Physiochemical Methods for Detection of Occupational Contact Allergens

  • Malin Engfeldt
  • Birgitta Gruvberger
  • Magnus BruzeEmail author
Reference work entry


To diagnose and prevent allergic contact dermatitis the demonstration of allergens in products from the patient’s environment is important. Chemical analysis of a product can make it possible to demonstrate the presence or absence of known allergens.

There are simple spot tests that can be used to qualitatively demonstrate the presence of some of the most common contact allergens such as nickel ions, hexavalent chromium ions, cobalt ions, and formaldehyde.

For most substances more advanced chemical methods are needed. Such methods often consist of a chromatographic separation system and a detection system. Examples of separation techniques are thin-layer chromatography, high-performance liquid chromatography, and gas chromatography, while detection and quantification of substances can be done using e.g., UV-VIS spectrophotometry, mass spectrometry, and atomic absorption spectrophotometry.

Methods such as mass spectrometry, nuclear magnetic resonance spectroscopy, and infrared spectrophotometry are often required to identify isolated allergens.


Spot tests Thin layer chromatography High pressure liquid chromatography Mass spectrometry Atomic absorption spectrophotometry 


  1. Andersen KE, Nielsen GD, Flyvholm MA et al (1983) Nickel in tap water. Contact Dermatitis 9(2):140–143PubMedCrossRefGoogle Scholar
  2. Antelmi A, Bruze M, Zimerson E, Engfeldt M, Young E, Persson L, Foti C, Sörensen Ö, Svedman C (2017) Evaluation of concordance between labelling and content of 52 hair dye products: overview of the market of oxidative hair dye. Eur J Dermatol 27(2):123–131. Scholar
  3. Arisu K, Hayakawa R, Ogino Y et al (1992) Tinuvin P in a spandex tape as a cause of clothing dermatitis. Contact Dermatitis 26(5):311–316PubMedCrossRefGoogle Scholar
  4. Avenel-Audran M, Goossens A, Zimerson E et al (2003) Contact dermatitis from electrocardiograph-monitoring electrodes: role of p-tert-butylphenol-formaldehyde resin. Contact Dermatitis 48(2):108–111CrossRefGoogle Scholar
  5. Bergendorff O, Hansson C (2001) Stability of thiuram disulfides in patch test preparations and formation of asymmetric disulfides. Contact Dermatitis 45(3):151–157PubMedCrossRefGoogle Scholar
  6. Bergendorff O, Ezzelarab M, Wallengren J (1994) Airborne contact dermatitis from formaldehyde released from heated plastic polymers. Am J Contact Dermat 5:223–225Google Scholar
  7. Bergendorff O, Persson CM, Hansson C (2004) HPLC analysis of alkyl thioureas in an orthopaedic brace and patch testing with pure ethylbutylthiourea. Contact Dermatitis 51(5–6):273–277PubMedCrossRefGoogle Scholar
  8. Bergendorff O, Persson C, Hansson C (2006) High-performance liquid chromatography analysis of rubber allergens in protective gloves used in health care. Contact Dermatitis 55(4):210–215PubMedCrossRefGoogle Scholar
  9. Bergh M, Menne T, Karlberg AT (1994) Colophony in paper-based surgical clothing. Contact Dermatitis 31(5):332–333PubMedCrossRefGoogle Scholar
  10. Björkner B, Niklasson B (1997) Contact allergy to the UV absorber Tinuvin P in a dental restorative material. Am J Contact Dermat 8(1):6–7PubMedGoogle Scholar
  11. Blom G (1959) Formaldehyde contact dermatitis. Acta Derm Venereol 39:450–453Google Scholar
  12. Bruze M, Fregert S (1983a) Allergic contact dermatitis from ethylene thiourea. Contact Dermatitis 9(3):208–212PubMedCrossRefGoogle Scholar
  13. Bruze M, Fregert S (1983b) Studies on purity and stability of photopatch test substances. Contact Dermatitis 9(1):33–39PubMedCrossRefGoogle Scholar
  14. Bruze M, Gruvberger B (1985) Contact allergy to photoproducts of musk ambrette. Photo-Dermatology 2(5):310–314PubMedGoogle Scholar
  15. Bruze M, Fregert S, Gruvberger B (1984) Occurrence of para-aminobenzoic acid and benzocaine as contaminants in sunscreen agents of para-aminobenzoic acid type. Photo-Dermatology 1(6):277–285PubMedGoogle Scholar
  16. Bruze M, Edman B, Niklasson B et al (1985) Thin layer chromatography and high pressure liquid chromatography of musk ambrette and other nitromusk compounds including photopatch studies. Photo-Dermatology 2(5):295–302PubMedGoogle Scholar
  17. Bruze M, Persson L, Trulsson L et al (1986) Demonstration of contact sensitizers in resins and products based on phenol-formaldehyde. Contact Dermatitis 14(3):146–154PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bruze M, Gruvberger B, Thulin I (1990) PABA, benzocaine, and other PABA esters in sunscreens and after-sun products. Photodermatol Photoimmunol Photomed 7(3):106–108PubMedGoogle Scholar
  19. Bruze M, Frick M, Persson L (2003) Patch testing with thin-layer chromatograms. Contact Dermatitis 48(5):278–279PubMedCrossRefGoogle Scholar
  20. Bruze M, Gruvberger B, Fregert S (2006) Chemical skin burns. In: Chew A, Maibach HI, Lepoittevin JP (eds) Irritant dermatitis. Springer, Berlin, pp 53–61CrossRefGoogle Scholar
  21. Dahlin J, Bergendorff O, Vindenes HK, Hindsén M, Svedman C (2014) Triphenylguanidine, a new (old?) rubber accelerator detected in surgical gloves that may cause allergic contact dermatitis. Contact Dermatitis 71(4):242–246. Scholar
  22. Dahlquist I, Fregert S, Gruvberger B (1980) Reliability of the chromotropic acid method for qualitative formaldehyde determination. Contact Dermatitis 6(5):357–358PubMedCrossRefGoogle Scholar
  23. Depree GJ, Bledsoe TA, Siegel PD (2005) Survey of sulfur-containing rubber accelerator levels in latex and nitrile exam gloves. Contact Dermatitis 53(2):107–113PubMedCrossRefGoogle Scholar
  24. Dooms-Goossens A, Bruze M, Buysse L et al (1995) Contact allergy to allyl glycidyl ether present as an impurity in 3-glycidyloxypropyltrimethoxysilane, a fixing additive in silicone and polyurethane resins. Contact Dermatitis 33(1):17–19PubMedCrossRefGoogle Scholar
  25. Ehrin E, Karlberg AT (1990) Detection of rosin (colophony) components in technical products using an HPLC technique. Contact Dermatitis 23(5):359–366CrossRefGoogle Scholar
  26. European Committee for Standardisation (CEN) (1998) Reference test method for release of nickel from products intended to come into direct and prolonged contact with the skin, EN 1811Google Scholar
  27. European Committee for Standardisation (CEN) (2002) Screening tests for nickel release from alloys and coatings in items that come in direct and prolonged contact with the skin, CR: 12471Google Scholar
  28. Febriana SA, Zimerson E, Svedman C, Haryadi W, Coenraads PJ, Schuttelaar ML (2015) Thin-layer chromatography and gas chromatography-mass spectrometry examination of shoe materials from patients with shoe dermatitis. Contact Dermatitis 72(4):248–252. Scholar
  29. Feigl F, Anger V (1966) Spot tests in organic analysis. Elsevier, AmsterdamGoogle Scholar
  30. Feigl F, Anger V (1972) Spot tests in inorganic analysis. Elsevier, AmsterdamGoogle Scholar
  31. Fischer T, Fregert S, Gruvberger B et al (1984) Contact sensitivity to nickel in white gold. Contact Dermatitis 10(1):23–24PubMedCrossRefGoogle Scholar
  32. Foti C, Romita P, Rigano L, Zimerson E, Sicilia M, Ballini A, Ghizzoni O, Antelmi A, Angelini G, Bonamonte D, Bruze M (2016) Isobornyl acrylate: an impurity in alkyl glucosides. Cutan Ocul Toxicol 35(2):115–119. Scholar
  33. Fregert S, Gruvberger B (1972) Chemical properties of cement. Berufsdermatosen 20(5):238–248PubMedGoogle Scholar
  34. Fregert S, Trulsson L (1978) Simple methods for demonstration of epoxy resins of bisphenol a type. Contact Dermatitis 4(2):69–72PubMedCrossRefGoogle Scholar
  35. Fregert S, Trulson L, Zimerson E (1982) Contact allergic reactions to diphenylthiourea and phenylisothiocyanate in PVC adhesive tape. Contact Dermatitis 8(1):38–42PubMedCrossRefGoogle Scholar
  36. Fregert S, Dahlquist I, Gruvberger B (1984a) A simple method for the detection of formaldehyde. Contact Dermatitis 10(3):132–134PubMedCrossRefGoogle Scholar
  37. Fregert S, Meding B, Trulsson L (1984b) Demonstration of epoxy resin in stoma pouch plastic. Contact Dermatitis 10(2):106PubMedCrossRefGoogle Scholar
  38. Frick M, Zimerson E, Karlsson D et al (2004) Poor correlation between stated and found concentrations of diphenylmethane-4,4′-diisocyanate (4,4′-MDI) in petrolatum patch-test preparations. Contact Dermatitis 51(2):73–78PubMedCrossRefGoogle Scholar
  39. Frick-Engfeldt M, Zimerson E, Karlsson D et al (2005) Chemical analysis of 2,4-toluene diisocyanate, 1,6-hexamethylene diisocyanate and isophorone diisocyanate in petrolatum patch-test preparations. Dermatitis 16(3):130–135PubMedGoogle Scholar
  40. Garcia-Hidalgo E, Sottas V, von Goetz N, Hauri U, Bogdal C, Hungerbühler K (2017) Occurrence and concentrations of isothiazolinones in detergents and cosmetics in Switzerland. Contact Dermatitis 76(2):96–106. Erratum in: Contact Dermatitis. 2017 May; 76(5):324.CrossRefPubMedGoogle Scholar
  41. Gimenez-Arnau A, Gimenez-Arnau E, Serra-Baldrich E et al (2002) Principles and methodology for identification of fragrance allergens in consumer products. Contact Dermatitis 47(6):345–352PubMedCrossRefGoogle Scholar
  42. Goon AT, Bruze M, Zimerson E, Sörensen O, Goh CL, Koh DS, Isaksson M (2011) Correlation between stated and measured concentrations of acrylate and methacrylate allergens in patch-test preparations. Dermatitis 22(1):27–32PubMedCrossRefGoogle Scholar
  43. Gruvberger B, Persson K, Bjorkner B et al (1986) Demonstration of Kathon CG in some commercial products. Contact Dermatitis 15(1):24–27PubMedCrossRefGoogle Scholar
  44. Gruvberger B, Bruze M, Tammela M (1998) Preservatives in moisturizers on the Swedish market. Acta Derm Venereol 78(1):52–56PubMedCrossRefGoogle Scholar
  45. Gryllaki-Berger M, Mugny C, Perrenoud D et al (1992) A comparative study of formaldehyde detection using chromotropic acid, acetylacetone and HPLC in cosmetics and household cleaning products. Contact Dermatitis 26(3):149–154PubMedCrossRefGoogle Scholar
  46. Hamann CR, Zimerson E, Hamann D, Laugesen L, Carlsson B, Nathansen C, Hamann C, Bruze M (2012) Concentration variability of potent allergens of p-tert-butylphenol-formaldehyde resin (PTBP-FR) in patch test preparations and commercially available PTBP-FR. Br J Dermatol 166(4):761–770. Scholar
  47. Hamann D, Hamann CR, Zimerson E, Bruze M (2013) Hydroxyisohexyl 3-cyclohexene carboxaldehyde (lyral) in patch test preparations under varied storage conditions. Dermatitis 24(5):246–248. Scholar
  48. Hansen MB, Menne T, Johansen JD (2006) Cr(III) and Cr(VI) in leather and elicitation of eczema. Contact Dermatitis 54(5):278–282PubMedGoogle Scholar
  49. Hansson C (1994) Determination of monomers in epoxy resin hardened at elevated temperature. Contact Dermatitis 31(5):333–334PubMedCrossRefGoogle Scholar
  50. Hansson C, Bergendorff O, Ezzelarab M et al (1997) Extraction of mercaptobenzothiazole compounds from rubber products. Contact Dermatitis 36(4):195–200PubMedCrossRefGoogle Scholar
  51. Henriks-Eckerman M-L, Kanerva L (1997) Gas chromatographic and mass spectrometric purity analysis of acrylates and methacrylates used as patch test substances. Am J Contact Dermat 8:20–23PubMedCrossRefGoogle Scholar
  52. Herman A, Aerts O, Baeck M, Bruze M, De Block C, Goossens A, Hamnerius N, Huygens S, Maiter D, Tennstedt D, Vandeleene B, Mowitz M (2017) Allergic contact dermatitis caused by isobornyl acrylate in freestyle® libre, a newly introduced glucose sensor. Contact Dermatitis 77(6):367–373. Scholar
  53. Ingber A, Gammelgaard B, David M (1998) Detergents and bleaches are sources of chromium contact dermatitis in Israel. Contact Dermatitis 38(2):101–104PubMedCrossRefGoogle Scholar
  54. Isaksson M, Gruvberger B, Persson L et al (2000) Stability of corticosteroid patch test preparations. Contact Dermatitis 42(3):144–148PubMedCrossRefGoogle Scholar
  55. Jenkinson HA, Burrows D (1987) Pitfalls in the demonstration of epoxy resins. Contact Dermatitis 16(4):226–227PubMedCrossRefGoogle Scholar
  56. Julander A, Hindsen M, Skare L et al (2009) Cobalt-containing alloys and their ability to release cobalt and cause dermatitis. Contact Dermatitis 60(3):165–170PubMedCrossRefGoogle Scholar
  57. Kaniwa MA, Momma J, Ikarashi Y et al (1992) A method for identifying causative chemicals of allergic contact dermatitis using a combination of chemical analysis and patch testing in patients and animal groups: application to a case of rubber boot dermatitis. Contact Dermatitis 27(3):166–173PubMedCrossRefGoogle Scholar
  58. Kaniwa M, Isama K, Nakamura A et al (1994a) Identification of causative chemicals of allergic contact dermatitis using a combination of patch testing in patients and chemical analysis. Application to cases from rubber gloves. Contact Dermatitis 31(2):65–71PubMedCrossRefPubMedCentralGoogle Scholar
  59. Kaniwa MA, Isama K, Nakamura A et al (1994b) Identification of causative chemicals of allergic contact dermatitis using a combination of patch testing in patients and chemical analysis. Application to cases from industrial rubber products. Contact Dermatitis 30(1):20–25PubMedCrossRefGoogle Scholar
  60. Kaniwa MA, Isama K, Nakamura A et al (1994c) Identification of causative chemicals of allergic contact dermatitis using a combination of patch testing in patients and chemical analysis. Application to cases from rubber footwear. Contact Dermatitis 30(1):26–34PubMedCrossRefPubMedCentralGoogle Scholar
  61. Karlberg AT, Dooms-Goossens A (1997) Contact allergy to oxidized d-limonene among dermatitis patients. Contact Dermatitis 36(4):201–206CrossRefGoogle Scholar
  62. Karlberg AT, Magnusson K (1996) Rosin components identified in diapers. Contact Dermatitis 34(3):176–180CrossRefGoogle Scholar
  63. Karlberg AT, Magnusson K, Nilsson U (1992) Air oxidation of D-limonene (the citrus solvent) creates potent allergens. Contact Dermatitis 26(5):332–340PubMedCrossRefGoogle Scholar
  64. Karlberg AT, Gafvert E, Liden C (1995) Environmentally friendly paper may increase risk of hand eczema in rosin-sensitive persons. J Am Acad Dermatol 33(3):427–432CrossRefGoogle Scholar
  65. Karlberg AT, Gafvert E, Meding B et al (1996) Airborne contact dermatitis from unexpected exposure to rosin (colophony). Rosin sources revealed with chemical analyses. Contact Dermatitis 35(5):272–278PubMedCrossRefGoogle Scholar
  66. Karlberg AT, Skare L, Lindberg I et al (1998) A method for quantification of formaldehyde in the presence of formaldehyde donors in skin-care products. Contact Dermatitis 38(1):20–28PubMedCrossRefGoogle Scholar
  67. Kerre S, Devos L, Verhoeve L et al (1996) Contact allergy to diethylthiourea in a wet suit. Contact Dermatitis 35(3):176–178PubMedCrossRefGoogle Scholar
  68. Kroona L, Warfvinge G, Isaksson M, Ahlgren C, Dahlin J, Sörensen Ö, Bruze M (2017) Quantification of l-carvone in toothpastes available on the Swedish market. Contact Dermatitis 77(4):224–230. Scholar
  69. Lachapelle JM, Lauwerys R, Tennstedt D et al (1980) Eau de Javel and prevention of chromate allergy in France. Contact Dermatitis 6(2):107–110PubMedPubMedCentralCrossRefGoogle Scholar
  70. Lammintausta K, Zimerson E, Hasan T et al (2010) An epidemic of furniture-related dermatitis: searching for a cause. Br J Dermatol 162(1):108–116PubMedCrossRefGoogle Scholar
  71. Le Coz CJ, Coninx D, Van Rengen A et al (1999) An epidemic of occupational contact dermatitis from an immersion oil for microscopy in laboratory personnel. Contact Dermatitis 40(2):77–83CrossRefGoogle Scholar
  72. Liden C, Johnsson S (2001) Nickel on the Swedish market before the nickel directive. Contact Dermatitis 44(1):7–12PubMedCrossRefGoogle Scholar
  73. Liden C, Rondell E, Skare L et al (1998) Nickel release from tools on the Swedish market. Contact Dermatitis 39(3):127–131CrossRefGoogle Scholar
  74. Lind ML, Boman A, Surakka J et al (2004) A method for assessing occupational dermal exposure to permanent hair dyes. Ann Occup Hyg 48(6):533–539PubMedGoogle Scholar
  75. Malinauskiene L, Zimerson E, Bruze M, Ryberg K, Isaksson M (2012) Are allergenic disperse dyes used for dyeing textiles? Contact Dermatitis 67(3):141–148. Scholar
  76. Meding B, Baum H, Bruze M et al (1990) Allergic contact dermatitis from diphenylthiourea in Vulkan heat retainers. Contact Dermatitis 22(1):8–12PubMedCrossRefGoogle Scholar
  77. Mowitz M, Zimerson E, Svedman C, Bruze M (2012) Stability of fragrance patch test preparations applied in test chambers. Br J Dermatol 167(4):822–827. Scholar
  78. Niklasson B, Bjorkner B (1989) Contact allergy to the UV-absorber Tinuvin P in plastics. Contact Dermatitis 21(5):330–334CrossRefGoogle Scholar
  79. Nygren O, Wahlberg JE (1998) Speciation of chromium in tanned leather gloves and relapse of chromium allergy from tanned leather samples. Analyst 123(5):935–937PubMedCrossRefGoogle Scholar
  80. Oxholm A, Heidenheim M, Larsen E (1990) Extraction and patch testing of methylcinnamate, a newly recognized fraction of balsam of peru. Am J Contact Dermat 1:43–46CrossRefGoogle Scholar
  81. Paulsen E, Christensen LP, Hindsén M, Andersen KE (2013) Contact sensitization to calocephalin, a sesquiterpene lactone of the guaianolide type from cushion bush (Leucophyta brownii, Compositae). Contact Dermatitis 69(5):303–310. Scholar
  82. Paulsen E, Hyldgaard MG, Andersen KE, Andersen F, Christensen LP (2017) Allergenic sesquiterpene lactones from cushion bush (Leucophyta brownii Cass.): new and old sensitizers in a shrub-turned-a-pot plant. Contact Dermatitis 76(5):280–286. Scholar
  83. Pedersen NB, Fregert S, Brodelius P et al (1974) Release of nickel from silver coins. Acta Derm Venereol 54(3):231–234PubMedGoogle Scholar
  84. Peeters C, Herman A, Goossens A, Bruze M, Mowitz M, Baeck M (2017) Allergic contact dermatitis caused by 2-ethyl cyanoacrylate contained in glucose sensor sets in two diabetic adults. Contact Dermatitis 77(6):426–429. PubMed PMID: 29164694CrossRefPubMedGoogle Scholar
  85. Ponten A, Zimerson E, Sorensen O et al (2004) Chemical analysis of monomers in epoxy resins based on bisphenols F and A. Contact Dermatitis 50(5):289–297PubMedCrossRefGoogle Scholar
  86. Pontén A, Hamnerius N, Bruze M, Hansson C, Persson C, Svedman C, Thörneby Andersson K, Bergendorff O (2013) Occupational allergic contact dermatitis caused by sterile non-latex protective gloves: clinical investigation and chemical analyses. Contact Dermatitis 68(2):103–110. Scholar
  87. Raison-Peyron N, Bergendorff O, Bourrain JL, Bruze M (2016) Acetophenone azine: a new allergen responsible for severe contact dermatitis from shin pads. Contact Dermatitis 75(2):106–110. Scholar
  88. Ramzy AG, Hagvall L, Pei MN, Samuelsson K, Nilsson U (2015) Investigation of diethylthiourea and ethyl isothiocyanate as potent skin allergens in chloroprene rubber. Contact Dermatitis 72(3):139–146. Scholar
  89. Rastogi SC (1990) Kathon CG and cosmetic products. Contact Dermatitis 22(3):155–160PubMedCrossRefGoogle Scholar
  90. Rastogi SC (1995) Analysis of fragrances in cosmetics by gas chromatography- mass spectrometry. J High Resolut Chromatogr 18:653–658CrossRefGoogle Scholar
  91. Rastogi SC, Johansen SS (1995) Comparison of high-performance liquid chromatographic methods for the determination of 1,2-dibromo-2,4-dicyanobutane in cosmetic products. J Chromatogr A 692:53–57CrossRefGoogle Scholar
  92. Rastogi SC, Schouten A, de Kruijf N et al (1995) Contents of methyl-, ethyl-, propyl-, butyl- and benzylparaben in cosmetic products. Contact Dermatitis 32(1):28–30PubMedCrossRefGoogle Scholar
  93. Rastogi SC, Johansen JD, Menne T (1996) Natural ingredients based cosmetics. Content of selected fragrance sensitizers. Contact Dermatitis 34(6):423–426PubMedCrossRefGoogle Scholar
  94. Rastogi SC, Johansen JD, Frosch P et al (1998a) Deodorants on the European market: quantitative chemical analysis of 21 fragrances. Contact Dermatitis 38(1):29–35PubMedCrossRefGoogle Scholar
  95. Rastogi SC, Lepoittevin JP, Johansen JD et al (1998b) Fragrances and other materials in deodorants: search for potentially sensitizing molecules using combined GC-MS and structure activity relationship (SAR) analysis. Contact Dermatitis 39(6):293–303PubMedCrossRefGoogle Scholar
  96. Rastogi SC, Zachariae C, Johansen JD et al (2004) Determination of methyldibromoglutaronitrile in cosmetic products by high-performance liquid chromatography with electrochemical detection. Method Validat J Chromatogr A 1031(26):315–317CrossRefGoogle Scholar
  97. Rietschel RL, Fowler JF (eds) (2008) Fisher’s contact dermatitis, 6th edn. BC Decker, Ontario, p 677Google Scholar
  98. Ryberg K, Gruvberger B, Zimerson E et al (2008) Chemical investigations of disperse dyes in patch test preparations. Contact Dermatitis 58(4):199–209PubMedCrossRefGoogle Scholar
  99. Sadhra S, Gray CN, Foulds IS (1997) High-performance liquid chromatography of unmodified rosin and its applications in contact dermatology. J Chromatogr B Biomed Sci Appl 700(1–2):101–110PubMedCrossRefGoogle Scholar
  100. Schuttelaar ML, Meijer JM, Engfeldt M, Lapeere H, Goossens A, Bruze M, Persson C, Bergendorff O (2018) Allergic contact dermatitis caused by dimethylthiocarbamylbenzothiazole sulfide (DMTBS) in canvas shoes: in search of the culprit allergen. Contact Dermatitis 78(1):7–11. Scholar
  101. Second Commission Directive 82/434/EEC, Annex IV, Identification and determination of free formaldehydeGoogle Scholar
  102. Sheretz EF (1992) Clothing dermatitis: practical aspects for the clinician. Am J Contact Dermat 3:55–64CrossRefGoogle Scholar
  103. Shouten A, Vermeulen M (1994) The determination of dimethyloldimethylhydantoin (DMDMH) in cosmetic products. TNO Nutr Food Res Rep V 94:608Google Scholar
  104. Sottofattori E, Anzaldi M, Balbi A et al (1998) Simultaneous HPLC determination of multiple components in a commercial cosmetic cream. J Pharm Biomed Anal 18(1–2):213–217PubMedCrossRefGoogle Scholar
  105. Stonecipher MR, Sheretz EF (1993) Office detection of formaldehyde in fabric: assessment of methods and update on frequency. Am J Contact Dermat 4:172–174CrossRefGoogle Scholar
  106. Summer B, Fink U, Zeller R et al (2007) Patch test reactivity to a cobalt-chromium-molybdenum alloy and stainless steel in metal-allergic patients in correlation to the metal ion release. Contact Dermatitis 57(1):35–39PubMedCrossRefGoogle Scholar
  107. Suuronen K, Pesonen M, Henriks-Eckerman ML, Aalto-Korte K (2013) Triphenyl phosphite, a new allergen in polyvinylchloride gloves. Contact Dermatitis 68(1):42–49. Scholar
  108. Svedman C, Gruvberger B, Dahlin J, Persson L, Möller H, Bruze M (2013) Evaluation of a method for detecting metal release from gold; cysteine enhances release. Acta Derm Venereol 93(5):577–578. Scholar
  109. Tandon R, Aarts B (1993) Chromium, nickel and cobalt contents of some Australian cements. Contact Dermatitis 28(4):201–205PubMedCrossRefGoogle Scholar
  110. Thyssen JP, Menné T, Johansen JD, Lidén C, Julander A, Møller P, Jellesen MS (2010) A spot test for detection of cobalt release – early experience and findings. Contact Dermatitis 63(2):63–69. Scholar
  111. Uter W, Hildebrandt S, Geier J et al (2007) Current patch test results in consecutive patients with, and chemical analysis of, disperse blue (DB) 106, DB 124, and the mix of DB 106 and 124. Contact Dermatitis 57(4):230–234PubMedCrossRefGoogle Scholar
  112. Villa C, Gambaro R, Mariani E et al (2007) High-performance liquid chromatographic method for the simultaneous determination of 24 fragrance allergens to study scented products. J Pharm Biomed Anal 44(3):755–762PubMedCrossRefGoogle Scholar
  113. Wang H, Provan GJ, Helliwell K (2002) Determination of bronopol and its degradation products by HPLC. J Pharm Biomed Anal 29(1–2):387–392PubMedCrossRefGoogle Scholar
  114. Wass U, Wahlberg JE (1991) Chromated steel and contact allergy. Recommendation concerning a “threshold limit value” for the release of hexavalent chromium. Contact Dermatitis 24(2):114–118PubMedCrossRefGoogle Scholar
  115. Williams RO III, Mahaguna V, Sriwongjanya M (1997) Determination of diazolidinyl urea in a topical cream by high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 696(2):303–306PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Malin Engfeldt
    • 1
  • Birgitta Gruvberger
    • 2
  • Magnus Bruze
    • 3
    • 2
    Email author
  1. 1.Department of Occupational and Environmental DermatologySkåne University Hospital (SUS), Lund UniversityMalmöSweden
  2. 2.Department of Occupational and Environmental DermatologySkåne University Hospital Malmö, Lund UniversityMalmöSweden
  3. 3.Department of DermatologyUniversity of California Medical SchoolSan FranciscoUSA

Personalised recommendations