Advertisement

CO2 Sequestration: Processes and Methodologies

  • Chandra Sekhar Kuppan
  • Murthy ChavaliEmail author
Reference work entry

Abstract

Rapidly growing economy and its consequence of relying heavily on the fossil fuels, for power generation, accounts for the major CO2 pollutant in the atmosphere. Natural carbon cycle process will not be effective in reducing the pollutant content, as the amount and rate of CO2 dissipation raise at a drastic rate. This alarming situation urgently requires technologies for carbon dioxide capture and sequestering (CCS). With the development of technologies every day, the amount of CO2 emission is expected to increase steeply, which necessitates more technologies to sequester CO2 with a target of 50 ppm by 2050. CCS involves the capture of gas at some stage of the industrial process followed by pressurization and transporting it to stable geological sites like saline aquifers, depleted oil and gas fields, deep coal seams where it can be trapped for thousands of years. CO2 sequestration requires multiple fundamental R&D approaches and significant breakthroughs. The purpose of this review is to have an integrated analysis of the carbon sequestration process including the state of the art technologies for CO2 capture, separation, transport, storage, leakage, monitoring, and life cycle analysis.

Depending on the source of emission, different techniques and methodologies adopted by the scientific community were analyzed and discussed. A brief description of the best practices and techniques for CO2 capturing like absorption, adsorption, cryogenic, and membranes will be reviewed. A comparative study on the same will be analyzed based on their performance, efficiency, regeneration, adsorption rate, the volume of adsorption, cost, and energy required for regeneration. Some of the prerequisites for sequestering the captured carbon dioxide are safety, environmentally benign, effective, economical, and acceptable to the public. Natural sequestration methods include plantation, soil carbon sequestration, and CH4-CO2 reforming. Industrially acceptable sequestration process involves isolating the captured gas into places which are nonaccessible to living creatures which include basically geologic, oceanic, and terrestrial dumping sites. All the three geoengineering techniques and their subdivisions will be discussed in detail with up to date improvisations and results. Moreover, the concerns related to potential leakages while transporting supercritical CO2, uncertainty in terms of quantification of storage potential, accompanied by monitoring and engineering challenges have to be given prior attention in developing any sequestration process, which this review will give an overall picture and suggestions.

Keywords

Carbon dioxide capture sequestration (CCS) Carbon cycle Oxy-fuel combustion Paris agreement Greenhouse gas International Panel on Climate Change (IPCC) Negative Emission Technology (NET) Bioenergy with carbon capture and storage (BECCS) Afforestation and reforestation (AR) Direct air capture and storage (DAC) Soil carbon sequestration (SCS) Enhanced weathering (EW) Ocean fertilization (OF) Silicate weathering Iron fertilization Chemical looping combustion (CLC) Precombustion Postcombustion Carbamate Metal oxide frameworks (MOF) Membranes Carbonaceous material Polyethyleneimine(PEI) Metal oxide Cryogenic process Geological sequestration Albedo modification 

References

  1. 1.
    Centre for Sustainable Systems, University of Michigan (2016) Greenhouse Gases Factsheet. Pub. No. CSS05–21 http://css.umich.edu/sites/default/files/Greenhouse_Gases_Factsheet_CSS05-21_0.pdf
  2. 2.
    Stankiewicz A, Van Gerven T (2009) Structure, energy, synergy, time-the fundamentals of process intensification. Ind Eng Chem Res 48:2465–2474Google Scholar
  3. 3.
    Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Climate Change 2007: The Physical Science Basis. The contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK/New YorkGoogle Scholar
  4. 4.
    DOE US (2008) Carbon cycling and bio sequestration: integrating biology and climate through systems science. Report from the March 2008 Workshop, DOE/SC108Google Scholar
  5. 5.
    U.S. Department of Energy Office of Science (2010) Volcanic gases and climate change overview. U.S. Geological Survey. http://volcanoes.usgs.gov/hazards/gas/climate.php
  6. 6.
    Gerlach T (2011) Volcanic versus anthropogenic carbon dioxide. EOS Trans Am Geophys Union 92:201–201.  https://doi.org/10.1029/2011EO240001CrossRefGoogle Scholar
  7. 7.
    Le Quéré C, Jain AK, Raupach MR, Schwinger J, Sitch S, Stocker BD, Viovy N, Zaehle S, Huntingford C, Friedlingstein P, Andres RJ, Boden T, Jourdain C, Conway T, Houghton RA, House JI, Marland G, Peters GP, Van Der Werf G, Ahlström A, Andrew RM, Bopp L, Canadell JG, Kato E, Ciais P, Doney SC, Enright C, Zeng N, Keeling RF, Klein Goldewijk K, Levis S, Levy P, Lomas M, Poulter B (2012) The global carbon budget 1959–2011. Earth System Science Data Discussions 5(2):1107–1157.  https://doi.org/10.5194/essdd-5-1107-2012CrossRefGoogle Scholar
  8. 8.
    IEA (2012) CO2 emissions from fuel combustion 2012. OECD Publishing, Paris.  https://doi.org/10.1787/co2_fuel-2012-enCrossRefGoogle Scholar
  9. 9.
    Defra UK (2014) Government greenhouse gas conversion factors for company reporting. U.K. Department for Environment, Food& Rural Affairs, London. https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2014Google Scholar
  10. 10.
    Harrould-Kolieb E, Savitz J (2010) Shipping solutions: technological and operational methods available to reduce CO2. Oceana, Washington, DCGoogle Scholar
  11. 11.
    Harrould-Kolieb E (2008) Shipping impacts on climate: a source with solutions. Oceana, Washington, DCGoogle Scholar
  12. 12.
    MacDowell N, Florin N, Buchard A, Hallett J, Galindo A, Jackson G (2010) An overview of CO2 capture technologies. Energy Environ Sci 3:1645–1669.  https://doi.org/10.1039/C004106HCrossRefGoogle Scholar
  13. 13.
    Rubin ES, Mantripragada H, Marks A, Versteeg P, Kitchin J (2012) The outlook for improved carbon capture technology. Prog Energy Combust Sci 38:630–671.  https://doi.org/10.1016/j.pecs.2012.03.003CrossRefGoogle Scholar
  14. 14.
    Markewitz P, Kuckshinrichs W, Leitner W, Linssen J, Zapp P, Bongartz R (2012) Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy Environ Sci 5:7281–7305.  https://doi.org/10.1039/C2EE03403DCrossRefGoogle Scholar
  15. 15.
    White CM, Strazisar BR, Granite EJ, Hoffman JS, Pennline HW (2003) Separation and capture of CO2 from large stationary sources and sequestration in geological formations – coal beds and deep saline aquifers. J Air Waste Manage Assoc 53:645–715Google Scholar
  16. 16.
    Li H, Jakobsen JP, Wilhelmsen Ø, Yan J (2011a) PVTxy properties of CO2 mixtures relevant for CO2 capture, transport and storage: a review of available experimental data and theoretical models. Appl Energy 88:3567–3579.  https://doi.org/10.1016/j.apenergy.2011.03.052CrossRefGoogle Scholar
  17. 17.
    Li B, Duan Y, Luebke D, Morreale B (2013) Advances in CO2 capture technology: a patent review. Appl Energy 102:1439–1447.  https://doi.org/10.1016/j.apenergy.2012.09.009CrossRefGoogle Scholar
  18. 18.
    Peters GP, Andrew RM, Boden T, Canadell JG, Ciais P, Quéré CL, Marland G, Raupach MR, Wilson C (2013) The challenge to keep global warming below 2 °C. Nature Clim Change 3:4–6.  https://doi.org/10.1038/nclimate1783CrossRefGoogle Scholar
  19. 19.
    Edenhofer O, Madruga R, Sokona Y, Minx JC, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, Stechow CV, Zwickel T (2014) IPCC climate change 2014: mitigation of climate change. Cambridge University Press, CambridgeGoogle Scholar
  20. 20.
    Metz B, Davidson O, Swart R, Pan J (2001) IPCC, 2001: climate change 2001 – mitigation. The third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UKGoogle Scholar
  21. 21.
    National Research Council. America’s climate choices (2010) Limiting the magnitude of future climate change. National Academies Press, Washington, DCGoogle Scholar
  22. 22.
    Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (2007) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Climate change 2007. Cambridge University Press, New YorkGoogle Scholar
  23. 23.
    Edmonds J (2008) The potential role of CCS in climate stabilization. In: Proceedings of the 9th international conference on greenhouse gas control technologies. WashingtonGoogle Scholar
  24. 24.
    Metz B, Davidson OR, Bosch PR, Dave R, Meyers LA (2007) Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change climate change 2007: mitigation. Cambridge University Press, New YorkGoogle Scholar
  25. 25.
    Victor DG, Akimoto K, Kaya Y, Yamaguchi M, Cullenward D, Hepburn C (2017) Prove Paris was more than paper promises. Nature 548:25–27Google Scholar
  26. 26.
    Cappiello D (2014) These 6 countries are responsible for 60% of CO2 emissions. Business insider. http://www.businessinsider.com/these-6-countries-are-responsible-for-60-of-co2-emissions-2014-12?IR=T
  27. 27.
    Larsen J, Larsen K, Herndon W, Mohan S (2016) Taking Stock: Progress toward Meeting US Climate Goals. http://rhg.com/reports/progress-toward-meeting-us-climate-goals
  28. 28.
    David GV, Keigo A, Yoichi K, Mitsutsune Y, Danny C, Cameron H (2017) Prove Paris was more than paper promises. Nature 548(7665):25–27.  https://doi.org/10.1038/548025aCrossRefGoogle Scholar
  29. 29.
    Drummond P, Ekins P (2017) ost effective decarbonization in the EU: an overview of policy suitability. Clim Pol 17:S51–S71Google Scholar
  30. 30.
    IEA Greenhouse Gas R&D Programme (IEA GHG) (2008) A regional assessment of the potential for CO2 storage in the Indian subcontinent. IEA Greenhouse Gas R&D Programme (IEA GHG), CheltenhamGoogle Scholar
  31. 31.
    Jones C, Robertsona E, Arorab V, Friedlingsteinc P, Shevliakovad E, Boppe L, Brovkinf V, Hajimag T, Katoh E, Kawamiyag M, Liddicoata S, Lindsayi K, Reickf CH, Roelandtj C, Segschneiderf J, Tjiputraj J (2013) Twenty-first-century compatible CO2 emissions and airborne fraction simulated by CMIP5 earth system models under four representative concentration pathways. J Clim 26:4398.  https://doi.org/10.1175/JCLI-D-12-00554.1CrossRefGoogle Scholar
  32. 32.
  33. 33.
    Suess HE (1955) Radiocarbon concentration in modern wood. Science 122:415–417.  https://doi.org/10.1126/science.122.3166.415-aCrossRefGoogle Scholar
  34. 34.
    Ghoiem AF (2011) Needs, resources and climate change: clean and efficient conversion technologies. Prog Energy Combust Sci 37:15–51.  https://doi.org/10.1016/j.pecs.2010.02.006CrossRefGoogle Scholar
  35. 35.
    NRC (2013) Abrupt impacts of climate change: anticipating surprises. The National Academies Press, Washington, DCGoogle Scholar
  36. 36.
    Pimm SL (2009) Climate disruption and biodiversity. Curr Biol 19:R595–R601.  https://doi.org/10.1016/j.cub.2009.05.055CrossRefGoogle Scholar
  37. 37.
    Staudinger MD, Grimm NB, Staudt A, Carter SL, Stuart FS, Kareiva P, Ruckelshaus M, Stein BA (2012) Impacts of climate change on biodiversity, ecosystems, and ecosystem services: technical input to the 2013 National Climate Assessment. U.S. Global Change Research Program, Washington, DCGoogle Scholar
  38. 38.
    Lobell DB, Field CB (2007) Global scale climate – crop yield relationships and the impacts of recent warming. Environ Res Lett 2(1).  https://doi.org/10.1088/1748-9326/2/1/014002Google Scholar
  39. 39.
    NRC (2013a) Induced seismicity potential in energy technologies. The National Academies Press, Washington, DCGoogle Scholar
  40. 40.
    Chen IC, Hill JK, Ohlemuller R, Roy DB, Thomas CD (2011a) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026.  https://doi.org/10.1126/science.1206432CrossRefGoogle Scholar
  41. 41.
    Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–639.  https://doi.org/10.1146/annurev.ecolsys.37.091305.110100CrossRefGoogle Scholar
  42. 42.
    Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42.  https://doi.org/10.1038/nature01286CrossRefGoogle Scholar
  43. 43.
    Poloczanska ES, Brown CJ, Sydeman WJ, Kiessling W, Schoeman DS, Moore PJ, Brander K, Bruno JF, Buckley LB, Burrows MT, Duarte CM, Halpern BS, Holding J, Kappel CV, O’Connor MI, Pandolfi JM, Parmesan C, Schwing F, Thompson SA, Richardson AJ (2013) Global imprint of climate change on marine life. Nat Clim Chang 3:919–925.  https://doi.org/10.1038/nclimate1958CrossRefGoogle Scholar
  44. 44.
    Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60.  https://doi.org/10.1038/nature01333CrossRefGoogle Scholar
  45. 45.
    Gill JA, Alves JA, Sutherland WJ, Appleton GF, Potts PM, Gunnarsson TG (2013) Why is thetiming of bird migration advancing when individuals are not? Proc R Soc B 281(1774).  https://doi.org/10.1098/rspb.2013.2161Google Scholar
  46. 46.
    Boston Climate Preparedness Task Force (2013) Climate ready Boston: municipal vulnerability to climate change. Environment and Energy Services, BostonGoogle Scholar
  47. 47.
    National Research Council (2010) Advancing the science of climate change. The National Academies Press, Washington, DCGoogle Scholar
  48. 48.
    Krey V, Luderer G, Clarke L, Kriegler E (2014) Getting from here to there – energy technology transformation pathways in the EMF27 scenarios. Clim Chang 123:369–382Google Scholar
  49. 49.
    Edmonds J (2013) Can radiative forcing be limited to 2.6 Wm−2 without negative emissions from bioenergy and CO2capture and storage? Clim. Change 118:29–43Google Scholar
  50. 50.
    Van Vuuren DP (2013) The role of negative CO2emissions for reaching 2 °C – insights from integrated assessment modelling. Clim Chang 118:15–27Google Scholar
  51. 51.
    Rogelj J, McCollum DL, Reisinger A, Meinshausen M, Riahi K (2013) Probabilistic cost estimates for climate change mitigation. Nature 493:79–83.  https://doi.org/10.1038/nature11787CrossRefGoogle Scholar
  52. 52.
    Clarke L (2014) Chap. 6, assessing transformation pathways. In: Edenhofer O (ed) Climate change 2014: mitigation of climate change. IPCC, Cambridge University Press, GenfGoogle Scholar
  53. 53.
    Riahi K (2015) Locked into Copenhagen pledges – implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technol Forecast Soc 90:8–23Google Scholar
  54. 54.
    Obersteiner M (2001) Managing climate risk. Science 294:786–787Google Scholar
  55. 55.
    Creutzig F (2015) Bioenergy and climate change mitigation: an assessment. Global Change Biol Bioenergy 7:916–944Google Scholar
  56. 56.
    Arora VK, Montenegro A (2011) Small temperature benefits provided by realistic afforestation efforts. Nat Geosci 4:514–518Google Scholar
  57. 57.
    Canadell JG, Raupach MR (2008) Managing forests for climate change mitigation. Science 320:1456–1457Google Scholar
  58. 58.
    Jackson RB (2008) Protecting climate with forests. Environ Res Lett 3:044006Google Scholar
  59. 59.
    Keith D (2009) Why capture CO2 from the atmosphere. Science 325:1654–1655Google Scholar
  60. 60.
    Socolow R (2011) Direct air capture of CO2 with chemicals: A technology assessment for the APS panel on public affairs. Report by American Physical Society, https://www.aps.org/policy/reports/assessments/upload/dac2011.pdf
  61. 61.
    Smith P (2012) Soils and climate change. Curr Opin Environ Sust 4:539–544Google Scholar
  62. 62.
    Powlson DS (2014) Limited potential of no-till agriculture for climate change mitigation. Nature Clim Change 4:678–683Google Scholar
  63. 63.
    Smith P (2008) Greenhouse gas mitigation in agriculture. Phil Trans R Soc B 363:789–813Google Scholar
  64. 64.
    Woolf D, Amonette JE, Street-Perrott A, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nat Commun 1:56Google Scholar
  65. 65.
    Schuiling RD, Krijgsman P (2006) Enhanced weathering: an effective and cheap tool to sequester CO2. Clim Chang 74:349–354Google Scholar
  66. 66.
    Rau GH, Knauss KG, Langer WH, Caldeira K (2007) Reducing energy-related CO2emissions using accelerated weathering of limestone. Energy 32:1471–1477Google Scholar
  67. 67.
    KöhlerP HJ, Wolf-Gladrow DA (2010) Geoengineering potential of artificially enhanced silicate weathering of olivine. Proc Natl Acad Sci U S A 107:20228–20233Google Scholar
  68. 68.
    Hartmann J, Kempe S (2008) What is the maximum potential for CO2sequestration by “stimulated” weathering on the global scale? Naturwissenschaften 95:1159–1164Google Scholar
  69. 69.
    Sarmiento JL, Gruber N, Brzezinski MA, Dunne JP (2004) High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427:56–60Google Scholar
  70. 70.
    Joos F, Sarmiento JL, SiegenthalerU (1991) Estimates of the effect of Southern Ocean iron fertilization on atmospheric CO2concentrations. Nature 349:772–775Google Scholar
  71. 71.
    Schiermeier Q (2007) Convention discourages ocean fertilization. Nature.  https://doi.org/10.1038/news.2007.230
  72. 72.
    Berndes G, Hoogwijk M, van den Broek R (2003) The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass Bioenergy 25(1):1–28.  https://doi.org/10.1016/S0961-9534(02)00185-XCrossRefGoogle Scholar
  73. 73.
    Baumert K, Herzog T, Pershing J (2005) Navigating the numbers: greenhouse gases and international climate change agreements. World Resources Institute, Washington, DCGoogle Scholar
  74. 74.
    Johnson DW (1992) Effects of forest management on soil carbon storage. Water Air and Soil Pollution 64(1–2):83–120.  https://doi.org/10.1007/Bf00477097CrossRefGoogle Scholar
  75. 75.
    Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Chang Biol 6(3):317–327.  https://doi.org/10.1046/j.1365-2486.2000.00308.xCrossRefGoogle Scholar
  76. 76.
    Wei XR, Shao MG, Gale W, Li LH (2014) Global pattern of soil carbon losses due to the conversion of forests to agricultural land. Sci Rep 4.  https://doi.org/10.1038/Srep04062
  77. 77.
    Berner RA, Lasaga AC, Garrels RM (1983) The carbonate-silicate geochemical cycle and its effect on atmospheric carbon-dioxide over the past 100 million years. Am J Sci 283(7):641–683Google Scholar
  78. 78.
    Geerlings H, Zevenhoven R (2013) CO2 mineralization-bridge between storage and utilization of CO2. Annual Review of Chemical and Biomolecular Engineering 4(4):103–117.  https://doi.org/10.1146/annurev-chembioeng-062011-080951CrossRefGoogle Scholar
  79. 79.
    Hartmann J, West AJ, Renforth P, Kohler P, De La Rocha CL, Wolf-Gladrow DA, Durr HH, Scheffran J (2013) Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification. Rev Geophys 51(2):113–149.  https://doi.org/10.1002/Rog.20004CrossRefGoogle Scholar
  80. 80.
    Olajire AA (2013) A review of mineral carbonation technology in sequestration of CO2. J Pet Sci Eng 109:364–392.  https://doi.org/10.1016/j.petrol.2013.03.013CrossRefGoogle Scholar
  81. 81.
    Archer D, Eby M, Brovkin V, Ridgwell A, Cao L, Mikolajewicz U, Caldeira K, Matsumoto K, Munhoven G, Montenegro A, Tokos K (2009) Atmospheric lifetime of fossil fuel carbon dioxide. Annu Rev Earth Planet Sci 37:117–134Google Scholar
  82. 82.
    Harvey LDD (2008) Mitigating the atmospheric CO2 increase and ocean acidification by adding limestone powder to upwelling regions. J Geophys Res Oceans 113(C4).  https://doi.org/10.1029/2007jc004373
  83. 83.
    Rau GH (2011) CO2 mitigation via capture and chemical conversion in seawater. Environ Sci Technol 45(3):1088–1092.  https://doi.org/10.1021/Es102671xCrossRefGoogle Scholar
  84. 84.
    Rau GH, Caldeira K (1999) Enhanced carbonate dissolution: a means of sequestering waste CO2 as ocean bicarbonate. Energy Convers Manag 40(17):1803–1813.  https://doi.org/10.1016/S0196-8904(99)00071-0CrossRefGoogle Scholar
  85. 85.
    Boyd PW, Jickells T, Law CS, Blain S, Boyle EA, Buesseler KO, Coale KH, Cullen J, de Baar HJW, Follows M, Harvey M, Lancelot C, Levasseur M, Owens NPJ, Pollard R, Rivkin RB, Sarmiento J, Schoemann V, Smetacek V, Takeda S, Tsuda A, Turner S, Watson AJ (2007) Meso scale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315(5812):612–617.  https://doi.org/10.1126/science.1131669CrossRefGoogle Scholar
  86. 86.
    de Baar HJW, Boyd PW, Coale KH, Landry MR, Tsuda A, Assmy P, Bakker DCE, Bozec Y, Barber RT, Brzezinski MA, Buesseler KO, Boye M, Croot PL, Gervais F, Gorbunov MY, Harrison PJ, Hiscock WT, Laan P, Lancelot C, Law CS, Levasseur M, Marchetti A, Millero FJ, Nishioka J, Nojiri Y, van Oijen T, Riebesell U, Rijkenberg MJA, Saito H, Takeda S, Timmermans KR, Veldhuis MJW, Waite AM, Wong CS (2005) Synthesis of iron fertilization experiments: from the iron age in the age of enlightenment. Journal of Geophysical Research C: Oceans 110(9):1–24.  https://doi.org/10.1029/2004JC002601CrossRefGoogle Scholar
  87. 87.
    Smith P (2016a) Biophysical and economic limits to negative CO2 emissions Nat. Clim Chang 6:42–50Google Scholar
  88. 88.
    Smith P (2016b) Soil carbon sequestration and biochar as negative emission technologies glob. Change Biol 22:1315–1324Google Scholar
  89. 89.
    Kaya Y (1995) The role of CO2 removal and disposal. Energy Convers Manag 36(6–9):375–380Google Scholar
  90. 90.
    Yu C-H, Huang C-H, Tan C-S (2012a) A review of CO2 capture by absorption and adsorption. Aerosol Air Qual Res 12:745–769Google Scholar
  91. 91.
    Littel RJ, Versteeg GF, van Swaaij WPM (1991) Physical absorption into non-aqueous solutions in a stirred cell reactor. Chem Eng Sci 46:3308–3313Google Scholar
  92. 92.
    Chiesa P, Consonni SP (1999) Shift reactors and physical absorption for low-CO2 emission IGCCs. J Eng Gas Turbines Power 121:295–305Google Scholar
  93. 93.
    Bishnoi S, Rochelle GT (2000a) Absorption of carbon dioxide into aqueous Piperazine: reaction kinetics, mass transfer and solubility. Chem Eng Sci 55:5531–5543Google Scholar
  94. 94.
    Aroonwilas A, Veawab A (2004) Characterization and comparison of the CO2 absorption performance into single and blended Alkanolamines in a packed column. Ind Eng Chem Res 43:2228–2237Google Scholar
  95. 95.
    Rochelle GT (2009a) Amine scrubbing for CO2 capture. Science 325:1652–1654Google Scholar
  96. 96.
    Harlick PJE, Tezel FH (2004) An experimental adsorbent screening study for CO2 capture from N2. Microporous Mesoporous Mater 76:71–79Google Scholar
  97. 97.
    Chang FY, Chao KJ, Cheng HH, Tan CS (2009) Adsorption of CO2 onto amine-grafted mesoporous Silicas. Sep. Purify. Technol. 70:87–95Google Scholar
  98. 98.
    Powell CE, Qiao GG (2006a) Polymeric CO2/N2 gas separation membranes for the capture carbon dioxide from power plant flue gases. J Membr Sci 279:1–49Google Scholar
  99. 99.
    Kaya A, Schumpe A (2005) Surfactant adsorption rather than “shuttle effect”? Chem Eng Sci 60(22):6504Google Scholar
  100. 100.
    Demmink JF, Mehra A, Beenackers AACM (1998) Gas absorption in the presence of particles showing interfacial affinity: the case of fine sulphur precipitates. Chem Eng Sci 53(16):2885Google Scholar
  101. 101.
    Dagaonkar MV, Heeres HJ, AACM B, Pangarkar VG (2003) The application of fine TiO2 particles for enhanced gas absorption. Chem Eng J 92(1–3):151Google Scholar
  102. 102.
    Vinke H, Hamersma PJ, Fortuin JMH (1993) Enhancement of the gas-absorption rate in agitated slurry reactors by gas-adsorbing particles adhering to gas bubbles. Chem Eng Sci 48(12):2197Google Scholar
  103. 103.
    Ruthiya KC, Kuster BFM, Schouten JC (2003) Gas-liquid mass transfer enhancement in a surface aeration stirred slurry reactors can. J Chem Eng 81(5):632Google Scholar
  104. 104.
    Wimmers OJ, Fortuin JMN (1988a) The use of adhesion of catalyst particles to gas bubbles to achieve enhancement of gas absorption in slurry reactors – I. Investigation of particle-to bubble adhesion using the bubble pick-up method. Chem Eng Sci 43(2):303Google Scholar
  105. 105.
    Wimmers OJ, Fortuin JMN (1988b) The use of adhesion of catalyst particles to gas bubbles to achieve enhancement of gas absorption in slurry reactors – II. Determination of the enhancement in a bubble-containing slurry reactor. Chem Eng Sci 43(2):313Google Scholar
  106. 106.
    Tsai WT, Hsu HC, Su TY, Lin KY, Lin CM (2006) Adsorption characteristics of bisphenol-a in aqueous solutions onto hydrophobic zeolite. J Colloid Interface Sci 299(2):513Google Scholar
  107. 107.
    Lu SM, Ma YG, Zhu CY, Shen SH, He Q (2010a) The effect of hydrophobic modification of zeolite on CO2 absorption enhancement. Chin J Chem Eng 17(1):36Google Scholar
  108. 108.
    Lu SM, Ma YG, Shen SH, Zhu CY (2010b) The effect of hydrophobic modification of zeolites on CO2 absorption in different solvents. Braz J Chem Eng 27(2):327–338Google Scholar
  109. 109.
    Van Der Zwaan B, Gerlagh R (2009) Economics of geological CO2 storage and leakage. Clim Chang 93:285–309Google Scholar
  110. 110.
    Olajire AA (2010) CO2 capture and separation technologies for end-of-pipe applications – a review. Energy 35:2610–2628Google Scholar
  111. 111.
  112. 112.
    Sada E, Kumuzawa H, Butt MA (1976) Gas absorption with consecutive chemical reactions: absorption of carbon dioxide into aqueous amine solutions. Can J Chem Eng 54:421–424Google Scholar
  113. 113.
    Hikita H, Asai S, Katsu Y, Ikuno S (1979) Absorption of carbon dioxide into aqueous mono ethanol amine solutions. AICHE J 25:793–800Google Scholar
  114. 114.
    Bishnoi S, Rochelle GT (2002) Absorption of carbon dioxide in aqueous Piperazine/ methyl diethanol amine. AICHE J 48:2788–2799Google Scholar
  115. 115.
    Bishnoi S, Rochelle GT (2000b) Absorption of carbon dioxide into aqueous Piperazine: reaction kinetics, mass transfer and solubility. Chem Eng Sci 55:5531–5543Google Scholar
  116. 116.
    Xiao J, Li CW, Li MH (2000) Kinetics of absorption of carbon dioxide into aqueous solutions of 2-Amino-2-methyl-1-propanol + mono ethanol amine. Chem Eng Sci 55:161–175Google Scholar
  117. 117.
    Liao CH, Li MH (2002) Kinetics of absorption of carbon dioxide into aqueous solutions of Monoethanolamine + N-Methyldiethanolamine. Chem Eng Sci 57:4569–4582Google Scholar
  118. 118.
    Sartori G, Savage DW (1983) Sterically hindered amines for carbondioxide removal from gases. Ind Eng Chem Fundam 2:239–249Google Scholar
  119. 119.
    Kim YE, Lim JA, Jeong SK, Yoon YI, Bae ST, Nam SC (2013) Comparison of carbon dioxide absorption in aqueous MEA, DEA, TEA and AMP solutions. Bull Kor Chem Soc 34:783–787Google Scholar
  120. 120.
    Tontiwachwuthikul P, Meisen A, Lim CJ (1992) CO2 absorption by NaOH, mono- ethanolamine and 2-amino-2-methyl-1-propanolsolutions in a packed column. Chem Eng Sci 47:381–390Google Scholar
  121. 121.
    Aboudheir A, Tontiwachwuthikul P, Idem R (2006) Rigorous model for predicting the behaviour of CO2 absorption into AMP in packed-bed absorption columns. Ind Eng Chem Res 45:2553–2557Google Scholar
  122. 122.
    Alper E (1990) Reaction mechanism and kinetics of aqueous solutions of 2-amino-2- methyl-1-propanol and carbondioxide. Ind Eng Chem Res 29:1725–1728Google Scholar
  123. 123.
    Freeman SA, Davis J, Rochelle GT (2010a) Degradation of aqueous Piperazine in carbon dioxide. Int J Greenhouse Gas Control 4:756–761Google Scholar
  124. 124.
    Freeman SA, Dugas RD, Wangener HV, Rochelle GT (2010b) Carbon dioxide capture with concentrated, aqueous Piperazine. Int J Greenhouse Gas Control 4:119–124Google Scholar
  125. 125.
    Goff GS, Rochelle GT (2006) Oxidation inhibitors for copper and iron catalyzed degradation of Monoethanolamine in CO2 capture processes. Ind Eng Chem Res 45:2513–2521Google Scholar
  126. 126.
    Chakravarti S, Gupta A, Hunek B (2001) Advanced technology for the capture of carbon dioxide from flue gases. First national conference on carbon sequestration, Washington, DCGoogle Scholar
  127. 127.
    Sexton AJ, Rochelle GT (2011) Reaction products from oxidative degradation of Monoethanolamine. Ind Eng Chem Res 50(2):667–673Google Scholar
  128. 128.
    Davis J, Rochelle GT (2009) Thermal degradation of Monoethanolamine at stripper conditions. Energy Procedia 1(1):327–333Google Scholar
  129. 129.
    Rochelle GT (2009b) Amine scrubbing for CO2 capture. Science 325:1652–1654Google Scholar
  130. 130.
    Bishnoi S, Rochelle GT (2000c) The physical and chemical solubility of carbondioxide in aqueous methyldiethanolamine. Fluid Phase Equilib 168:241–258Google Scholar
  131. 131.
    Freeman SA, Dugas R, Van Wagener DH, Nguyen T, Rochelle GT (2010c) Carbon dioxide capture with concentrated, aqueous piperazine. Int J Greenh Gas Control 4:119–124Google Scholar
  132. 132.
    Cheng H-H, Tan C-S (2006) Reduction of CO2 concentration in a zinc/air battery by absorption in a rotating packed bed. J Power Sources 162:1431–1436Google Scholar
  133. 133.
    Xu G-W, Zhang C-F, Qin S-J, Wang Y-W (1992) Kinetics study on absorption of carbon dioxide into solutions of activated methyldiethanolamine. Ind Eng Chem Res 31:921–927Google Scholar
  134. 134.
    Notz R, Asprion N, Clausen I, Hasse H (2007) Selection and pilot plant tests of new absorbents for post-combustion carbondioxide capture. Chem Eng Res Des 85:510–515Google Scholar
  135. 135.
    Chen X, Closmann F, Rochelle GT (2011b) Accurate screening of amines by the wetted wall column. Energy Procedia 4:101–108Google Scholar
  136. 136.
    Rochelle G, Chen E, Freeman S, Van Wagener D, Xu Q, Voice A (2011) Aqueous piperazine as the new standard for CO2 capture technology. Chem Eng J 171:725–733Google Scholar
  137. 137.
    Adeosun A, Abbas Z, Abu-Zahra MRM (2013) Screening and characterization of advanced amine based solvent systems for CO2 post-combustion capture. Energy Procedia 37:300–305Google Scholar
  138. 138.
    Dash SK, Samanta AN, Bandyopadhyay SS (2014) Simulation and parametric study of post-combustion CO2 capture process using (AMPþPZ) blended solvent. Int J Greenh Gas Control 21:130–139Google Scholar
  139. 139.
    Abass A, Olajire A (2010a) CO2 capture and separation technologies for end-of-pipe applications – a review. Energy 35:2610–2628Google Scholar
  140. 140.
    Gouedard C, Picq D, Launay F, Carrette P-L (2012) Amine degradation in theCO2 capture. I. A review. Int J Greenh Gas Control 10:244–270Google Scholar
  141. 141.
    Choi W-J, Min B-M, Seo J-B, Park S-W, Oh K-J (2009) Effect of ammonia on the absorption kinetics of carbondioxide into aqueous 2-amino-2-methyl-1-propanol solutions. Ind Eng Chem Res 48:4022–4029Google Scholar
  142. 142.
    Pellegrini G, Strube R, Manfrida G (2010) Comparative study of chemical absorbents in thepost-combustion CO2 capture. Energy 35:851–857Google Scholar
  143. 143.
    Puxty G, Rowland R, Attalla M (2010) Comparison of the rate of CO2 absorption into aqueous ammonia and monoethanolamine. Chem Eng Sci 65:915–922Google Scholar
  144. 144.
    Yeh AC, Bai H (1999) Comparison of ammonia and monoethanolamine solvents to reduce CO2 greenhouse gas emissions. Sci Total Environ 228:121–133Google Scholar
  145. 145.
    Zhao B, Su Y, Tao W, Li L, Peng Y (2012) Post-combustionCO2 capture by aqueous ammonia: a state-of-the-art review. Int J Greenh Gas Control 9:355–371Google Scholar
  146. 146.
    Bollinger R, Hammond M, Sherrick B, Muraskin D, Kozak F, Cage M (2010) CCS project with Alstom’s chilled ammonia process at AEP’s mountaineer plant. Technical report of ALSTOM power systems, pp 1–19Google Scholar
  147. 147.
    Kozak F, Petig A, Morris E, Rhudy R, Thimsen D (2009) Chilled ammonia process for CO2 capture. Energy Procedia 1:1419–1426Google Scholar
  148. 148.
    Kumar N, Rao DP (1989) Design of a packed column for absorption of carbon dioxide in hot K2COsolution promoted by arsenious acid. Gas Sep Purif 3:152–155Google Scholar
  149. 149.
    Le Q, Xu J, Shi Y (1992) The catalytic activity of vanadium pentoxide for the absorption of carbondioxide by potassiumcarbonate solution. Acta Phys -Chim Sin 8:753–759Google Scholar
  150. 150.
    Ahmadi M, Gomes VG, Ngian K (2008) Advanced modelling in performance optimization for reactive separation in industrial CO2 removal. Sep Pur Technol 63:107–115Google Scholar
  151. 151.
    Puxty G, Rowland R, Allport A, Yang Q, Bown M, Burns R, Maeder M, Attalla M (2009) Carbon dioxide post-combustion capture: a novel screening study of the carbon dioxide absorption performance of 76 amines. Environ Sci Technol 43(16):6427–6433Google Scholar
  152. 152.
    Endo K, Nguyen QS, Kentish SE, Stevens GW (2011) The effect of boric acid on the vapour liquid equilibrium of aqueous potassium carbonate. Fluid Phase Equilib 309:109–113Google Scholar
  153. 153.
    Guo D, Thee H, Silva G, Chen J, Fei W, Kentish SE (2011) Borate catalyzed carbon dioxide hydration via the carbonic anhydrase mechanism. Environ Sci Technol 45:4802–4807Google Scholar
  154. 154.
    Shen S, Feng X, Zhao R, Ghosh UK, Chen A (2013) Kinetics of CO2 absorption with aqueous potassium carbonate solution. Chem Eng J 222:478–487Google Scholar
  155. 155.
    Cullinane JT, Rochelle GT (2006) Kinetics of carbon dioxide absorption into aqueous potassium carbonate and piperazine. Ind Eng Chem Res 45:2531–2545Google Scholar
  156. 156.
    Khodayari A (2010) Experimental and theoretical study of carbon dioxide absorption into potassium carbonate solution promoted with the enzyme. PhD thesis, The university of Illinois at Urbana-ChampaignGoogle Scholar
  157. 157.
    Lu Y, Ye X, Zhang Z, Khodayari A, Djukadi T (2011) Development of a carbonate absorption-based process for post-combustion CO2 capture: the role of the biocatalyst to promote CO2 absorption rate. Energy Procedia 4:1286–1293Google Scholar
  158. 158.
    Russo ME, Olivieri G, Marzocchella A, Salatino P, Caramuscio P, Cavaleiro C (2013) Post-combustion CC mediated by carbonicanhydrase. Sep Purif Technol 107:331–339Google Scholar
  159. 159.
    Lee SC, Choi BY, Lee TJ, Ryu CK, Ahn YS, Kim JC (2006) CO2 absorption and regeneration of alkali metal-based solid sorbents. Catal Today 111:385–390Google Scholar
  160. 160.
    Anthony JL, Anderson JL, Maginn EJ, Brennecke JF (2005) Anion effects on gas solubility in ionic liquids. J Phys Chem B 109:6366–6374Google Scholar
  161. 161.
    Bates ED, Mayton RD, Ntai I, Davis JH Jr (2002) CO2 capture by a task-specific ionic liquid. J Am Chem Soc 124:926–927Google Scholar
  162. 162.
    Zhang Y, Zhang S, Lu X, Zhou Q, Fan W, Zhang XP (2009) Dual amino-functionalised Phosphonium ionic liquids for CO2 capture. Chem Eur J 15:3003–3011Google Scholar
  163. 163.
    Camper D, Bara JE, Gin DL, Nobel RD (2008) Room-temperature ionic liquid-amine solutions: Tunable solvents for efficient and reversible capture of CO2. Ind Eng Chem Res 47:8496–8498Google Scholar
  164. 164.
    Zhang F, Fang CG, Wu YT, Wang YT, Li AM, Zhang ZB (2010) Absorption of CO2 in the aqueous solutions of functionalized ionic liquids and MDEA. Chem Eng J 160:691–697Google Scholar
  165. 165.
    Heldebrant DJ, Koech PK, Glezakou V-A, Rousseau R, Malhotra D, Cantu DC (2017) Water-lean solvents for post-combustion CO2 capture: fundamentals, uncertainties, opportunities, and outlook. Chem Rev 117:9594–9624Google Scholar
  166. 166.
    Henni A, Mather AE (1995) The solubility of carbon dioxide in ethyldiethanolamine + methanol + water. J Chem Eng Data 40:493–495Google Scholar
  167. 167.
    Sada E, Kumazawa H, Ikehara Y, Han ZQ (1989) Chemical kinetics of the reaction of carbon dioxide with Triethanolamine in non-aqueous solvents. Chem Eng J 40:7–12Google Scholar
  168. 168.
    Oyevaar MH, Fontein HJ, Westerterp KR (1989) Equilibria of carbon dioxide in solutions of Diethanolamine in aqueous ethylene glycol at 298 K. J Chem Eng Data 34:405–408Google Scholar
  169. 169.
    Im J, Hong SY, Cheon Y, Lee J, Lee JS, Kim HS, Cheong M, Park H (2011) Steric hindrance-induced Zwitter ionic carbonates from Alkanolamines and CO2: highly efficient CO2 absorbents. Energy Environ Sci 4:4284–4289Google Scholar
  170. 170.
    Cheon Y, Jung YM, Lee J, Kim H, Im J, Cheong M, Kim HS, Park HS (2012) Two-dimensional infrared correlation spectroscopy and principal component analysis on the carbonation of sterically hindered Alkanolamines. Chem Phys Chem 13:3365–3369Google Scholar
  171. 171.
    Hong SY, Lee JS, Cheong M, Kim HS (2014) Isolation and structural characterization of bicarbonate and carbonate species formed during CO2 absorption/desorption by a hindered Alkanolamine. Energy Procedia 63:2190–2198Google Scholar
  172. 172.
    Choi YS, Im J, Jeong JK, Hong SY, Jang HG, Cheong M, Lee JS, Kim HS (2014) CO2 absorption and desorption in an aqueous solution of heavily hindered Alkanolamine: structural elucidation of CO2-containing species. Environ Sci Technol 48:4163–4170Google Scholar
  173. 173.
    Perry RJ, Grocela-Rocha TA, O’Brien MJ, Genovese S, Wood BR, Lewis LN, Lam H, Soloveichik G, Rubinsztajn M, Kniajanski S (2010) Amino silicone solvents for CO2 capture. Chem Sus Chem 3:919–930Google Scholar
  174. 174.
    Perry RJ, Davis JL (2012) CO2 capture using solutions of Alkanolamines and amino silicones. Energy Fuel 26:2512–2517Google Scholar
  175. 175.
    O’Brien MJ, Farnum RL, Perry RJ, Genovese SE (2014) Secondary amine functional Disiloxanes as CO2 sorbents. Energy Fuel 28:3326–3331Google Scholar
  176. 176.
    Switzer JR, Ethier AL, Hart EC, Flack KM, Rumple AC, Donaldson JC, Bembry AT, Scott OM, Biddinger EJ, Talreja M (2014) Design, synthesis, and evaluation of nonaqueous Silylamines for efficient CO2 capture. Chem Sus Chem 7:299–307Google Scholar
  177. 177.
    Kortunov P, Baugh LS, Calabro DC, Siskin M (2012) High CO2 to amine adsorption capacity CO2 scrubbing processes. U.S. Patent 20120063979 A1Google Scholar
  178. 178.
    Sartori G, Thaler WA (1983a) Sterically hindered amino acids and tertiary amino acids as promoters in acid gas scrubbing processes. U.S. Patent 4405579 AGoogle Scholar
  179. 179.
    Sartori G, Thaler WA (1983b) N-Secondary butyl glycine promoted acid gas scrubbing process. U.S. Patent 4405586 AGoogle Scholar
  180. 180.
    Jansen AE, Feron PHM (1998) Method for gas absorption across a membrane. U.S. Patent 5749941 AGoogle Scholar
  181. 181.
    Jessop PG, Heldebrant DJ, Li XW, Eckert CA, Liotta CL (2005) Green chemistry – reversible nonpolar-to-polar solvent. Nature 436(7054):1102–1102Google Scholar
  182. 182.
    Heldebrant DJ, Yonker CR, Jessop PG, Phan L (2008) Organic liquid CO2 capture agents with high gravimetric CO2 capacity. Energy Environ Sci 1:487–493Google Scholar
  183. 183.
    Heldebrant DJ, Koech PK, Rainbolt JE, Zheng F, Smurthwaite T, Freeman CJ, Oss M, Leito I (2011) Performance of single-component CO2-binding organic liquids (CO2BOLs) for post combustion CO2 capture. Chem Eng J 171:794–800Google Scholar
  184. 184.
    Lo R, Singh A, Kesharwani MK, Ganguly B (2012) Rational design of a new class of polycyclic organic bases bearing two super basic sites and their applications in the CO2 capture and activation process. Chem Commun 48:5865–5867Google Scholar
  185. 185.
    Shannon MS, Bara JE (2011) Properties of Alkylimidazoles as solvents for CO2 capture and comparisons to imidazolium-based ionic liquids. Ind Eng Chem Res 50:8665–8677Google Scholar
  186. 186.
    Shannon MS, Tedstone JM, Danielsen SPO, Bara JE (2012) Evaluation of Alkylimidazoles as physical solvents for CO2/CH4 separation. Ind Eng Chem Res 51:515–522Google Scholar
  187. 187.
    Bara JE, Moon JD, Reclusado KR, Whitley JW (2013) COSMO Therm as a tool for estimating the Thermophysical properties of Alkylimidazoles as solvents for CO2 separations. Ind Eng Chem Res 52:5498–5506Google Scholar
  188. 188.
    Lin KYA, Park AHA (2011) Effects of bonding types and functional groups on CO2 capture using novel multiphase Systems of Liquid-Like Nanoparticle Organic Hybrid Materials. Environ Sci Technol 45:6633–6639Google Scholar
  189. 189.
    Park Y, Shin D, Jang YN, Park AHA (2012) CO2 capture capacity and swelling measurements of liquid-like nanoparticle organic hybrid materials via attenuated Total reflectance Fourier transform infrared spectroscopy. J Chem Eng Data 57:40–45Google Scholar
  190. 190.
    Park Y, Petit C, Han P, Alissa Park AH (2014) Effect of canopy structures and their steric interactions on CO2 sorption behaviour of liquid-like nanoparticle organic hybrid materials. RSC Adv 4:8723–8726Google Scholar
  191. 191.
    Shafeeyan MS, Wan Daud WM, Houshmand A, Shamiri A (2010) Review on surface modification of activated carbon for carbon dioxide adsorption. Journal of Analytical and Applied Pyrolysis, vol 89:143–151Google Scholar
  192. 192.
    Khatri RA, Chuang SSC, Soong Y, Gray M (2005) Carbon dioxide capture by diamine-grafted SBA-15: a combined Fourier transform infrared and mass spectrometry study. Ind Eng Chem Res 44:3702–3708Google Scholar
  193. 193.
    Liu Q, Liu Z (2013) Carbon supported Vanadia for multi- pollutants removal from flue gas. Fuel 108:149–158.  https://doi.org/10.1016/j.fuel.2011.05.015CrossRefGoogle Scholar
  194. 194.
    Plaza MG, Rubiera F, Pis JJ, Pevida C (2010) Ammoxidation of carbon materials for CO2 capture. Applied Surface Science, vol 256:6843–6849Google Scholar
  195. 195.
    Dantas TLP, Amorim SM, Luna FMT, Silva IJ Jr, de Azevedo DCS, Rodrigues AE, Moreira RFPM (2009) Adsorption of carbon dioxide onto activated carbon and nitrogen-enriched activated carbon: surface changes, equilibrium, and Modeling of fixed-bed adsorption. Sep Sci Technol 45(1):73–84Google Scholar
  196. 196.
    Somy A, Mehrnia MR, Amrei HD, Ghanizadeh A, Safari M (2009) Adsorption of carbon dioxide using impregnated activated carbon promoted by zinc. International Journal of Greenhouse Gas Control 3:249–254.  https://doi.org/10.1016/j.ijggc.2008.10.003CrossRefGoogle Scholar
  197. 197.
    Guo J, Lua AC (2002) Characterization of adsorbent prepared from oil-palm Shell by CO2 activation for removal of gaseous pollutants. Mater Lett 55:334–339Google Scholar
  198. 198.
    Nasri NS, Hamza UD, Ismail SN, Ahmed MM, Mohsin R (2014) Assessment of porous carbons derived from sustainable palm solid waste for carbon dioxide capture. J Clean Prod 71:148–157Google Scholar
  199. 199.
    Plaza MG, Gacia S, Pevida C, Arias B, Rubieraand F, Pis JJ (2011) Evaluation of ammonia modified and conventionally activated biomass based carbons as CO2 adsorbents in post-combustion conditions. Separation and Purification Technology, vol 80:96–104Google Scholar
  200. 200.
    Hauchhum L, Mahanta P (2014) Kinetic, thermodynamic and regeneration studies for CO2 adsorption onto activated carbon. International Journal of Advanced Mechanical Engineering 4(1):27–32Google Scholar
  201. 201.
    Plaza MG, Gonzalez AS, Pevida C, Pis JJ, Rubiera F (2012) Valorisation of spent coffee grounds as CO2 adsorbents for post combustion capture applications. Appl Energy 99:272–279Google Scholar
  202. 202.
    Hamza UD, Nasri NSB, Majid ZA (2016) CO2 adsorption on sustainable biomass derived activated carbon: a mini-review. International Journal of Advances in Science Engineering and Technology 4(1):104–108Google Scholar
  203. 203.
    Babu P, Kumar R, Linga P (2013) Pre-combustion capture of carbondioxide in a fixed bed reactor using the clathrate hydrate process. Energy 50:364–373Google Scholar
  204. 204.
    González AS, Plaza MG, Rubiera F, Pevida C (2013) Sustainable biomass-based carbon adsorbents for post-combustion CO2 capture. Chem Eng J 230:456–465Google Scholar
  205. 205.
    Bae J-S, Su S (2013) Macadamia nutshell-derived carbon composites for post- combustion CO2 capture. Int J Greenh Gas Control 19:174–182Google Scholar
  206. 206.
    Creamer AE, Gao B, Zhang M (2014) Carbondioxide capture using biochar produced from sugarcane bagasse and hickory wood. Chem Eng J 249:174–179Google Scholar
  207. 207.
    Heidari A, Younesi H, Rashidi A, Ghoreyshi AA (2014) Evaluation of CO2 adsorption with eucalyptus wood based activated carbon modified by ammonia solution through heat treatment. Chem EngJ 254:503–513Google Scholar
  208. 208.
    Sethia G, Patel HA, Pawar RR, Bajaj HC (2014) Porous synthetic hectorites for selective adsorption of carbondioxide over nitrogen, methane, carbon monoxide and oxygen. Appl Clay Sci 91–92:63–69Google Scholar
  209. 209.
    Wang Q, Luo J, Zhong Z, Borgna A (2011a) CO2 capture by solid adsorbents and their applications: current status and new trends energy environ. Sci 4:42Google Scholar
  210. 210.
    Saha D, Deng S (2010) Adsorption equilibrium and kinetics of CO2, CH4, N2O, and NH3 on ordered mesoporous carbon. J Colloid Interface Sci 345:402–409Google Scholar
  211. 211.
    Wang Q, Luo J, Zhong Z, Borgna A (2011b) CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ Sci 4:42–55Google Scholar
  212. 212.
    Chew TL, Ahmad AL, Bhatia S (2010) Ordered mesoporous silica (OMS) as an adsorbent and membrane for separation of carbon dioxide (CO2). Adv Colloid Interf Sci 153:43–57Google Scholar
  213. 213.
    Liu X, Li J, Zhou L, Huang D, Zhou Y (2005) Adsorption of CO2, CH4, and N2 on ordered mesoporous silica molecular sieve. Chem Phys Lett 415:198–201Google Scholar
  214. 214.
    Sun Y, Liu XW, Su W, Zhou Y, Zhou L (2007) Studies on ordered mesoporous materials for potential environmental and clean energy applications. Appl Surf Sci 253:5650–5655Google Scholar
  215. 215.
    Sircar S, Golden C, Rao MB (1996) Activated carbon for gas separation and storage. Carbon 34:1Google Scholar
  216. 216.
    Siriwardane RV, Shen M, Fisher EP, Poston J (2001) Adsorption of CO2 on amolecular sieve and activated carbon. Energy Fuel 15:279Google Scholar
  217. 217.
    Burchell TD, Judkins RR, Rogers MR, Williams AM (1997) A novel process and material for the separation of carbon dioxide and hydrogen Sulfide gas mixtures. Carbon 35(9):1279Google Scholar
  218. 218.
    Cinke M, Li J, Bauschlicher CW Jr, Ricca A, Meyyappan M (2003) CO2adsorption in single walled carbon nanotubes. Chem Phys Lett 376:761Google Scholar
  219. 219.
    Hsu SC, Lu CS, Su FS, Zeng W, Chen W (2010) Thermodynamics and regeneration studies of CO2 adsorption on multiwalled carbon nanotubes. Chem Eng Sci 65:1354Google Scholar
  220. 220.
    Mishra AK, Ramaprabhu S (2011) Nano magnetite decorated multiwalled carbon nanotubes: a robust nanomaterial for enhanced carbon dioxide adsorption. Energy Environ Sci 4:889Google Scholar
  221. 221.
    Geim AK, Noveselov KS (2006) The rise of graphene Nat. Mater 6:183Google Scholar
  222. 222.
    Ghosh A, Subrahmanyam KS, Krishna KS, Datta S, Govindaraj A, Pati SK, Rao CNR (2008) Uptake of H2 and CO2 by graphene J. Phys Chem C 112:15704Google Scholar
  223. 223.
    Kaniyoor A, Baby TT, Ramaprabhu S (2010) Graphene synthesis via hydrogen induced low-temperature exfoliation of graphite oxide. J Mater Chem 20:8467Google Scholar
  224. 224.
    Mishra AK, Ramaprabhu S (2011) Carbon dioxide adsorption in graphene sheets. AIP Adv 1:032152.  https://doi.org/10.1063/1.3638178CrossRefGoogle Scholar
  225. 225.
    Aschenbrenner O, Mc Guire P, Alsamaq S, Wang J, Supasitmongkol S, Al-Duri B (2011) Adsorption of carbondioxide on hydrotalcite-like compounds of different compositions. Chem Eng Res Des 89:1711–1721Google Scholar
  226. 226.
    Thiruvenkatachari R, An SSH, Yu XX (2009) Post-combustion CO2 capture by carbon fiber monolithic adsorbents. Prog Energy Combust Sci 35:438–455Google Scholar
  227. 227.
    Bertos F, Simons SJR, Hills CD, Carey PJ (2004) A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. J Hazard Mater 112:193–205Google Scholar
  228. 228.
    Gray ML, Soong Y, Champagnea KJ, Baltrus J, Stevens RW, Toochinda P Jr (2004) CO2 capture by amine-enriched fly ash carbon sorbents. Sep Purif Technol 35:31–36Google Scholar
  229. 229.
    Kaithwas A, Prasad M, Kulshreshtha A, Verma S (2012) Industrial wastes derived solid adsorbents for CO2 capture: amini review. Chem Eng Res Des 90:1632–1641Google Scholar
  230. 230.
    Wang J, Chen H, Zhou H, Liu X, Qiao W, long D. (2013) Carbondioxide capture using polyethylenimine-loaded mesoporous carbons. J Environ Sci 25(1):124–132Google Scholar
  231. 231.
    Seredych M, Jagiello J, Bandosz TJ (2014) The complexity of CO2 adsorption on nanoporous sulphur-doped carbons – is surface chemistry an important factor? Carbon 74:207–217Google Scholar
  232. 232.
    Liu Z, Du Z, Song H, Wang C, Subhan F, Xing W (2014) The fabrication of porous N-doped carbon from widely available urea formaldehyde resin for carbon dioxide. J Colloid Interf Sci 416:124–132Google Scholar
  233. 233.
    Sayari A, Belmabkhout Y, Serna-Guerrero R (2011) Flue gas treatment via CO2 adsorption. Chem Eng J 171:760–774Google Scholar
  234. 234.
    Guoxin H, Huang H, Li Y (2008) The gasification of wet biomass using ca(OH)2 as CO2 absorbent: the microstructure of char and absorbent. Int. J. Hydrogen Energy 33:5422–5429Google Scholar
  235. 235.
    Siriwardane R, Poston J, Chaudhari K, Zinn A, Simonyi T, Robinson C (2007) Chemical-looping combustion of simulated synthesis gas using nickel oxide oxygen carrier supported on bentonite. Energy Fuel 21:1582–1591Google Scholar
  236. 236.
    Lee SC, Kim JC (2007) Dry potassium-based sorbents for CO2 capture. Catal Surv Jpn 11:171–185Google Scholar
  237. 237.
    Abanades JC, Anthony EJ, Wang J, Oakey JE (2005) Fluidized bed combustion systems integrating CO2 capture with CaO. Environ Sci Technol 39:2861–2866Google Scholar
  238. 238.
    Kumar S, Saxena SK (2014) A comparative study of CO2 sorption properties for different oxides. Mater Renew Sustain Energy 3(30):1–15Google Scholar
  239. 239.
    Pfeiffer H, Vázquez C, Lara VH, Bosch P (2007) Thermal behaviour and CO2 absorption of Li2-xNaxZrO3 solid solutions. Chem Mater 19:922–926Google Scholar
  240. 240.
    Ida J, Lin YS (2003) Mechanism of high-temperature CO2 sorption on lithium zirconate. Environ Sci Technol 37:1999–2004Google Scholar
  241. 241.
    Ida J, Xiong R, Lin YS (2004) Synthesis and CO2 sorption properties of pure and modified lithium zirconate. Sep Purify Technol 36:41–51Google Scholar
  242. 242.
    López-Ortiz A, Perez-Rivera NG, Reyes-Rojas A, Lardizabal-Gutierrez D (2004) Novel carbon dioxide solid acceptors using sodium containing oxides. Sep Sci Technol 39:3559–3572Google Scholar
  243. 243.
    Ochoa-Fernández E, Zhao T, Ronning M, Chen D (2009) Effects of steam addition on the properties of high temperature ceramic CO2 acceptors. J Environ Eng 37:397–403Google Scholar
  244. 244.
    Santillán-Reyes GG, Pfeiffer H (2011) Analysis of the CO2 capture in sodium zirconate (Na2ZrO3): effect of water vapour addition. Int J Greenhouse Gas Control 5:1624–1629Google Scholar
  245. 245.
    Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946Google Scholar
  246. 246.
    Vasylkiv O, Sakka Y (2005) Nano explosion synthesis of multi metal oxide ceramic nano powders. Nano Letter 5:2598–2604Google Scholar
  247. 247.
    Pfeiffer H, Bosch P (2005) Thermal stability and high-temperature carbon dioxide sorption on hexa-lithium zirconate (Li6Zr2O7). Chem Mater 17:1704–1710Google Scholar
  248. 248.
    Zhao T, Rønning M, Chen D (2007) Preparation and high-temperature CO2 capture properties of nanocrystalline Na2ZrO3. Chem Mater 19:3294–3301Google Scholar
  249. 249.
    Jimenez BD, Reyes Rojas CM, López-Ortiz GV (2004) Novel developments in adsorption; the effect of Li as a dopant in Na2ZrO3high-temperature CO2 acceptor. In: AIChE Annual MeetingGoogle Scholar
  250. 250.
    Moradi O, Yari M, Zare K, Mirza B, Najafi F (2012) Carbon nanotubes: a review of chemistry principles and reactions. Fullerenes Nanotubes Carbon Nanostruct 20:138Google Scholar
  251. 251.
    Kemp DR, Paul DR (1974) Gas sorption in polymer membranes containing adsorptive fillers. J Polym Sci B Polym Phys 12:485Google Scholar
  252. 252.
    Koros WJ, Fleming GK (1993) Membrane based gas separation. J Membr Sci 83:1Google Scholar
  253. 253.
    Dorosti OMR, Pedram MZ, Moghadam F (2011) Fabrication and characterisation of polysulfone/polyimide-zeolite mixed matrix membrane for gas separation. Chem Eng J 171:1469Google Scholar
  254. 254.
    Goh PS, Ismail AF, Sanip SM, Ng BC, Aziz M (2011) Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Sep Purify Technol 81:243Google Scholar
  255. 255.
    Ismail AF, Goh PS, Sanip SM, Aziz M (2009) Transport and separation properties of carbon nanotubes-mixed matrix membranes. Sep Purify Technol 70:12Google Scholar
  256. 256.
    Reid BD, Ruiz-Trevino A, Musselman IH, Balkus KJ, Ferraris JP (2001) Gas permeability properties of Polysulfone membranes containing the mesoporous molecular sieve MCM-41 Chem. Mater. 13:2366Google Scholar
  257. 257.
    Batten SR, Champness NR, Chen XM, Garcia-Martinez J, Kitagawa S, Ohrstrom L, O’Keeffe M, Suh MP, Reedijk J (2012) Coordination polymers, metal-organic frameworks and the need for terminology guidelines. Cryst Eng Comm 14:3001Google Scholar
  258. 258.
    Biradha K, Ramana A, Vittal JJ (2009) Coordination polymers versus metal−organic frameworks Cryst. Growth Des 9:2969Google Scholar
  259. 259.
    Li JR, Ma YG, McCarthy MC, Sculley J, Yu JM, Jeong HK, Balbuena PB, Zhou HC (2011b) Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks Coord. Chem Rev 255:1791Google Scholar
  260. 260.
    Li JR, Sculley J, Zhou HC (2012) Metal organic frameworks for separations. Chem Rev 112:869Google Scholar
  261. 261.
    Liu J, Thallapally PK, McGrail BP, Brown DR (2012) Progress in adsorption based CO2 capture by metal organic frameworks. Chem Soc Rev 41:2308Google Scholar
  262. 262.
    Meek ST, Greathouse JA, Allendorf MD (2011) Metal organic frameworks: a rapidly growing class of versatile nanoporous materials Adv. Mater 23:249Google Scholar
  263. 263.
    Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Reticular synthesis and design of new materials Nature 423:705Google Scholar
  264. 264.
    Zhou HC, Long JR, Yaghi OM (2012) Introduction to metal organic frameworks. Chem Rev 112:673Google Scholar
  265. 265.
    Millward AR, Yaghi OM (2005) Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127:17998–17999Google Scholar
  266. 266.
    Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, Yaghi OM (2008) High-throughput synthesis of Zeolitic Imidazolate frameworks and application to CO2 capture. Science 319:939–943Google Scholar
  267. 267.
    Wang B, Cote AP, Furukawa H, O’Keeffe M, Yaghi OM (2008) Colossal cages in Zeolitic Imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453:207–211Google Scholar
  268. 268.
    Banerjee R, Furukawa H, Britt D, Knobler C, O’Keeffe M, Yaghi OM (2009) Control of pore size and functionality in Isoreticular Zeolitic Imidazolate frameworks and their carbon dioxide selective capture properties. J Am Chem Soc 131:3875–3877Google Scholar
  269. 269.
    Britt D, Furukawa H, Wang HB, Glover TG, Yaghi OM (2009) Highly efficient separation of carbon dioxide by metal-organic framework replete with open metal sites. PNAS 106:20637–20640Google Scholar
  270. 270.
    Su F, Lu C, Chung A-J, Liao C-H (2014) CO2 capture with amine-loaded carbon nanotubes via a dual-column temperature/vacuum swing adsorption. Appl Energy 113:706–712Google Scholar
  271. 271.
    Song F, Zhao Y, Zhong Q (2013) Adsorption of carbondioxide on amine-modified TiO2 nanotubes. J Environ Sci 25(3):554–560Google Scholar
  272. 272.
    Cao Y, Song F, Zhao Y, Zhong Q (2013) Capture of carbondioxide from flue gas on TEPA-grafted metal-organic framework Mg2(dobdc). J Environ Sci 25(10):2081–2087Google Scholar
  273. 273.
    Lin Y, Yan Q, Kong C, Chen L (2013) Polyethyleneimine incorporated metal-organic frameworks adsorbent for highly selective CO2 capture. Sci Rep 3:1859.  https://doi.org/10.1038/Srep01859CrossRefGoogle Scholar
  274. 274.
    Chen Z, Deng S, Wei H, Wang B, Huang J, Yu G (2013) Polyethylenimine- impregnated resin for high CO2 adsorption: an efficient adsorbent for CO2 capture from simulated flue gas and ambient air. ACS Appl Mater Interf 5:6937–6945Google Scholar
  275. 275.
    Bureekaew S, Shimomura S, Kitagawa S (2008) Chemistry and application of flexible porous coordination polymers. Sci Technol Adv Mater 9:014108Google Scholar
  276. 276.
    Culp JT, Smith MR, Bittner E, Bockrath B (2008) Hysteresis in the physisorption of CO2 and N2 in a flexiblepillardlayered nickel cyanide. J Am Chem Soc 130:12427Google Scholar
  277. 277.
    Ferey G, Serre C (2009) Large breathing effects in thethree-dimensional porous hybrid matter: facts, analyses, rules and consequences. Chem Soc Rev 38:1380Google Scholar
  278. 278.
    Hamon L, Llewellyn PL, Devic T, Ghoufi A, Clet G, Guillerm V, Pirngruber GD, Maurin G, Serre C, Driver G, van Beek W, Jolimaitre E, Vimont A, Daturi M, Ferey G (2009) Co-adsorption and separation of CO2-CH4 mixtures in the highly flexible MIL-53(Cr)MOF. J Am Chem Soc 131:17490Google Scholar
  279. 279.
    Kauffman KL, Culp JT, Allen AJ, Espinal L, Wong-Ng W, Brown TD, Goodman A, Bernardo MP, Pancoast RJ, Chirdon D, Matranga C (2011) Selective adsorption of CO2 from light gas mixtures by using a structurally dynamic porous coordination polymer. Angew Chem Int Ed 50:10888Google Scholar
  280. 280.
    Serre C, Bourrelly S, Vimont A, Ramsahye NA, Maurin G, Llewellyn PL, Daturi M, Filinchuk Y, Leynaud O, Barnes P, Ferey G (2007) An explanation for the very large breathing effect of a metal–organic framework during CO2 adsorption. Adv Mater 19:2246Google Scholar
  281. 281.
    Zornoza A, Martinez-Joaristi P, Serra-Crespo C, Tellez J, Coronas J, Gascon F, Kapteijn (2011) Functionalized flexible MOF as filler in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures. Chem Commun 47:9522Google Scholar
  282. 282.
    Culp JT, Sui L, Goodman A, Luebke D (2013) Carbon dioxide (CO2) absorption behaviour of mixed matrix polymer composites containing a flexible coordination polymer. J Colloid Interface Sci 393:278–285Google Scholar
  283. 283.
    Gupta M, Coyle I, Thambimuthu K (2003a) Strawman document for CO2 capture and storage technology roadmap. CANMET Energy Technology Centre, Natural Resources, CanadaGoogle Scholar
  284. 284.
    Abass A, Olajire A (2010b) CO2 capture and separation technologies for end-of-pipe applications – a review. Energy 5:2610–2628Google Scholar
  285. 285.
    Brunetti A, Scura F, Barbieri G, Drioli E (2010) Membrane technologies for CO2 separation. J Membr Sci 359:115–125Google Scholar
  286. 286.
    Clean air task force & consortium for science, policy and outcomes, innovation policy for climate change. In: Proceedings of a national commission on energy policy. Washington, DC; Innovation Policy for Climate Change, A Joint project report of CSPO and CATF to the nation, a project of the Bipartisan Policy Center, Sep. 2009 - http://www.catf.us/resources/publications/files/Innovation_Policy_for_Climate_Change.pdf
  287. 287.
    Figueroa D, Fout T, Plasynski S, Mcilvried H, Srivastava RD (2008) Advances in CO2 capture technology, the US Department of energy’s carbon sequestration program. Int J Greenh Gas Control 2:9–20Google Scholar
  288. 288.
    Clean Air Task Force (2010) Coal without carbon: an investment plan for federal action. Clean Air Task Force, BostonGoogle Scholar
  289. 289.
    Sreenivasulu B, Gayatri DV, Sredhar I, Raghavan KV (2015) A journey into the process and engineering aspects of carbon capture techniques. Renew Sust Energ Rev 41:1324–1350Google Scholar
  290. 290.
    Kim YS, Yang SM (2000) Absorption of carbondioxide through hollow fiber membranes using various aqueous absorbents. Sep Purif Technol 21:101–109Google Scholar
  291. 291.
    Bottino A, Capannelli G, Comite A, Felice RD, Firpo R (2008) CO2 removal from a gas stream by membrane contactor. Sep Purif Technol 59:85–90Google Scholar
  292. 292.
    Favre E (2011a) Membrane processes and post-combustion carbondioxide capture: challenges and prospects. Chem Eng J 171:782–793Google Scholar
  293. 293.
    Chabanon E, Roizard D, Favre E (2013) Modeling strategies of membrane contactors for post-combustion CC: a critical comparative study. Chem Eng Sci 87:393–407Google Scholar
  294. 294.
    Luis P, Gerven TV, de Bruggen BV (2012a) Recent developments in membrane-based technologies for CO2 capture. Prog Energy Combust Sci 38:419–448Google Scholar
  295. 295.
    Krishna AR (2009) Describing the diffusion of guest molecules inside porous structures. J Phys Chem C 113(46):19756–19781Google Scholar
  296. 296.
    Powell CE, Qiao GG (2006b) Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J Membr Sci 279:1–49Google Scholar
  297. 297.
    Luis P, Gerven TV, de Bruggen BV (2012b) Recent developments in membrane-based technologies for CO2 capture. Prog Energy Combust Sci 38:419–448Google Scholar
  298. 298.
    Wang S, Liu Y, Huang S, Wu H, Li Y, Tian Z (2014) Pebax–PEG–MWCNT hybrid membranes with enhanced CO2 capture properties. J Membr Sci 460:62–70Google Scholar
  299. 299.
    Yanan Zhao Y, Jung BT, Ansaloni L, Ho WSW (2014) Multi walled carbon nanotube mixed matrix membranes containing amines for high-pressure CO2/H2 separation. J Membr Sci 459:233–243Google Scholar
  300. 300.
    Maroño M, Barreiro MM, Torreiro Y, Sánchez JM (2014) Performance of a hybrid system sorbentcatalyst membrane for CO2 capture and H2 production under pre-combustion operating conditions. Catal Today 236:77–85Google Scholar
  301. 301.
    Favre E (2011b) Membrane processes and post-combustion carbondioxide capture: challenges and prospects. Chem Eng J 171:782–793Google Scholar
  302. 302.
    Lozano LJ, Godinez C, de los Rios AP, Hernandez-Fernandez FJ, Sanchez Segado S, Alguacil FJ (2011) Recent advances in supported ionic liquid membrane technology. J Membr Sci 376:1–14Google Scholar
  303. 303.
    Cheng L-H, Rahaman MSA, Yao R, Zhang L, XuX H, Chen H-L (2014) Study on microporous supported ionic liquid membranes for carbondioxide capture. Int J Greenh Gas Control 21:82–90Google Scholar
  304. 304.
    Mulgundmath VP, Jones RA, Tezel FH, Thibault J (2012) Fixed bed adsorption for the removal of carbondioxide from nitrogen: break through behaviour and modelling for heat and mass transfer. Sep Purif Technol 85:17–27Google Scholar
  305. 305.
    Lee ZH, Lee KT, Bhatia S, Mohamed AR (2012) Post-combustion carbondioxide capture: evolution towards utilization of nanomaterials. Renew Sust Energ Rev 16:2599–2609Google Scholar
  306. 306.
    GHG (1993) The capture of carbon di oxide from fossil fuel fired power stations, IEAGHG/SR2. IEA Greenhouse Gas, CheltenhamGoogle Scholar
  307. 307.
    Gupta M, Coyle I, Thambimuthu K (2003) Strawman document for CO2 capture and storage technology roadmap. Canada: CANMET Energy Technology Centre, Natural ResourcesGoogle Scholar
  308. 308.
    Axel M, Xiaoshan S (1997) Research and development issues in theCO2 capture. Energy ConversManag 38:37–42Google Scholar
  309. 309.
    Latimer RE (1967) Distillation of air. Chem Eng Prog 63(2):35–59Google Scholar
  310. 310.
    Aroonwilas A, Tontiwachwuthikul P (1998) Mass transfer coefficients and correlation for CO2 absorption into 2-amino-2-methyl-1-propanol(AMP) using structured packing. Ind Eng Chem Res 37:569–575Google Scholar
  311. 311.
    Arashi N, Oda N, Yamada M, Ota H, Umeda S, Tajika M (1997) Evaluation of test results of 1000m3N/h pilot plant for CO2 absorption using an amine-based solution. Energy Convers Manag 38:S63–S68Google Scholar
  312. 312.
    Setameteekul A, Aroonwilas A, Veawab A (2008) Statistical factorial design analysis for parametric interaction and empirical correlations of CO2 absorption performance in MEA and blended MEA/MDEA processes. Sep Purif Technol 64:16–25Google Scholar
  313. 313.
    Marcia S, de Montigny D, Tontiwachwuthikul P (2009) Liquid distribution of MEA in random and structured packing in a square column. Energy Procedia 1:1155–1161Google Scholar
  314. 314.
    Kolev N, Nakov S, Ljutzkanov L, Kolev D (2006) Effective area of a highly efficient random packing. Chem Eng Process Intensification 45:429–436Google Scholar
  315. 315.
    Yu C-H, Tan C-S (2013) Mixed alkanolamines with low regeneration energy for CO2 capture in a rotating packed bed. Energy Procedia 37:455–460Google Scholar
  316. 316.
    Yu C-H, Cheng H-H, Tan C-S (2012b) CO2 capture by alkanolamines solutions containing ethylenetriamine and piperazine in a rotating packed bed. Int J Greenhouse Gas Control 9:136–147Google Scholar
  317. 317.
    Abass A, OlajireA (2010) CO2 capture and separation technologies for end-of-pipe applications – a review. Energy 35:2610–2628Google Scholar
  318. 318.
    Blomen E, Hendriksa C, Neele F (2009) Capture technologies: improvements and promising developments. Energy Procedia 1:1505–1512Google Scholar
  319. 319.
    Hossain MM, Lasa HI (2008) Chemical-looping combustion (CLC) for inherent CO2 separations – a review. Chem Eng Sci 63:4433–4445Google Scholar
  320. 320.
    Richter HJ, Knoche K (1983) Reversibility of combustion processes. Efficiency and Costing - Second Law Analysis of Processes, ACS Symposium series 235:71–85Google Scholar
  321. 321.
    Ishida M, Jin H (1994) A new advanced power-generation system using chemical-looping combustion. Energy 19(4):415–422Google Scholar
  322. 322.
    ZafarQ MT, Gevert B (2005) Integrated hydrogen and power production with CO2 capture using chemical-looping reforming-redox reactivity of particles of CuO, Mn2O3, NiO, and Fe2O3 using SiO2 as a support. Ind Eng Chem Res 44(10):3485–3496Google Scholar
  323. 323.
    Benson SM, Bennaceur K, Cook P, Davison J, de Coninck H, Farhat K, Ramirez A, Simbeck D, Surles T, Verma P, Wright I (2012) Carbon capture and storage. Chapter 13 in global energy assessment – toward a sustainable future. Cambridge University Press, Cambridge, UKGoogle Scholar
  324. 324.
    Grantham institute for climate change briefing paper no 4, Dec (2010), Carbon dioxide storage, Professor Martin BluntGoogle Scholar
  325. 325.
    Spycher N, Pruess K, Ennis-King J (2003) CO2–H2O mixtures in the geological sequestration of CO2. II. Assessment and calculation of mutual solubilities from 12 to 100°C and up to 600 bar. Geochim Cosmochim Acta 67(16):3015–3031Google Scholar
  326. 326.
    Gan W, Frohlich C (2013) The gas injection may have triggered earthquakes in the Cogdell oil field, Texas. Proc Natl Acad Sci U S A 110(47):18786–18791.  https://doi.org/10.1073/pnas.1311316110CrossRefGoogle Scholar
  327. 327.
    Sridhar N, Hill D (2011) Electrochemical conversion of CO2 – opportunities and challenges. Research and Innovation Position Paper 07Google Scholar
  328. 328.
  329. 329.
    Ushikoshi K (1997) Kobe steel engineering reports, vol 47, no 3 (in Japanese)Google Scholar
  330. 330.
    Saito M, Fujitani T, Takeuchi M, Watanabe T (1996) Development of copper/zinc oxide-based multicomponent catalysts for methanol synthesis from carbon dioxide and hydrogen. Appl Catal A Gen 38:311–318.  https://doi.org/10.1016/0926-860X(95)00305-3CrossRefGoogle Scholar
  331. 331.
    Imai T, Yasutake S, Kuroda K, Hirano M, Akano T (1998) Mitsubishi Jyuko Gihiou. Technical Report of Mitsubishi Heavy Industries, Ltd, vol 35, no 6 (in Japanese)Google Scholar
  332. 332.
    Nakatsuji H, Hu ZM (2000) Mechanism of methanol synthesis on cu(100) and Zn/cu(100) surfaces: comparative dipped Adcluster model study. Int J Quantum Chem 77:341–349.  https://doi.org/10.1002/(SICI)1097-461X(2000)77:1<341::AID-QUA33>3.0.CO;2-TCrossRefGoogle Scholar
  333. 333.
    Takagawa M, Ohsugi M (1987) Study on reaction rates for methanol synthesis from carbon monoxide, carbon dioxide, and hydrogen. Journal of Catalyst 107(1):161–172.  https://doi.org/10.1016/0021-9517(87)90281-8CrossRefGoogle Scholar
  334. 334.
    Vijayan B, Dimitrijevic NM, Rajh T, Gray K (2010) Effect of calcination temperature on the photocatalytic reduction and oxidation process of hydrothermally synthesized titania nanotubes. J Phys Chem C 114:12994–13002Google Scholar
  335. 335.
    Bhattacharyya K, Danon A, Vijayan BK, Gray KA, Stair PC, Weitz E (2013) Role of the surface lewis acid and base sites in the adsorption of CO2 on titania nanotubes and platinized titania nanotubes: an in situ FTIR study. J Phys Chem C 117:12661–12678Google Scholar
  336. 336.
    Bhattacharyya K, Wu W, Weitz E, Vijayan BK, Gray KA (2015) Probing water and CO2 interactions at the surface of collapsed Titania nanotubes using IR spectroscopy. Molecules 20:15469–15487.  https://doi.org/10.3390/molecules200915469CrossRefGoogle Scholar
  337. 337.
    Bicarbonate based microalgae carbon sequestration for higher biomass and lipid production in chlorella species: Project Reference No: 38S_B_MSC_015. Indian Academy Degree College; http://www.kscst.iisc.ernet.in/spp/38_series/spp38s/synopsis_biofuel/MSC/247_38S_B_MSc_015.pdf

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of ChemistryVFSTR UniversityGunturIndia
  2. 2.Shree Velagapudi Rama Krishna Memorial College (PG Studies)NAAC ‘A’ Grade and ISO 9001:2015 Certified (Autonomous)Guntur DistrictIndia
  3. 3.MCETRCTenali, GunturIndia

Personalised recommendations