfaces 8:442–448CrossRefGoogle Scholar
  39. Liu B, Chen X, Dong Y et al (2011) A high-performance, nanostructured Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathode for solid-oxide fuel cells. Adv Energy Mater 1:343–346CrossRefGoogle Scholar
  40. Lorazo P, Lewis LJ, Meunier M (2006) Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation. Phys Rev B 73:134108ADSCrossRefGoogle Scholar
  41. Lu Z, Li P, Wan J-G et al (2017) Controllable photovoltaic effect of microarray derived from epitaxial tetragonal BiFeO3 films. ACS Appl Mater Interfaces 9:27284–27289CrossRefGoogle Scholar
  42. Lyu J, Estandia S, Gazquez J et al (2018) Control of polar orientation and lattice strain in epitaxial BaTiO3 films on silicon. ACS Appl Mater Interfaces 10:25529–25535CrossRefGoogle Scholar
  43. McGilly LJ, Yudin P, Feigl L et al (2015) Controlling domain wall motion in ferroelectric thin films. Nat Nanotechnol 10:145–150ADSCrossRefGoogle Scholar
  44. Miotello A, Kelly R (1995) Critical assessment of thermal models for laser sputtering at high fluences. Appl Phys Lett 67:3535ADSCrossRefGoogle Scholar
  45. Mirjolet M, Sanchez F, Fontcuberta J (2019) High carrier mobility, electrical conductivity and optical transmittance in epitaxial SrVO3 thin films. Adv Funct Mater 29:1808432-1-7Google Scholar
  46. Nguyen MD, Houwman PE, Dekkers M et al (2017a) PZT films with vertically aligned columnar grains with strongly enhanced piezoelectric response. ACS Appl Mater Interfaces 9:9849–9861CrossRefGoogle Scholar
  47. Nguyen MD, Houwman EP, Yuan H et al (2017b) Controlling piezoelectric response in Pb(Zr0.52Ti0.48)O3 films through deposition conditions and nanosheet buffer layers on glass. ACS Appl Mater Interfaces 9:35947–35957CrossRefGoogle Scholar
  48. Ojeda-G-P A, Döbeli M, Lippert T (2018) Influence of plume properties on thin film composition in pulsed laser deposition. Adv Mater Interfaces 5:1701062CrossRefGoogle Scholar
  49. Ossi PM (2018) Advances in the application of lasers in materials science, Springer series in materials science, vol 274. Springer Nature Switzerland, ChamGoogle Scholar
  50. Pandya S, Wilbur J, Kim J et al (2018) Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films. Nat Mater 17:432–438ADSCrossRefGoogle Scholar
  51. Pfenninger R, Afyon S, Garbayo I et al (2018) Lithium titanate anode thin films for Li-ion solid state battery based on garnets. Adv Funct Mater 28:1800879-1-8CrossRefGoogle Scholar
  52. Pichler M, Si W, Haydous F et al (2017) LaTiOxNy thin film model systems for photocatalytic water splitting: physicochemical evolution of the solid-liquid interface and the role of the crystallographic orientation. Adv Func Mater 27:1605690CrossRefGoogle Scholar
  53. Puretzky AA, Merkulov IA, Rouleau CM, Eres G, Geohegan DB (2014) Revealing the surface and bulk regimes of isothermal graphene nucleation and growth on Ni with in situ kinetic measurements and modeling. Carbon 79:256–264CrossRefGoogle Scholar
  54. Sando D, Agbelele A, Rahmedov D et al (2013) Crafting the magnonic and spintronic response of BiFeO3 films by epitaxial strain. Nat Mater 12:641–646ADSCrossRefGoogle Scholar
  55. Scarisoreanu ND, Craciun F, Moldovan A (2015) High permittivity (1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 (x = 0.45) epitaxial thin films with nanoscale phase fluctuations. ACS Appl Mater Interfaces 7:23984–23992CrossRefGoogle Scholar
  56. Scarisoreanu ND, Craciun F, Birjega R et al (2016) Joining chemical pressure and epitaxial strain to yield Y-doped BiFeO3 thin films with high dielectric response. Sci Rep 6:25535-1-13ADSCrossRefGoogle Scholar
  57. Scarisoreanu ND, Craciun F, Ion V, Birjega R, Bercea A, Dinca V, Dinescu M, Sima LE, Icreverzi M, Roseanu A, Gruionu L, Gruionu G (2017) Lead-free piezoelectric (Ba,Ca)(Zr,Ti)O3 thin films for biocompatible and flexible devices. ACS Appl Mater Interfaces 9:266–278CrossRefGoogle Scholar
  58. Shetty S, Damodaran A, Wang K (2019) Relaxor behavior in ordered lead magnesium niobate (PbMg1/3Nb2/3O3) thin films. Adv Funct Mater 29:1804258-1-9CrossRefGoogle Scholar
  59. Shin JS, Kim Y, Kang S-J et al (2017) Interface control of ferroelectricity in an SrRuO3/BaTiO3/SrRuO3 capacitor and its critical thickness. Adv Mater 29:1602795-1-6Google Scholar
  60. Singh RK, Narayan J (1990) Pulsed-laser evaporation technique for deposition of thin films: physics and theoretical model. Phys Rev B 41:8843ADSCrossRefGoogle Scholar
  61. Smith M, Turner AF (1965) Vacuum deposited thin films using a ruby laser. Appl Opt 4:147–148ADSCrossRefGoogle Scholar
  62. Stoner LA, Murgatroyd PAE, O’Sullivan M et al (2019) Chemical control of correlated metals as transparent conductors. Adv Funct Mater 29:1808609-1-7CrossRefGoogle Scholar
  63. Stornaiuolo D, Cantoni C, De Luca GM et al (2016) Tunable spin polarization and superconductivity in engineered oxide interfaces. Nat Mater 15:278–283ADSCrossRefGoogle Scholar
  64. Studenikin SA, Golego N, Cocivera M (1998) Optical and electrical properties of undoped ZnO films grown by spray pyrolysis of zinc nitrate solution. J Appl Phys 83:2104ADSCrossRefGoogle Scholar
  65. Tyunina M, Yao L, Plekh M et al (2013) Epitaxial ferroelectric heterostructures with nanocolumn-enhanced dynamic properties. Adv Funct Mater 23:467–474CrossRefGoogle Scholar
  66. Valencia S, Crassous A, Bocher L et al (2011) Interface-induced room-temperature multiferroicity in BaTiO3. Nat Mater 10:753–758ADSCrossRefGoogle Scholar
  67. Vasudevan RK, Morozovska AN, Eliseev EA et al (2012) Domain wall geometry controls conduction in ferroelectrics. Nano Lett 12:5524–5531ADSCrossRefGoogle Scholar
  68. Verardi P, Dinescu M, Andrei A (1996) Characterization of ZnO thin films deposited by laser ablation in reactive atmosphere. Appl Surf Sci 96-98:827–830ADSCrossRefGoogle Scholar
  69. Verardi P, Nastase N, Gherasim C, Ghica C, Dinescu M, Dinu R, Flueraru C (1999) Scanning force microscopy and electron microscopy studies of pulsed laser deposited ZnO thin films: application to the bulk acoustic waves (BAW) devices. J Crystal Growth 197:523–528ADSCrossRefGoogle Scholar
  70. Wei Y, Nukala P, Salverda M et al (2018) A rhombohedral ferroelectric phase in epitaxially strained Hf0.5Zr0.5O2 thin films. Nat Mater 17:1095–1100ADSCrossRefGoogle Scholar
  71. Wen Z, Li C, Wu D et al (2013) Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. Nat Mater 12:617–621ADSCrossRefGoogle Scholar
  72. Wu SM, Cybart SA, Yu P et al (2010) Reversible electric control of exchange bias in a multiferroic field-effect device. Nat Mater 9:756–761ADSCrossRefGoogle Scholar
  73. Xu R, Liu S, Grinberg I et al (2015) Ferroelectric polarization reversal via successive ferroelastic transitions. Nat Mater 14:79–86ADSCrossRefGoogle Scholar
  74. Yin YW, Burton JD, Kim Y-M et al (2013) Enhanced tunneling electroresistance effect due to a ferroelectrically induced phase transition at a magnetic complex oxide interface. Nat Mater 12:397–402ADSCrossRefGoogle Scholar
  75. Zhu XN, Gao TT, Xu X et al (2016) Piezoelectric and dielectric properties of multilayered BaTiO3/(Ba,Ca)TiO3/CaTiO3 thin films. ACS Appl Mater Interfaces 8:22309–22315CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Floriana Craciun
    • 1
  • Thomas Lippert
    • 2
    • 4
  • Maria Dinescu
    • 3
    Email author
  1. 1.Istituto di Struttura della Materia-CNR (ISM-CNR), Area della Ricerca di Roma-Tor VergataRomeItaly
  2. 2.Research with Neutrons and Muons DivisionPaul Scherrer InstituteVilligenSwitzerland
  3. 3.National Institute for Laser, Plasma and Radiation PhysicsMagureleRomania
  4. 4.Department of Chemistry and Applied Biosciences, Laboratory of Inorganic ChemistryETH ZurichZurichSwitzerland

Section editors and affiliations

  • Milan Brandt
    • 1
  1. 1.School of EngineeringRMIT University (Royal Melbourne Institute of Technology)MelbourneAustralia

Personalised recommendations