Identification of Contact Allergens by In Vitro Cell Culture-Based Methods

  • Susan Gibbs
  • Stefan F. Martin
  • Emanuela Corsini
  • Hermann-Josef ThierseEmail author
Reference work entry


If an in vitro model is to replace an animal model, it should perform to at least the same degree of accuracy as current animal models. Most importantly it should correlate to the human experience.

Currently it is thought that no single assay will meet these requirements and that a battery of assays that mimic sensitization in vitro should be developed.

It is thought that such a battery of human cell-based assays will mimic the human situation more than animal cell-based assays.

Assays reflecting epidermal penetration and activation, dendritic cell maturation and migration, and T cell priming assays are being developed.

The irritant property of a sensitizer may be related to sensitizer potency and may enable sensitizer potency to be determined with the aid of an epidermal equivalent assay.

A proteomic approach to investigate the effect of chemical sensitizers on keratinocyte metabolism may identify novel biomarkers.

Genomic and proteomic studies are identifying dendritic cell signatures which identify sensitizers from non-sensitizers.

In vitro T cell priming assays can be used to distinguish sensitizers from non-sensitizers. The nature of these assays, however, makes it currently unlikely that they will be suitable for high-throughput screening.

Progress toward validation is slow but steadily moving forward. A number of assays are being identified which may be suitable for pre-validation studies and then validation studies.


In vitro skin sensitisation Epidermal equivalent (EE) potency assay Epidermal penetration Keratinocytes IL-18 biomarker assay Human T cell priming assay (hTCPA) Dendritic Cell-Based Assays DC maturation DC migration MUTZ-3 Proteomics approach Genomics approach GARD Nrf2-Keap1-Antioxidant Response Element (ARE) h-CLAT U-SENS AOP Cytokines Human monocytic leukaemia cell line THP1 Human histiocytic lymphoma cell line U937 


  1. Aleksic M, Pease CK, Basketter DA, Panico M, Morris HR, Dell A (2007) Investigating protein haptenation mechanisms of skin sensitisers using human serum albumin as a model protein. Toxicol In Vitro 21(4):723–733PubMedCrossRefGoogle Scholar
  2. Aleksic M, Pease CK, Basketter DA, Panico M, Morris HR, Dell A (2008) Mass spectrometric identification of covalent adducts of the skin allergen 2,4-dinitro-1-chlorobenzene and model skin proteins. Toxicol In Vitro 22(5):1169–1176PubMedCrossRefGoogle Scholar
  3. Antonopoulos C, Cumberbatch M, Mee JB, Dearman RJ, Wei XQ, Liew FY, Kimber I, Groves RW (2008) IL-18 is a key proximal mediator of contact hypersensitivity and allergen-induced Langerhans cell migration in murine epidermis. J Leukoc Biol 83(2):361–367PubMedCrossRefGoogle Scholar
  4. Ashikaga T, Yoshida Y, Hirota M, Yoneyama K, Itagaki H, Sakaguchi H, Miyazawa M, Ito Y, Suzuki H, Toyoda H (2006) Development of an in vitro skin sensitization test using human cell lines: the human cell line activation test (h-CLAT). I. Optimization of the h-CLAT protocol. Toxicol In Vitro 20(5):767–773PubMedCrossRefGoogle Scholar
  5. Bergstrom MA, Andersson SI, Broo K, Luthman K, Karlberg AT (2008) Oximes: metabolic activation and structure-allergenic activity relationships. J Med Chem 51(8):2541–2550PubMedCrossRefGoogle Scholar
  6. Brander C, Mauri-Hellweg D, Bettens F, Rolli H, Goldman M, Pichler WJ (1995) Heterogeneous T cell responses to beta-lactam-modified self-structures are observed in penicillin-allergic individuals. J Immunol 155(5):2670–2678PubMedGoogle Scholar
  7. Burgdorf S, Kurts C (2008) Endocytosis mechanisms and the cell biology of antigen presentation. Curr Opin Immunol 20(1):89–95PubMedCrossRefGoogle Scholar
  8. Cluzel-Tailhardat M, Bonnet-Duquennoy M, de Queral DP, Vocanson M, Kurfurst R, Courtellemont P, Le VB, Nicolas JF (2007) Chemicals with weak skin sensitizing properties can be identified using low-density microarrays on immature dendritic cells. Toxicol Lett 174(1–3):98–109PubMedCrossRefGoogle Scholar
  9. Corsini E, Galli CL (2000) Epidermal cytokines in experimental contact dermatitis. Toxicology 142(3):203–211CrossRefGoogle Scholar
  10. Corsini E, Mitjans M, Galbiati V, Lucchi L, Galli CL, Marinovich M (2009) Use of IL-18 production in a human keratinocyte cell line to discriminate contact sensitizers from irritants and low molecular weight respiratory allergens. Toxicol In Vitro 23(5):789–796PubMedCrossRefGoogle Scholar
  11. Cumberbatch M, Dearman RJ, Antonopoulos C, Groves RW, Kimber I (2001) Interleukin (IL)-18 induces Langerhans cell migration by a tumour necrosis factor-alpha- and IL-1beta-dependent mechanism. Immunology 102(3):323–330PubMedPubMedCentralCrossRefGoogle Scholar
  12. Curotto de Lafaille MA, Lafaille JJ (2009) Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 30(5):626–635PubMedCrossRefGoogle Scholar
  13. Dietz L, Bosque A, Pankert P, Ohnesorge S, Merz P, Anel A, Schnolzer M, Thierse HJ (2009) Quantitative DY-maleimide-based proteomic 2-DE-labeling strategies using human skin proteins. Proteomics 9(18):4298–4308PubMedCrossRefGoogle Scholar
  14. Dietz L, Esser PR, Schmucker SS, Goette I, Richter A, Schnölzer M, Martin SF, Thierse HJ (2010) Tracking human contact allergens: from mass spectrometric identification of peptide-bound reactive small chemicals to chemical-specific naive human T-cell priming. Toxicol Sci 117(2):336–347PubMedCrossRefGoogle Scholar
  15. Dietz L, Kinzebach S, Ohnesorge S, Franke B, Goette I, Koenig-Gressel D, Thierse HJ (2013) Proteomic allergen-peptide/protein interaction assay for the identification of human skin sensitizers. Toxicol In Vitro 27(3):1157–62. Scholar
  16. Dos Santos GG, Reinders J, Ouwehand K, Rustemeyer T, Scheper RJ, Gibbs S (2009) Progress on the development of human in vitro dendritic cell based assays for assessment of the sensitizing potential of a compound. Toxicol Appl Pharmacol 236(3):372–382PubMedCrossRefGoogle Scholar
  17. Esser PR, Martin SF (2017) The Human T Cell Priming Assay (hTCPA). In: Eskes C, van Vliet E, Maibach HI, (eds), Alternatives for Dermal Toxicity Testing. Chapter 31, pp. 449–454. Springer, Cham, Switzerland. Scholar
  18. Edele F, Esser PR, Lass C, Laszczyk MN, Oswald E, Struh CM, Rensing-Ehl A, Martin SF (2007) Innate and adaptive immune responses in allergic contact dermatitis and autoimmune skin diseases. Inflamm Allergy Drug Targets 6(4):236–244CrossRefGoogle Scholar
  19. Elahi EN, Wright Z, Hinselwood D, Hotchkiss SA, Basketter DA, Pease CK (2004) Protein binding and metabolism influence the relative skin sensitization potential of cinnamic compounds. Chem Res Toxicol 17(3):301–310PubMedCrossRefGoogle Scholar
  20. European Commission (1986) Council Directive 86/609/EEC of 24 November 1986 on the approximation of laws, regulations and administrative provisions of the Member States regarding the protection of animals used for experimental and other scientific purposes. Off J Eur Communities L358:1–29Google Scholar
  21. European Regulation (2006) Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. Off J Eur Union L396:1–849Google Scholar
  22. Forreryd A, Norinder U, Lindberg T, Lindstedt M (2018) Predicting skin sensitizers with confidence – Using conformal prediction to determine applicability domain of GARD. Toxicol In Vitro 48:179–187. Scholar
  23. Frentsch M, Arbach O, Kirchhoff D, Moewes B, Worm M, Rothe M, Scheffold A, Thiel A (2005) Direct access to CD4+ T cells specific for defined antigens according to CD154 expression. Nat Med 11(10):1118–1124PubMedCrossRefGoogle Scholar
  24. Galbiati V, Gibbs S, Roggen E, Corsini E (2018) Development of an in vitro method to estimate the sensitization induction level of contact allergens. Curr Protoc Toxicol 75:20.15.1–20.15.20.
  25. Gamerdinger K, Moulon C, Karp DR, Van BJ, Koning F, Wild D, Pflugfelder U, Weltzien HU (2003) A new type of metal recognition by human T cells: contact residues for peptide-independent bridging of T cell receptor and major histocompatibility complex by nickel. J Exp Med 197(10):1345–1353PubMedPubMedCentralCrossRefGoogle Scholar
  26. Geiger R, Duhen T, Lanzavecchia A, Sallusto F (2009) Human naive and memory CD4+ T cell repertoires specific for naturally processed antigens analyzed using libraries of amplified T cells. J Exp Med 206(7):1525–1534PubMedPubMedCentralCrossRefGoogle Scholar
  27. Gerberick GF, Ryan CA, Kern PS, Schlatter H, Dearman RJ, Kimber I, Patlewicz GY, Basketter DA (2005) Compilation of historical local lymph node data for evaluation of skin sensitization alternative methods. Dermatitis 16(4):157–202PubMedGoogle Scholar
  28. Gerberick GF, Vassallo JD, Foertsch LM, Price BB, Chaney JG, Lepoittevin JP (2007) Quantification of chemical peptide reactivity for screening contact allergens: a classification tree model approach. Toxicol Sci 97(2):417–427PubMedCrossRefGoogle Scholar
  29. Gerberick F, Aleksic M, Basketter D, Casati S, Karlberg AT, Kern P, Kimber I, Lepoittevin JP, Natsch A, Ovigne JM, Rovida C, Sakaguchi H, Schultz T (2008) Chemical reactivity measurement and the predictive identification of skin sensitisers. The report and recommendations of ECVAM Workshop 64. Altern Lab Anim 36(2):215–242PubMedPubMedCentralCrossRefGoogle Scholar
  30. Gibbs S, van de Sandt JJ, Merk HF, Lockley DJ, Pendlington RU, Pease CK (2007) Xenobiotic metabolism in human skin and 3D human skin reconstructs: a review. Curr Drug Metab 8(8):758–772PubMedCrossRefGoogle Scholar
  31. Gibbs S, Spiekstra S, Corsini E, McLeod J, Reinders J (2013) Dendritic cell migration assay: a potential prediction model for identification of contact allergens. Toxicol In Vitro 27(3):1170–9. Scholar
  32. Gildea LA, Ryan CA, Foertsch LM, Kennedy JM, Dearman RJ, Kimber I, Gerberick GF (2006) Identification of gene expression changes induced by chemical allergens in dendritic cells: opportunities for skin sensitization testing. J Invest Dermatol 126(8):1813–1822PubMedCrossRefGoogle Scholar
  33. Goldberg AM, Hartung T (2006) Protecting more than animals. Sci Am 294(1):84–91PubMedCrossRefGoogle Scholar
  34. Hooyberghs J, Schoeters E, Lambrechts N, Nelissen I, Witters H, Schoeters G, Van Den HR (2008) A cell-based in vitro alternative to identify skin sensitizers by gene expression. Toxicol Appl Pharmacol 231(1):103–111PubMedCrossRefGoogle Scholar
  35. Jakob A, Mussotter F, Ohnesorge S, Dietz L, Pardo J, Haidl ID, Thierse HJ (2017) Immunoproteomic identification and characterization of Ni2+-regulated proteins implicates Ni2+ in the induction of monocyte cell death. Cell Death Dis 8(3):e2684. Scholar
  36. Jenkinson C, Jenkins RE, Maggs JL, Kitteringham NR, Aleksic M, Park BK, Naisbitt DJ (2009) A mechanistic investigation into the irreversible protein binding and antigenicity of p-phenylenediamine. Chem Res Toxicol 22(6):1172–1180PubMedCrossRefGoogle Scholar
  37. Jenkinson C, Jenkins RE, Aleksic M, Pirmohamed M, Naisbitt DJ, Park BK (2010) Characterization of p-phenylenediamine-albumin binding sites and T-cell responses to hapten-modified protein. J Invest Dermatol 130(3):732–742PubMedCrossRefGoogle Scholar
  38. Johansson H, Lindstedt M, Albrekt A-S, Borrebaeck CAK (2011) A genomic biomarker signature can predict skin sensitizers using a cell-based in vitro alternative to animal tests. BMC Genomics 12:399PubMedPubMedCentralCrossRefGoogle Scholar
  39. Johansson H, Gradin R, Forreryd A, Agemark M, Zeller K, Johansson A, Larne O, van Vliet E, Borrebaeck C, Lindstedt M (2017) Evaluation of the GARD assay in a blind Cosmetics Europe study. ALTEX 34(4):515–523.
  40. Karlberg AT, Bergstrom MA, Borje A, Luthman K, Nilsson JL (2008) Allergic contact dermatitis–formation, structural requirements, and reactivity of skin sensitizers. Chem Res Toxicol 21(1):53–69CrossRefGoogle Scholar
  41. Kohler J, Martin S, Pflugfelder U, Ruh H, Vollmer J, Weltzien HU (1995) Cross-reactive trinitrophenylated peptides as antigens for class II major histocompatibility complex-restricted T cells and inducers of contact sensitivity in mice. Limited T cell receptor repertoire. Eur J Immunol 25(1):92–101PubMedCrossRefGoogle Scholar
  42. Koppes SA, Engebretsen KA, Agner T, Angelova-Fischer I, Berents T, Brandner J, Brans R, Clausen ML, Hummler E, Jakasa I, Juraki-Tončic R, John SM, Khnykin D, Molin S, Holm JO, Suomela S, Thierse HJ, Kezic S, Martin SF, Thyssen JP (2017) Current knowledge on biomarkers for contact sensitization and allergic contact dermatitis. Contact Dermatitis 77(1):1–16. Scholar
  43. Lu L, Vollmer J, Moulon C, Weltzien HU, Marrack P, Kappler J (2003) Components of the ligand for a Ni++ reactive human T cell clone. J Exp Med 197(5):567–574PubMedPubMedCentralCrossRefGoogle Scholar
  44. Martin SF (2015) New concepts in cutaneous allergy. Contact Dermatitis 72:2–10. Scholar
  45. Martin S, Ortmann B, Pflugfelder U, Birsner U, Weltzien HU (1992) Role of hapten-anchoring peptides in defining hapten-epitopes for MHC-restricted cytotoxic T cells. Cross-reactive TNP-determinants on different peptides. J Immunol 149(8):2569–2575PubMedGoogle Scholar
  46. Martin S, von Bonin A, Fessler C, Pflugfelder U, Weltzien HU (1993) Structural complexity of antigenic determinants for class I MHC-restricted, hapten-specific T cells. Two qualitatively differing types of H-2Kb-restricted TNP epitopes. J Immunol 151(2):678–687PubMedGoogle Scholar
  47. Martin SF, Esser PR, Schmucker S, Dietz L, Naisbitt DJ, Park BK, Vocanson M, Nicolas JF, Keller M, Pichler WJ, Peiser M, Luch A, Wanner R, Maggi E, Cavani A, Rustemeyer T, Richter A, Thierse HJ, Sallusto F (2010) T-cell recognition of chemicals, protein allergens and drugs: towards the development of in vitro assays. Cell Mol Life Sci 67(24):4171–4184PubMedCrossRefGoogle Scholar
  48. Martin SF, Esser PR, Weber FC, Jakob T, Freudenberg MA, Schmidt M, Goebeler M (2011) Mechanisms of chemical-induced innate immunity in allergic contact dermatitis. Allergy 66(9):1152–1163PubMedCrossRefGoogle Scholar
  49. Martin SF, Richter A, Cavani A, Thierse HJ, Maggi E, Dietz L, Esser PR, Schmucker S, Pennino D, Geiger R, Sallusto F (2011a) The use of T-cells for the identification of contact allergens. in: Progress towards novel testing strategies for in vitro assessment of allergens. In: E.L. Roggen, H.U. Weltzien, H. Hermanns (eds), Transworld Research Network, Kerala, India. Chapter 8, pp. 117–130. ISBN 978-81-7895-519-3Google Scholar
  50. Maxwell G, MacKay C, Cubberley R, Davies M, Gellatly N, Glavin S, Gouin T, Jacquoilleot S, Moore C, Pendlington R, Saib O, Sheffield D, Stark R, Summerfield V, (2014) Applying the skin sensitisation adverse outcome pathway (AOP) to quantitative risk assessment. Toxicol In Vitro, 28:8–12PubMedCrossRefGoogle Scholar
  51. Meierhoff G, Krause SW, Andreesen R (1998) Comparative analysis of dendritic cells derived from blood monocytes or CD34+ hematopoietic progenitor cells. Immunobiology 198(5):501–513PubMedCrossRefGoogle Scholar
  52. Merk HF, Baron JM, Neis MM, Obrigkeit DH, Karlberg AT (2007) Skin: major target organ of allergic reactions to small molecular weight compounds. Toxicol Appl Pharmacol 224(3):313–317CrossRefGoogle Scholar
  53. Moed H, von Blomberg M, Bruynzeel DP, Scheper R, Gibbs S, Rustemeyer T (2005) Improved detection of allergen-specific T-cell responses in allergic contact dermatitis through the addition of ‘cytokine cocktails’. Exp Dermatol 14(8):634–640CrossRefGoogle Scholar
  54. Naik SM, Cannon G, Burbach GJ, Singh SR, Swerlick RA, Wilcox JN, Ansel JC, Caughman SW (1999) Human keratinocytes constitutively express interleukin-18 and secrete biologically active interleukin-18 after treatment with pro-inflammatory mediators and dinitrochlorobenzene. J Invest Dermatol 113(5):766–772PubMedCrossRefGoogle Scholar
  55. Natsch A (2010) The Nrf2-Keap1-ARE toxicity pathway as a cellular sensor for skin sensitizers–functional relevance and a hypothesis on innate reactions to skin sensitizers. Toxicol Sci 113(2):284–292PubMedCrossRefGoogle Scholar
  56. Natsch A, Emter R (2008) Skin sensitizers induce antioxidant response element dependent genes: application to the in vitro testing of the sensitization potential of chemicals. Toxicol Sci 102(1):110–119PubMedCrossRefGoogle Scholar
  57. Natsch A, Emter R, Ellis G (2009a) Filling the concept with data: integrating data from different in vitro and in silico assays on skin sensitizers to explore the battery approach for animal-free skin sensitization testing. Toxicol Sci 107(1):106–121PubMedCrossRefGoogle Scholar
  58. Natsch A, Gfeller H, Emter R, Ellis G (2009b) Use of in vitro testing to identify an unexpected skin sensitizing impurity in a commercial product. A case study. Toxicol In Vitro 24(2):411–416PubMedCrossRefGoogle Scholar
  59. Nukada Y, Miyazawa M, Kosaka N, Ito Y, Sakaguchi H, Nishiyama N (2008) Production of IL-8 in THP-1 cells following contact allergen stimulation via mitogen-activated protein kinase activation or tumor necrosis factor-alpha production. J Toxicol Sci 33(2):175–185PubMedCrossRefGoogle Scholar
  60. OECD (2012) OECD Environment, Health and Safety Publications, Series on Testing and Assessment No.168, The Adverse Outcome Pathway for Skin Sensitisation Initiated by Covalent Binding to Proteins, Part 1: Scientific Evidence, ENV/JM/MONO(2012)10/PART1, 1–59. (last call 2018-05-28)
  61. OECD (2013) Guidance Document for developing and assessing Adverse Outcome Pathways (AOPs) [ENV/JM/MONO(2013)6, Second Edition].Google Scholar
  62. OECD (2018) Users’ Handbook supplement to the Guidance Document for developing and assessing Adverse Outcome Pathways (AOPs) [ENV/JM/MONO(2013)6, Second Edition].Google Scholar
  63. Okamura H, Tsutsi H, Komatsu T, Yutsudo M, Hakura A, Tanimoto T, Torigoe K, Okura T, Nukada Y, Hattori K (1995) Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature 378(6552):88–91PubMedCrossRefGoogle Scholar
  64. Ortmann B, Martin S, von Bonin A, Schiltz E, Hoschutzky H, Weltzien HU (1992) Synthetic peptides anchor T cell-specific TNP epitopes to MHC antigens. J Immunol 148(5):1445–1450PubMedGoogle Scholar
  65. Ott H, Bergstrom MA, Heise R, Skazik C, Zwadlo-Klarwasser G, Merk HF, Baron JM, Karlberg AT (2009) Cutaneous metabolic activation of carvoxime, a self-activating, skin-sensitizing prohapten. Chem Res Toxicol 22(2):399–405PubMedCrossRefGoogle Scholar
  66. Ouwehand K, Santegoets SJ, Bruynzeel DP, Scheper RJ, de Gruijl TD, Gibbs S (2008) CXCL12 is essential for migration of activated Langerhans cells from epidermis to dermis. Eur J Immunol 38(11):3050–3059PubMedCrossRefGoogle Scholar
  67. Ouwehand K, Spiekstra SW, Reinders J, Scheper RJ, de Gruijl TD, Gibbs S (2010a) Comparison of a novel CXCL12/CCL5 dependent migration assay with CXCL8 secretion and CD86 expression for distinguishing sensitizers from non-sensitizers using MUTZ-3 Langerhans cells. Toxicol In Vitro 24(2):578–585PubMedCrossRefGoogle Scholar
  68. Ouwehand K, Scheper RJ, de Gruijl TD, Gibbs S (2010b) Epidermis-to-dermis migration of immature Langerhans cells upon topical irritant exposure is dependent on CCL2 and CCL5. Eur J Immunol 40(7):2026–2034PubMedCrossRefGoogle Scholar
  69. Padovan E, Bauer T, Tongio MM, Kalbacher H, Weltzien HU (1997) Penicilloyl peptides are recognized as T cell antigenic determinants in penicillin allergy. Eur J Immunol 27(6):1303–1307PubMedCrossRefGoogle Scholar
  70. Patton WF (2002) Detection technologies in proteome analysis. J Chromatogr B Analyt Technol Biomed Life Sci 771(1–2):3–31PubMedCrossRefGoogle Scholar
  71. Pickard C, Louafi F, McGuire C, Lowings K, Kumar P, Cooper H, Dearman RJ, Cumberbatch M, Kimber I, Healy E, Friedmann PS (2009) The cutaneous biochemical redox barrier: a component of the innate immune defenses against sensitization by highly reactive environmental xenobiotics. J Immunol 183(11):7576–7584PubMedCrossRefGoogle Scholar
  72. Python F, Goebel C, Aeby P (2007) Assessment of the U937 cell line for the detection of contact allergens. Toxicol Appl Pharmacol 220(2):113–124PubMedCrossRefGoogle Scholar
  73. Rees B, Spiekstra SW, Carfi M, Ouwehand K, Williams CA, Corsini E, McLeod JD, Gibbs S (2011) Interlaboratory study of the in vitro dendritic cell migration assay for identification of contact allergens. Toxicol In Vitro 25(8):2124–34. Scholar
  74. Ryan CA, Gildea LA, Hulette BC, Dearman RJ, Kimber I, Gerberick GF (2004) Gene expression changes in peripheral blood-derived dendritic cells following exposure to a contact allergen. Toxicol Lett 150(3):301–316PubMedCrossRefGoogle Scholar
  75. Sakaguchi H, Ashikaga T, Miyazawa M, Yoshida Y, Ito Y, Yoneyama K, Hirota M, Itagaki H, Toyoda H, Suzuki H (2006) Development of an in vitro skin sensitization test using human cell lines; human Cell Line Activation Test (h-CLAT). II. An inter-laboratory study of the h-CLAT. Toxicol In Vitro 20(5):774–784PubMedCrossRefGoogle Scholar
  76. Sakaguchi H, Ashikaga T, Miyazawa M, Kosaka N, Ito Y, Yoneyama K, Sono S, Itagaki H, Toyoda H, Suzuki H (2008) The relationship between CD86/CD54 expression and THP-1 cell viability in an in vitro skin sensitization test – human cell line activation test (h-CLAT). Cell Biol Toxicol 25(2):109–126PubMedCrossRefGoogle Scholar
  77. Schoeters E, Verheyen GR, Nelissen I, Van Rompay AR, Hooyberghs J, Van Den Heuvel RL, Witters H, Schoeters GE, Van Tendeloo VF, Berneman ZN (2007) Microarray analyses in dendritic cells reveal potential biomarkers for chemical-induced skin sensitization. Mol Immunol 44(12):3222–3233PubMedCrossRefGoogle Scholar
  78. Smith Pease CK (2003) From xenobiotic chemistry and metabolism to better prediction and risk assessment of skin allergy. Toxicology 192(1):1–22PubMedCrossRefGoogle Scholar
  79. Spiekstra SW, Dos Santos GG, Scheper RJ, Gibbs S (2009) Potential method to determine irritant potency in vitro – comparison of two reconstructed epidermal culture models with different barrier competency. Toxicol In Vitro 23(2):349–355PubMedCrossRefGoogle Scholar
  80. Spielmann H, Hoffmann S, Liebsch M, Botham P, Fentem J, Eskes C, Roguet R, Cotovio J, Cole T, Worth A, Heylings J, Jones P, Robles C, Kandarova H, Gamer A, Remmele M, Curren R, Raabe H, Cockshott A, Gerner I, Zuang V (2007) The ECVAM international validation study on in vitro tests for acute skin irritation: report on the validity of the EPISKIN and EpiDerm assays and on the Skin Integrity Function Test. Altern Lab Anim 35(6):559–601PubMedCrossRefGoogle Scholar
  81. Szameit S, Vierlinger K, Farmer L, Tuschl H, Noehammer C (2008) Microarray-based in vitro test system for the discrimination of contact allergens and irritants: identification of potential marker genes. Clin Chem 54(3):525–533PubMedCrossRefGoogle Scholar
  82. Szameit S, Weber E, Noehammer C (2009) DNA microarrays provide new options for allergen testing. Expert Rev Mol Diagn 9(8):843–850PubMedCrossRefGoogle Scholar
  83. Thierse HJ, Moulon C, Allespach Y, Zimmermann B, Doetze A, Kuppig S, Wild D, Herberg F, Weltzien HU (2004) Metal-protein complex-mediated transport and delivery of Ni2+ to TCR/MHC contact sites in nickel-specific human T cell activation. J Immunol 172(3):1926–1934PubMedCrossRefGoogle Scholar
  84. Thierse HJ, Gamerdinger K, Junkes C, Guerreiro N, Weltzien HU (2005) T cell receptor (TCR) interaction with haptens: metal ions as non-classical haptens. Toxicology 209(2):101–107PubMedCrossRefGoogle Scholar
  85. Thierse HJ, Budde P, Dietz L et al (2011) Proteomic identification of allergen-regulated proteins and allergen-protein interaction networks in assisting biomarker and assay development. In: E.L. Roggen, H.U. Weltzien, H. Helma (eds), Progress towards novel testing strategies for in vitro assessment of allergens (145–166). Kerala, India: Transworld Research NetworkGoogle Scholar
  86. Toebak MJ, Pohlmann PR, Sampat-Sardjoepersad SC, von Blomberg BM, Bruynzeel DP, Scheper RJ, Rustemeyer T, Gibbs S (2006) CXCL8 secretion by dendritic cells predicts contact allergens from irritants. Toxicol In Vitro 20(1):117–124PubMedCrossRefGoogle Scholar
  87. Trautmann A, Akdis M, Brocker EB, Blaser K, Akdis CA (2001) New insights into the role of T cells in atopic dermatitis and allergic contact dermatitis. Trends Immunol 22(10):530–532PubMedCrossRefGoogle Scholar
  88. Van Och FM, van Loveren H, Van Wolfswinkel JC, Machielsen AJ, Vandebriel RJ (2005) Assessment of potency of allergenic activity of low molecular weight compounds based on IL-1alpha and IL-18 production by a murine and human keratinocyte cell line. Toxicology 210(2–3):95–109PubMedGoogle Scholar
  89. van Vliet E, Kühnl J, Goebel C, Martinozzi-Teissier S, Alépée N, Ashikaga T, Blömeke B, Del Bufalo A, Cluzel M, Corsini E, Delrue N, Desprez B, Gellatly N, Giese C, Gribaldo L, Hoffmann S, Klaric M, Maillere B, Naisbitt D, Pallardy M, Vocanson M, Petersohn D (2018) State-of-the-art and new options to assess T cell activation by skin sensitizers: Cosmetics Europe Workshop. ALTEX 35(2):179–192.
  90. Viner RI, Zhang T, Second T, Zabrouskov V (2009) Quantification of post-translationally modified peptides of bovine alpha-crystallin using tandem mass tags and electron transfer dissociation. J Proteomics 72(5):874–885PubMedCrossRefGoogle Scholar
  91. Vocanson M, Cluzel-Tailhardat M, Poyet G, Valeyrie M, Chavagnac C, Levarlet B, Courtellemont P, Rozieres A, Hennino A, Nicolas JF (2008) Depletion of human peripheral blood lymphocytes in CD25+ cells allows for the sensitive in vitro screening of contact allergens. J Invest Dermatol 128(8):2119–2122PubMedCrossRefGoogle Scholar
  92. Vocanson M, Hennino A, Rozieres A, Poyet G, Nicolas JF (2009) Effector and regulatory mechanisms in allergic contact dermatitis. Allergy 64(12):1699–1714PubMedCrossRefGoogle Scholar
  93. Vocanson M, Mutez V, Esser PR, Bachtanian E, Cluzel M, Nosbaum A, Martin SF, Nicolas J-F (2017) Contact hypersensitivity: T-cell based assay. Curr Opin Toxicol 5:39–45. Scholar
  94. Wang XJ, Hayes JD, Wolf CR (2006) Generation of a stable antioxidant response element-driven reporter gene cell line and its use to show redox-dependent activation of nrf2 by cancer chemotherapeutic agents. Cancer Res 66(22):10983–10994PubMedCrossRefGoogle Scholar
  95. Wehler TC, Karg M, Distler E, Konur A, Nonn M, Meyer RG, Huber C, Hartwig UF, Herr W (2008) Rapid identification and sorting of viable virus-reactive CD4(+) and CD8(+) T cells based on antigen-triggered CD137 expression. J Immunol Methods 339(1):23–37PubMedCrossRefGoogle Scholar
  96. Williams IR, Kupper TS (1996) Immunity at the surface: homeostatic mechanisms of the skin immune system. Life Sci 58(18):1485–1507PubMedCrossRefGoogle Scholar
  97. Zeller KS, Forreryd A, Lindberg T, Gradin R, Chawade A, Lindstedt M (2017) The GARD platform for potency assessment of skin sensitizing chemicals. ALTEX 34(4):539–559.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Susan Gibbs
    • 1
  • Stefan F. Martin
    • 2
  • Emanuela Corsini
    • 3
  • Hermann-Josef Thierse
    • 4
    • 5
    Email author
  1. 1.Department of DermatologyVU University Medical CentreAmsterdamThe Netherlands
  2. 2.Allergy Research Group, Department of Dermatology, Faculty of MedicineUniversity of FreiburgFreiburgGermany
  3. 3.Department of Pharmacological SciencesUniversità degli Studi di MilanoMilanItaly
  4. 4.Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty MannheimUniversity of Heidelberg, Center of Excellence in DermatologyMannheimGermany
  5. 5.Current address: Department of Chemical and Product SafetyGerman Federal Institute for Risk AssessmentBerlinGermany

Personalised recommendations