Advertisement

Advances in Polymer-Based Photovoltaic Cells: Review of Pioneering Materials, Design, and Device Physics

  • Sanjay TiwariEmail author
  • Tanya Tiwari
  • Sue A. Carter
  • J. Campbell Scott
  • J. V. Yakhmi
Reference work entry

Abstract

Photovoltaics, which directly convert solar energy into electricity, offer a practical and sustainable solution to the challenge of bridging the global demand and supply gap in energy along with carbon-neutral, renewable energy source. Recently significant progress in organic photovoltaic materials has been made to overcome technological and material barriers in order to develop organic or polymeric photovoltaic devices (OPVs or PPVs) with cost-effective efficiency with respect to the inorganic counterparts and to make them commercially viable for applications as flexible solar modules, semitransparent solar cells in windows, and photon recycling in liquid-crystal displays. Organic photovoltaics technology is rapidly emerging as a transformative technology with meliorating cell efficiency (currently ~13.2%), encouraging initial lifetime (>5,000 hours without encapsulation), and potential for roll-to-roll manufacturing processes. It is a technology with great potential for extremely high-throughput manufacturing at very low cost and are made from nontoxic, earth-abundant materials with low energy inputs. OPV is finding application in the building-integrated PV market because of the availability of efficient light weight transparent devices absorbers in several different colors. With an intensified understanding on the fundamental photovoltaic processes in organic electronic materials and the development of tailored materials and device architectures, there is rapid increase in the efficiency of OPV devices to over 10%, which attracts tremendous commercial interests for further development and manufacturing. This conversion efficiency for given solar spectrum depends on the organic material properties and device architecture. The enduringness of organic solar technology lies in the variety of organic materials that can be designed and synthesized for the absorber, acceptor, and interfaces. Even with the promise of increasing overall efficiency, the field is still immature in the stage of infancy. The major improvements which are required for development of viable OPVs are around 10% overall efficiency, high stability from degradation under standard test conditions, new optically active polymers with specially tuned optoelectronic properties and large exciton diffusion length, various effective interfacial layers, new device architectures, and a deeper understanding of device physics.

This chapter reviews the scientific origins and past, current initiatives, and critical issues on the efficiency improvement of organic solar cells from the material properties perspective for terrestrial applications. It covers some of the most significant technological developments that were presented in the literature and helped to improve its performance. Potential future developments and the applications of this technology are also discussed. Organic–inorganic lead halide-based perovskites solar cells which are by far are the highest efficiency solution-processed solar cells are also briefly described.

However, there are many challenges both in R&D and in commercialization. The photovoltaic community is working on new organic materials, device designs, and process tools, while there is a rapid growth in commercial equipment for improved processing and higher throughput. The low-efficiency thin film flexible polymer materials can find applications in building-integrated PV systems, flexible electronics, flexible power generation systems, and many other markets. Finally, we conclude with a look at the future challenges and prospects of the development of efficient photovoltaic materials for meeting global energy demand.

Keywords

Solar cells Efficiency Morphology Device physics Polymer solar cells Electron donors and acceptors Energy Perovskites 

Notes

Acknowledgment

The author (ST) is grateful to Dr. Ralph Gebauer, Sr. Research Scientist, Abdus Salam ICTP, Italy, for guidance, useful discussions, and persistent help, and financial support of the Abdus Salam ICTP, Italy, through Sr. Associateship.

References

  1. 1.
    Dresselhause MS, Thomas IL (2001) Alternative energy technologies. Nature 414:332–337Google Scholar
  2. 2.
    Krebs FC (2008) Polymer photovoltaics: a practical approach. SPIE Press, BellinghamGoogle Scholar
  3. 3.
    Grossiord N, Kroon MJ, Andriessen R, Blom PWM (2012) Degradation mechanisms in organic photovoltaic devices. Org Electron 13:432–456Google Scholar
  4. 4.
    Olz S, Sims R, Kirchner N (2007) Contribution of renewables to energy security, International Energy Agency (IEA information paper). OECD/IEA, ParisGoogle Scholar
  5. 5.
    World Energy Council (2017) http://www.worldenergy.org
  6. 6.
    Tong TM, Soboyejo WO (2012) Adhesion and interfacial fracture: from organic light emitting devices and photovoltaic cells to solar lanterns for developing regions, dissertation, Princeton University, New YorkGoogle Scholar
  7. 7.
    IE Agency and IEA (2017) http://www.Iea.org
  8. 8.
    Jacobson MZ, Delucchi MA, Bauer ZAF, Goodman SC, Chapman WE, Cameron MA, Bozonnat C, Chobadi L, Clonts HA, Enevoldsen P, Erwin JR, Fobi SN, Goldstrom OK, Hennessy EM, Liu J, Lo J, Meyer CB, Morris SB, Moy KR, O’Neill PL, Petkov I, Redfern S, Schucker R, Sontag MA, Wang J, Weiner E, Yachanin AS (2017) 100% clean and renewable wind, water, and sunlight all-sector energy roadmaps for 139 countries of the world, Joule 1, 1–14, Elsevier IncGoogle Scholar
  9. 9.
    EIA (Energy Information Administration, U.S.) (2017) International Energy Outlook 2014 DOE/EIA-0484(2014) (U.S. Department of Energy). https://www.eia.gov/todayinenergy/detail.php?id=32912
  10. 10.
    Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110(11):6595–6663.  https://doi.org/10.1021/cr900356pCrossRefGoogle Scholar
  11. 11.
    Bazilian M, Onyeji I, Liebreich M, MacGill I, Chase J, Shah J et al (2013) Re-considering the economics of photovoltaic power. Renew Energy 53:329–338.  https://doi.org/10.1016/j.renene.2012.11.029CrossRefGoogle Scholar
  12. 12.
    Martin G (2003) Third generation photovoltaics advanced solar energy conversion. Springer series in photonics, vol 12. Springer, Berlin/Heidelberg.  https://doi.org/10.1007/b137807CrossRefGoogle Scholar
  13. 13.
    Sark WV, Korte L, Roca F (2012) In: Wilfried GJHM, van Sark W, Korte L, Roca F (eds) Physics and technology of amorphous-crystalline heterostructure silicon solar cells. Springer, Berlin/Heidelberg, p 112Google Scholar
  14. 14.
    Nelson J (2003) The physics of solar cells, 1st edn. Imperial College Press, LondonGoogle Scholar
  15. 15.
    McEvoy A, Castaner L, Markvart T (eds) (2013) Solar cells: materials, manufacture and operation 2nd edn Elsevier Academic Press INC.  https://doi.org/10.1016/B978-0-12-386964-7.01001-5
  16. 16.
    Wurfel P (2009) Physics of solar cells: from basic principles to advanced concepts, 2nd edn. Wiley-VCH, WeinheimGoogle Scholar
  17. 17.
    Tiwari S, Tiwari S (2006) Development of CdS based stable thin film photo electrochemical solar cells. Sol Energy Mater Sol Cells 90(11):1621–1628Google Scholar
  18. 18.
    Mishra S, Tiwari S, Chandra BP (1995) Optimization of photoelectrochemical solar cells based on polycrystalline CdTe film photoanode. Sol Energy Mater Sol Cells 37(2):133–142Google Scholar
  19. 19.
    Tiwari S, Tiwari S (1994) A novel technique for enhancing efficiency and stability of CdTe based PEC solar cells. J Phys D Appl Phys 27:2009–2012Google Scholar
  20. 20.
    Krebs FC, Hösel M, Corazza M, Roth B, Madsen MV, Gevorgyan SA, Søndergaard RR, Karg D, Jørgensen M (2013) Freely available OPV – the fast way to progress. Energ Technol 1:378–381.  https://doi.org/10.1002/ente.201300057CrossRefGoogle Scholar
  21. 21.
    Chiechi RC, Havenith RWA, Hummelen JC, Koster LJA, Loi MA (2013) Modern plastic solar cells: materials, mechanisms and modeling. Mater Today 16(7/8):281–289Google Scholar
  22. 22.
    Espinosa N, Hösel M, Angmo D, Krebs FC (2012) Solar cells with one-day energy payback for the factories of the future. Energy Environ Sci 5(1):5117–5132Google Scholar
  23. 23.
    Shaheen SE, Brabec CJ, Sariciftci NS (2001) 2.5% Efficient organic plastic solar cells. Appl Phys Lett 78:841–843Google Scholar
  24. 24.
    Lackner KS (2010) Issues in Environmental Science and Technology. In: Hester RE, Harrison RM (eds) Carbon capture: sequestration and storage, vol 29. Royal Society of Chemistry, Cambridge, pp 1–41Google Scholar
  25. 25.
    Tang Z, Tress W, Inganäs O (2014) Light trapping in thin film organic solar cells. Mat Today 17:389–396Google Scholar
  26. 26.
    Nelson J (2011) Polymer: fullerene bulk heterojunction solar cells. Mater Today 14(10):462–470Google Scholar
  27. 27.
    McGehee MD (2009) Nanostructured organic – inorganic hybrid solar cells. Mater Res Soc Bull 34:95Google Scholar
  28. 28.
    Yang X, Loos J (2007) Toward high-performance polymer solar cells: the importance of morphology control. Macromolecules 40:1353–1362.  https://doi.org/10.1021/ma0618732CrossRefGoogle Scholar
  29. 29.
    O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740Google Scholar
  30. 30.
    Chopra KL, Paulson PD, Dutta V (2004) Thin-film solar cells: an overview. Prog Photovolt Res Appl 12:69–92Google Scholar
  31. 31.
    Grätzel M (2003) J Photochem Photobiol C 4(2):2145–2153Google Scholar
  32. 32.
    Kalyanasundaram K (2010) Photochemical and photoelectrochemical approaches to energy conversion In: Kalyanasundaram K (Ed.). Dye-sensitized solar cells. EPFL Press, Lausanne, Switzerland, CRC Press, ISBN-10: 143980866XGoogle Scholar
  33. 33.
    Sahu S, Patel M, Awasthy R, Tiwari S (2014) Investigating the influence of porosity on performance of dye-sensitized solar cells. Int J Fibre Opt Photon. T3AGoogle Scholar
  34. 34.
    Sahu S, Patel M, Verma AK, Singh SP, Tiwari S (2017) Enhanced photovoltaic performance via co-sensitization of ruthenium (ii)-based complex sensitizers with metal-free indoline dye in dye-sensitized solar cells. Org Photon Photovolt 5:9–15Google Scholar
  35. 35.
    Mathew S et al (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6:242–247Google Scholar
  36. 36.
    Green MA, Ho-Baillie A, Snaith HJ (2014) The emergence of perovskite solar cells. Nat Photonics 8:506–514Google Scholar
  37. 37.
    Green MA, Ho-Baillie A (2017) Perovskite solar cells: the birth of a new era in photovoltaics. ACS Energy Lett 2(4):822–830.  https://doi.org/10.1021/acsenergylett.7b00137CrossRefGoogle Scholar
  38. 38.
    Huang J, Yuan Y, Shao Y, Yan Y (2017) Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat Rev Mater 2:17042.  https://doi.org/10.1038/natrevmats.2017.42CrossRefGoogle Scholar
  39. 39.
    Park NG, Gratzel M, Miyasaka T, Zhu K, Emery K (2016) Towards stable and commercial available perovskite solar cells. Nat Energy 1:16152Google Scholar
  40. 40.
    Al-Dainy GA, Bourdo SE, Saini V, Berry BC, Biris AS (2017) Hybrid perovskite photovoltaic devices: properties, architecture, and fabrication methods. Energ Technol 5(3):373–401Google Scholar
  41. 41.
    Yang SS, Fu W, Zhang Z, Chen H, Li CZ (2017) Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. J Mater Chem A 5:11462–11482.  https://doi.org/10.1039/C7TA00366HCrossRefGoogle Scholar
  42. 42.
    Petrus ML, Schlipf J, Li C, Gujar TP, Giesbrecht N, Müller-Buschbaum P, Thelakkat M, Bein T, Hüttner S, Docampo P (2017) Perovskite solar cells: capturing the sun: a review of the challenges and perspectives of perovskite solar cells. Adv Energy Mater 7:1700264Google Scholar
  43. 43.
    Shin SS et al (2017) Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells. Science 356(6334):167–171Google Scholar
  44. 44.
    Konstantakou M, Stergiopoulos T (2017) A critical review on tin halide perovskite solar cells. J Mater Chem A 5:11518–11549.  https://doi.org/10.1039/C7TA00929ACrossRefGoogle Scholar
  45. 45.
    Bailie CD, McGehee MD (2015) High-efficiency tandem perovskite solar cells. MRS Bull 40:681Google Scholar
  46. 46.
    Leijtens T, Prasanna R, Gold-Parker A, Toney MF, McGehee MD (2017) Mechanism of tin oxidation and stabilization by lead substitution in tin halide perovskites. ACS Energy Lett 2:2159–2165Google Scholar
  47. 47.
    Bush KA, Palmstrom AF, Yu ZJ, Boccard M, Cheacharoen R, Mailoa JP, McMeekin DP, Hoye RLZ, Bailie CD, Leijtens T, Peters IM, Minichetti MC, Rolston N, Prasanna R, Sofia S, Harwood D, Ma W, Moghadam F, Snaith HJ, Buonassisi T, Holman ZC, Bent SF, McGehee MD (2017) 23.6% efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat Energy 2:17009Google Scholar
  48. 48.
    McGehee MD (2017) Perovskite solar cells: continuing to soar. Nat Mater 13:845Google Scholar
  49. 49.
    Ye M, Gao X, Hong X, Liu Q, He C, Liu X, Lin C (2017) Recent advances in quantum dot-sensitized solar cells insights into photoanodes sensitizers electrolytes and counter electrodes. Sustain Energy Fuels 1(6):1217–1231.  https://doi.org/10.1039/C7SE00137ACrossRefGoogle Scholar
  50. 50.
    Duan J, Zhang H, Tang Q, He B, Yu L (2015) Recent advances in critical materials for quantum dot-sensitized solar cells: a review. J Mater Chem A 2015(3):17497–17510.  https://doi.org/10.1039/C5TA03280FCrossRefGoogle Scholar
  51. 51.
    Jun HK, Careem MA, Arof AK (2013) Quantum dot-sensitized solar cells – perspective and recent developments: a review of Cd chalcogenide quantum dots as sensitizers. Renew Sustain Energy Rev 22:148–167Google Scholar
  52. 52.
    Sudhagar P, Juárez-Pérez EJ, Kang YS, Mora-Seró I (2014) Quantum dot-sensitized solar cells. In: Lin Z, Wang J (eds) Low-cost nanomaterials. Green energy and technology. Springer, London.  https://doi.org/10.1007/978-1-4471-6473-9_5CrossRefGoogle Scholar
  53. 53.
    Patel M, Sahu S, Verma AK, Agnihotri P, Singh SP, Narayan Reand, Tiwari S (2017) Quantum dot as light harvester nanocrystals for solar cell applications, quantum dot as light harvester nanocrystals for solar cell applications. In: Ramrakhiani M (ed) Recent advances in photovoltaic. Vol. 17, pp 117, Materials Research Forum LLC Springdale Lane, Millersville PA 17551, USA.  https://doi.org/10.21741/9781945291371-4
  54. 54.
    Wang W, Jiang G, Juan Y, Wang W, Pan Z, Nakazawa N, Shen Q, Zhong X (2017) High efficiency quantum dot sensitized solar cells based on direct adsorption of quantum dots on photoanodes. ACS Appl Mater Interfaces 9(27):22549–22559.  https://doi.org/10.1021/acsami.7b05598CrossRefGoogle Scholar
  55. 55.
    Kamat PV (2012) Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer. Acc Chem Res 45(11):1906–1915.  https://doi.org/10.1021/ar200315dCrossRefGoogle Scholar
  56. 56.
    Lee JW, Son DY, Ahn TK, Shin HW, Kim IY, Hwang SJ, Ko MJ, Sul S, Han H, Park NG (2013) Quantum-dot-sensitized solar cell with unprecedentedly high photocurrent. Sci Rep 3:1050.  https://doi.org/10.1038/srep01050CrossRefGoogle Scholar
  57. 57.
    Tiwari S, Carter S, Scott JC (2014) Optical simulation of quantum dot thin film solar cells IEEE Recent Advances in Photonics (WRAP). doi: https://doi.org/10.1109/WRAP.2013.6917711
  58. 58.
    Facchetti A (2013) Organic semiconductors: made to order. Nat Mater 12:598–600.  https://doi.org/10.1038/nmat3686CrossRefGoogle Scholar
  59. 59.
    Tiwari S, Yakhmi JV (2015) Recent advances in luminescent nanomaterials for solid state lighting applications. In: Virk HS (ed) Defect and diffusion forum, vol 361. Trans Tech Publications, Zurich, Switzerland, pp 15–68  https://doi.org/10.4028/www.scientific.net/DDF.361.15Google Scholar
  60. 60.
    So F (2009) Organic electronics: materials, processing, devices and applications. CRC Press, Boca RatonGoogle Scholar
  61. 61.
    Tiwari S, Greenham N (2009) Charge mobility measurement techniques in organic semiconductors. Opt Quant Electron 41(2):69–89Google Scholar
  62. 62.
    Sun SS (2008) In: Sun S-S, Dalton LR (eds) Introduction to organic electronic and optoelectronic materials and devices. CRC Press, New YorkGoogle Scholar
  63. 63.
    Malliaras G, Friend R (2005) An organic electronics primer. Phys Today 58(5):53Google Scholar
  64. 64.
    Li YF (ed) (2015) Organic optoelectronic materials. Springer International Publishing Switzerland.  https://doi.org/10.1007/978-3-319-16862-3Google Scholar
  65. 65.
    Bisquert J (2017) The physics of solar cells: perovskites, organics, and photovoltaic fundamentals, 1st edn. CRC Press, Boca RatonGoogle Scholar
  66. 66.
    Pelzera KM, Darling SB (2016) Charge generation in organic photovoltaics: a review of theory and computation. Mol Syst Des Eng 1:10–24Google Scholar
  67. 67.
    Brabec CV, Dyakonov V (2014) Organic photovoltaics: materials, device physics, and manufacturing technologies, 2nd edn. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-33225-0Google Scholar
  68. 68.
    Thomas TD, Smith DT (2017) Evaluation of renewable energy technologies and their potential for technical integration and cost-effective use within the U.S. energy sector. Renew Sust Energ Rev 80:1372–1388Google Scholar
  69. 69.
    Zhong Yu, Trinh MT, Chen R, Purdum GE, Khlyabich PP, Sezen M, Oh S, Zhu H, Fowler B, Zhang B, Wang W, Nam CY, Sfeir MY, Black CT, Steigerwald ML, Loo YL, Ng F, Zhu XY, Nuckolls C (2015) Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells. Nat Commun, 8242. doi: https://doi.org/10.1038/ncomms9242
  70. 70.
    Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J (2017) Molecular optimization enables over 13% efficiency in organic solar cells. J Am Chem Soc 139(21):7148–7151.  https://doi.org/10.1021/jacs.7b02677CrossRefGoogle Scholar
  71. 71.
    Corre VML, Chatri AR, Doumon NY, Koster LJA (2017) Charge carrier extraction in organic solar cells governed by steady-state mobilities. Adv Energy Mater 7:1701138Google Scholar
  72. 72.
    Zuo L, Yu J, Shi X, Lin F, Tang W, Jen AKY (2017) High-efficiency nonfullerene organic solar cells with a parallel tandem configuration. Adv Mater 29(34):702547Google Scholar
  73. 73.
    Scharber MC, Sariciftci NS (2013) Efficiency of bulk-heterojunction organic solar cells. Prog Polym Sci 38(12):1929–1940.  https://doi.org/10.1016/j.progpolymsci.2013.05.001CrossRefGoogle Scholar
  74. 74.
    Hong S, Kang H, Kim G, Lee S, Kim S, Lee JH, Lee J, Yi M, Kim J, Back H, Kim J, Lee K (2016) A series connection architecture for large-area organic photovoltaic modules with a 7.5% module efficiency. Nat Commun 7.  https://doi.org/10.1038/ncomms10279
  75. 75.
    World Energy Council 2004 (2017) http://www.worldenergy.org
  76. 76.
    Shaheen SE, Radspinner R, Peyghambarian N, Jabbour GE (2001) Fabrication of bulk heterojunction plastic solar cells by screen printing. Appl Phys Lett 79:2996.  https://doi.org/10.1063/1.1413501CrossRefGoogle Scholar
  77. 77.
    Brabec CJ, Gowrisanker S, Halls JJ, Laird D, Jia S, Williams SP (2010) Polymer–fullerene bulk-heterojunction solar cells. Adv Mater 22:3839–3856Google Scholar
  78. 78.
    Tang CW (1986) Two-layer organic photovoltaic cell. Appl Phys Lett 48:183.  https://doi.org/10.1063/1.96937CrossRefGoogle Scholar
  79. 79.
    Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F (1992) Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258(5087):1474–1476Google Scholar
  80. 80.
    Sheng CX, Vardeny ZV (2015) Optical studies of photoexcitations in polymer/fullerene blends for organic photovoltaic applications. In: Yang Y, Li G (eds) Progress in high-efficient solution process organic photovoltaic devices, Top Appl Phys 130. doi: https://doi.org/10.1007/978-3-662-45509-8_1Google Scholar
  81. 81.
    Yu G, Zhang C, Heeger AJ (1994) Dual-function semiconducting polymer devices: light emitting and photodetecting diodes. Appl Phys Lett 64:1540–1542Google Scholar
  82. 82.
    Rand BP, Richter H (2014) Organic solar cells: fundamentals, devices, and upscaling, 1st edn. Pan Stanford Publishing, CRC Press, Taylor & Francis Group, Florida ISBN-13: 978-9814463652Google Scholar
  83. 83.
    Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270:1789–1791Google Scholar
  84. 84.
    Halls JJM, Walsh CA, Greenham NC, Marseglia EA, Friend RH, Moratti SC, Holmes AB (1995) Efficient photodiodes from interpenetrating polymer networks. Nature 376(6540):498–500Google Scholar
  85. 85.
    Peet J, Kim Y, Coates NE, Ma WL, Moses D, Heeger AJ, Bazan GC (2007) Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nature Mater 67:497–500.  https://doi.org/10.1038/nmat1928CrossRefGoogle Scholar
  86. 86.
    Lee JK, Ma WL, Brabec CJ, Yuen J, Moon JS, Kim JY, Lee K, Bazan GC, Heeger AJ (2008) Processing additives for improved efficiency from bulk heterojunction solar cells. J Am Chem Soc 130(11):3619–3623.  https://doi.org/10.1021/ja710079w88MCrossRefGoogle Scholar
  87. 87.
    Fujiwara HH, Yokoyama M (1991) Three-layered organic solar cell with a photoactive interlayer of codeposited pigments. Appl Phys Lett 58:1062.  https://doi.org/10.1063/1.104423CrossRefGoogle Scholar
  88. 88.
    Li G, Chang WH, Yang Y (2017) Low-bandgap conjugated polymers enabling solution-processable tandem solar cells. Nat Rev Mater.  https://doi.org/10.1038/natrevmats.2017.43Google Scholar
  89. 89.
    Koster LJA, Mihailetchi VD, Xie H, Blom PWM (2005) Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cells. Appl Phys Lett 87(20):203502.  https://doi.org/10.1063/1.2130396CrossRefGoogle Scholar
  90. 90.
    Ye L, Li S, Hou J (2015) New polymer donors for polymer solar cells. In: Huang F, Yip H-L, Cao Y (eds) Polymer photovoltaics: materials, physics, and device engineering. doi: https://doi.org/10.1039/9781782622307-00032
  91. 91.
    Wolfgang Tress (2014) Organic solar cells theory, experiment, and device simulation. Springer International Publishing. doi: https://doi.org/10.1007/978-3-319-10097-5Google Scholar
  92. 92.
    Cowan SR, Roy A, Heeger AJ (2010) Device model for the operation of polymer/fullerene bulk heterojunction solar cells. Phys Rev B 82:245207Google Scholar
  93. 93.
    van Hutten PE, Krasnikov VV, Hadziioannou G (2001) Role of interfaces in semiconducting polymer optoelectronic devices. In: Salaneck WR, Seki K, Kahn A, Pireaux J-J (eds) Conjugated polymer and molecular interfaces: science and technology for photonic and optoelectronic application, 1st edn. Marcel Dekker Inc./CRC Press Taylor & Francis NY, p 113 ISBN 9780824705886Google Scholar
  94. 94.
    Zhang M, Wang H, Tian H, Geng Y, Tang CW (2011) Bulk heterojunction photovoltaic cells with low donor concentration. Adv Mater 23:4960–4964Google Scholar
  95. 95.
    Mihailetchi VD, Wildeman J, Blom PWM (2005) Space-charge limited photocurrent. Phys Rev Lett 94:126602Google Scholar
  96. 96.
    Tress W, Petrich A, Hummert M, Hein M, Leo K, Riede M (2011) Imbalanced mobilities causing S-shaped IV curves in planar heterojunction organic solar cells. Imbalanced mobilities causing S-shaped IV curves in planar heterojunction organic solar cells. Appl Phys Lett 98:063301Google Scholar
  97. 97.
    Swami R, Tiwari S (2017) Fill factor analysis of organic solar cell. Recent advances in photovoltaic. Materials research foundation series, Materials Research Forum LLC. doi: https://doi.org/10.21741/9781945291371-12
  98. 98.
    Kohler A, Bassler H (2009) Triplet states in organic semiconductors. Mater Sci Eng R 66:71–109Google Scholar
  99. 99.
    Bassler H, Anna Kohler A (2012) Charge transport in organic semiconductors. Top Curr Chem 312:1–66. Springer, Berlin/Heidelberg (2011). doi: https://doi.org/10.1007/128_2011_218Google Scholar
  100. 100.
    Su WY, Lan SC, Wei KH (2012) Organic photovoltaics. Mater Today 15(12):554–562Google Scholar
  101. 101.
    Persson NK, Inganas O (2005) Simulations of optical processes in organic photovoltaic devices. In: Sun S, Sariciftci NS (eds) Organic photovoltaics: mechanisms, materials and devices. CRC Press, Boca RatonGoogle Scholar
  102. 102.
    Pivrikas A, Sarıçiftçi NS, Juška G, Österbacka R (2007) A review of charge transport and recombination in polymer/fullerene organic solar cells. Prog Photovolt Res Appl 15(8):677–696.  https://doi.org/10.1002/pip.791CrossRefGoogle Scholar
  103. 103.
    Hedley JG, Ruseckas A, Samuel IDW (2017) Light harvesting for organic photovoltaics. Chem Rev 117(2):796–837.  https://doi.org/10.1021/acs.chemrev.6b00215CrossRefGoogle Scholar
  104. 104.
    Peumans P, Yakimov A, Forrest SR (2003) Small molecular weight organic thin-film photodetectors and solar cells. J Appl Phys 93(7):3693–3723Google Scholar
  105. 105.
    Krc J, Topic M (2013) Optical modeling and simulation of thin-film photovoltaic devices, 1st edn. CRC Press, Hoboken, pp 3–34Google Scholar
  106. 106.
    Kang H, Kim G, Kim J, Kwon S, Kim H, Lee K (2016) Bulk-heterojunction organic solar cells: five core technologies for their commercialization. Adv Mater 28(36):7821–7861.  https://doi.org/10.1002/adma.201601197CrossRefGoogle Scholar
  107. 107.
    Clarke TM, Durrant JR (2010) Charge photogeneration in organic solar cells. Chem Rev 110:6736–6767Google Scholar
  108. 108.
    Causa M, Jonghe-Risse JD, Scarongella M, Brauer JC, Domingo E, Jacques EB, Moser JB, Stingelin N, Banerji N (2016) The fate of electron–hole pairs in polymer:fullerene blends for organic photovoltaics. Nat Commun 7.  https://doi.org/10.1038/ncomms12556
  109. 109.
    Grancini G et al (2013) Hot exciton dissociation in polymer solar cells. Nat Mater 12:29–33Google Scholar
  110. 110.
    Barker AJ, Chen K, Hodgkiss JM (2014) Distance distributions of photogenerated charge pairs in organic photovoltaic cells. J Am Chem Soc 136:12018–12026Google Scholar
  111. 111.
    Provencher F, Bérubé N, Parker AW, Greetham GM, Towrie M, Hellmann C, Côté M, Stingelin N, Silva C, Hayes SC (2014) Direct observation of ultrafast long-range charge separation at polymer-fullerene heterojunctions. Nat Commun 5:4288Google Scholar
  112. 112.
    Lu L, Zheng T, Wu Q, Schneider AM, Zhao D, Yu L (2015) Recent advances in bulk heterojunction polymer solar cells. Chem Rev 115(23):12666–12731Google Scholar
  113. 113.
    Castro FA, Heier J, Nuesch F, Hany R (2010) Origin of the kink in current-density versus voltage curves and efficiency enhancement of polymer-c heterojunction solar cells. IEEE J Sel Top Quantum Electron 99:1Google Scholar
  114. 114.
    Nuesch F, Rotzinger F, Si-Ahmed L, Zuppiroli L (1988) Chemical potential shifts at organic device electrodes induced by grafted monolayers. Chem Phys Lett 288:861Google Scholar
  115. 115.
    Kemerink M, Kramer JM, Gommans HHP, Janssen RAJ (2006) Temperature-dependent built-in potential in organic semiconductor devices. Appl Phys Lett 88:192108Google Scholar
  116. 116.
    Lee TW, Park OO (2000) The effect of different heat treatments on the luminescence efficiency of polymer light emitting diodes. Adv Mater 12:801Google Scholar
  117. 117.
    Pandey R, Holmes RJ (2012) Characterizing the charge collection efficiency in bulk heterojunction organic photovoltaic cells. Appl Phys Lett 100:083303.  https://doi.org/10.1063/1.3686909CrossRefGoogle Scholar
  118. 118.
    Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2015) Solar cell efficiency tables (version 46). Prog Photovolt Res Appl 23:805–812Google Scholar
  119. 119.
    Nelson J, Kirkpatrick J, Ravirajan R (2004) Factors limiting the efficiency of molecular photovoltaic devices. Phys Rev B 69:035337/1–03533711Google Scholar
  120. 120.
    Kim JY, Kim SH, Lee HH, Lee K, Ma WL, Gong X, Heeger AJ (2006) New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. Adv Mater 18:572–576Google Scholar
  121. 121.
    Koster LJA, Mihailetchi VD, Blom PWM (2006) Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells. Appl Phys Lett 88:093511/1–093511/3Google Scholar
  122. 122.
    Petritsch K (2000) Organic solar cell architectures, PhD thesis, Technical University GrazGoogle Scholar
  123. 123.
    Nelson J (2002) Organic photovoltaic films. Curr Opin Solid State Mater Sci 6:87–95Google Scholar
  124. 124.
    Halls JJM, Friend RH, Archer MD, Hill RD (eds) (2001) Clean electricity from photovoltaics. Imperial College Press, LondonGoogle Scholar
  125. 125.
    Caoa W, Xue J (2014) Recent progress in organic photovoltaics: device architecture and optical design energy. Environ Sci 7:2123–2144Google Scholar
  126. 126.
    Brédas JL, Norton JE, Cornil J, Coropceanu V (2009) Molecular understanding of organic solar cells: the challenges. Acc Chem Res 42:1691–1699Google Scholar
  127. 127.
    He Z, Zhong C, Su S, Xu M, Wu H, Cao Y (2012) Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat Photonics 6:591–595.  https://doi.org/10.1038/nphoton.2012.190CrossRefGoogle Scholar
  128. 128.
    Agnihotri P, Patel M, Verma AK, Sahu S, Pathak P, Tiwari S (2017) Advancement in simulation & modeling of organic solar cells. In: Ramrakhiani M (ed) Recent advances in photovoltaic. Materials Research foundation series Vol.17, pp 310 Materials Research Forum LLC Springdale Lane, Millersville PA 17551, USA.  https://doi.org/10.21741/9781945291371-11
  129. 129.
    Logothetidis S (2014) Handbook of flexible organic electronics: materials, manufacturing and applications. Elsevier Woodhead Publishing, UK ISBN 9781782420354Google Scholar
  130. 130.
    Liao KS, Yambem SD, Haldar A, Alley NJ, Curran SA (2010) Designs and architectures for the next generation of organic solar cells. Energies 3:1212–1250.  https://doi.org/10.3390/en3061212CrossRefGoogle Scholar
  131. 131.
    He Z, Zhong C, Shijian S, Miao X, Wu H, Cao Y (2012) Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat Photon 6:593Google Scholar
  132. 132.
    Swami R, Tiwari S (2017) Status and potential of organic solar cells. In: Ramrakhiani M (ed) Recent advances in photovoltaic. Materials Research foundation series Vol.17 pp269 Materials Research Forum LLC Springdale Lane, Millersville PA 17551, USA.  https://doi.org/10.21741/9781945291371-8
  133. 133.
    Zhang F, Xu X, Tang W, Zhang J, Zhuo Z, Wang J, Wang J, Xua Z, Wanga Y (2011) Recent development of the inverted configuration organic solar cells. Sol Energy Mater Sol Cells 95(7):1785–1799Google Scholar
  134. 134.
    Nam S, Seo J, Woo S, Kim WH, Kim H, Bradley DDC, Kim Y (2015) Inverted polymer fullerene solar cells exceeding 10% efficiency with poly(2-ethyl-2-oxazoline) nanodots on electron-collecting buffer layers. Nat Commun 6.  https://doi.org/10.1038/ncomms9929
  135. 135.
    Zhao DW, Tan ST, Ke L, Liu P, Kyaw AKK, Sun XW, Lo GQ, Wang DL (2010) Optimization of an inverted organic solar cell. Sol Energy Mater Sol Cells 94(6):985–991Google Scholar
  136. 136.
    Zimmermann B, Würfel U, Niggemann M (2009) Longterm stability of efficient inverted P3HT:PCBM solar cells. Sol Energy Mater Sol Cells 93(4):491–496Google Scholar
  137. 137.
    Wang Y, Wu B, Wu Z, Lan Z, Li Y, Zhang M, Zhu F (2017) Origin of efficient inverted nonfullerene organic solar cells: enhancement of charge extraction and suppression of bimolecular recombination enabled by augmented internal electric field. J Phys Chem Lett 8(21):5264–5271.  https://doi.org/10.1021/acs.jpclett.7b02308CrossRefGoogle Scholar
  138. 138.
    Wang K, Liu C, Meng T, Yia C, Gong X (2016) Inverted organic photovoltaic cells. Chem Soc Rev 45:2937–2975Google Scholar
  139. 139.
    Christopher M, Proctora CM, Kuik M, Nguyen TQ (2013) Charge carrier recombination in organic solar cells. Prog Polym Sci 38(12):1941–1960Google Scholar
  140. 140.
    Mao P, Wei Y, Li H, Wang J (2017) Junction diodes in organic solar cells. Nano Energy 41:717–730Google Scholar
  141. 141.
    Junsheng Y, Zheng Y, Huang J (2014) Towards high performance organic photovoltaic cells: a review of recent development in organic photovoltaics. Polymers 6:2473–2509.  https://doi.org/10.3390/polym6092473CrossRefGoogle Scholar
  142. 142.
    Verma AK, Patel M, Sahu S, Agnihotri P, Tiwari S (2017) Recent advances in polymer solar cells materials. In: Ramrakhiani M (ed) Recent advances in photovoltaic. Materials Research foundation series Vol.17, pp299 Materials Research Forum LLC Springdale Lane, Millersville PA 17551, USA.  https://doi.org/10.21741/9781945291371-10
  143. 143.
    Chena Q, Yea F, Laia J, Daic P, Luc S, Mad C, Zhaoe Y, Xieb Y, Chena L (2017) Energy band alignment in operando inverted structure P3HT:PCBM organic solar cells. Nano Energy 40:454–461Google Scholar
  144. 144.
    Hau SK, Yip HL, Jen AK (2010) A review on the development of the inverted polymer solar cell architecture. Polym Rev 50(4):474–510.  https://doi.org/10.1080/15583724.2010.515764xCrossRefGoogle Scholar
  145. 145.
    Khatri I, Bao J, Kishi N, Soga T (2012) Similar device architectures for inverted organic solar cell and laminated solid-state dye-sensitized solar cells. International Scholarly Research Network ISRN Electronics, vol 2012Google Scholar
  146. 146.
    He Z, Xiao LB, Wu F, Yang H, Xiao Y, Wang S, Russell C (2015) Single-junction polymer solar cells with high efficiency and photovoltage. Nat Photonics 9:174–179Google Scholar
  147. 147.
    Hu H et al (2015) Terthiophene-based D-A polymer with an asymmetric arrangement of alkyl chains that enables efficient polymer solar cells. J Am Chem Soc 137:14149–14157Google Scholar
  148. 148.
    Liu Y et al (2014) Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat Commun 5:5293Google Scholar
  149. 149.
    Jang Y, Cho YJ, Kim M, Seok J, Ahn H, Kim K (2017) Formation of thermally stable bulk heterojunction by reducing the polymer and fullerene intermixing. Sci Rep 7:9690.  https://doi.org/10.1038/s41598-017-09167-4CrossRefGoogle Scholar
  150. 150.
    Moulé AJ (2010) Power from plastic. Curr Opin Solid State Mater Sci 14:123–130.  https://doi.org/10.1016/j.cossms.2010.06.003CrossRefGoogle Scholar
  151. 151.
    Heeger AJ (2010) Semiconducting polymers: the third generation. Chem Soc Rev 39:2354–2371.  https://doi.org/10.1039/b914956mCrossRefGoogle Scholar
  152. 152.
    Hal van PA (2003) Photophysics of molecules and materials for polymer solar cells. Technische Universiteit Eindhoven, Eindhoven. doi: https://doi.org/10.6100/IR562623
  153. 153.
    Bouhassoune M, vanMensfoort SLM, Bobberta PA, Coehoorn R (2009) Carrier-density and field-dependent charge-carrier mobility in organic semiconductors with correlated Gaussian disorder. Org Electron 10(3):437–445Google Scholar
  154. 154.
    Mihailetchi VD, Koster LJA, PWM B (2004) Effect of metal electrodes on the performance of polymer:fullerene bulk heterojunction solar cells. Appl Phys Lett 85:970Google Scholar
  155. 155.
    Koster LJA, Mihailetchi VD, Ramaker R, PWM B (2005) Light intensity dependence of open-circuit voltage of polymer:fullerene solar cells. Appl Phys Lett 86:123509Google Scholar
  156. 156.
    Maurano A, Hamilton R, Shuttle CG, Ballantyne AM, Nelson J, O’Regan B, Zhang W, McCulloch I, Azimi H, Morana M, Brabec CJ, Durrant JR (2010) Recombination dynamics as a key determinant of open circuit voltage in organic bulk heterojunction solar cells: a comparison of four different donor polymers. Adv Mater 22:4987.  https://doi.org/10.1002/adma.201002360CrossRefGoogle Scholar
  157. 157.
    Koster LJA, Mihailetchi VD, Blom PWM (2006) Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells. Appl Phys Lett 88:093511Google Scholar
  158. 158.
    Bartelt JA, Lam D, Burke TM, Sweetnam SM, McGehee MD (2015) Charge-carrier mobility requirements for bulk heterojunction solar cells with high fill factor and external quantum efficiency >90%. Adv Energy Mater 2015(5):1500577Google Scholar
  159. 159.
    Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H (2014) Nat Commun 5:5293; Page ZA, Liu Y, Duzhko VV, Thomas P, Emrick T, Russell TP, Emrick T. Science 346:441Google Scholar
  160. 160.
    Zhang Q, Kan B, Liu F, Long G, Wan X, Chen X, Zuo Y, Ni W, Zhang H, Li M, Hu Z, Huang F, Cao Y, Liang Z, Zhang M, Russell TP, Chen Y (2015) Small-molecule solar cells with efficiency over 9% Nat Photonics 9:35–41.  https://doi.org/10.1038/nphoton.2014.269Google Scholar
  161. 161.
    Nguyen TL, Choi H, Ko SJ, Uddin MA, Walker B, Yum S, Jeong JE, Yun MH, Shin TJ, Hwang S, Kim JY, Woo HY (2014) Energy. Environ Sci 7:3040Google Scholar
  162. 162.
    Liao SH, Jhuo HJ, Cheng YS, Chen SA (2013) Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance. Adv Mater 25:4766.  https://doi.org/10.1002/adma.201301476CrossRefGoogle Scholar
  163. 163.
    Cai W, Gong X, Cao Y (2010) Polymer solar cells: recent development and possible routes for improvement in performance. Sol Energy Mater Sol Cells 94:114–127.  https://doi.org/10.1016/j.solmat.2009.10.005CrossRefGoogle Scholar
  164. 164.
    Po R, Maggini M, Camaioni N (2010) Polymer solar cells: recent approaches and achievements. J Phys Chem C 114:695–706.  https://doi.org/10.1021/jp9061362CrossRefGoogle Scholar
  165. 165.
    Choy WCH (ed) (2012) Organic solar cells: materials and device physics. Green Energy and Technology Springer – Verlag London, p 18.  https://doi.org/10.1007/978-1-4471-4823-4_1Google Scholar
  166. 166.
    Helgesen M, Sondergaard R, Krebs FC (2010) Advanced materials and processes for polymer solar cell devices. J Mater Chem 20:26–60.  https://doi.org/10.1039/b913168jCrossRefGoogle Scholar
  167. 167.
    ASTM Standard G159-98 “Standard tables for references solar spectral irradiance at air mass 1.5: direct normal and hemispherical for a 37° tilted surface.” http://www.astm.org/cgi-bin/SoftCart.exe/DATABASE.CART/REDLINE_PAGES/G159.htm?L+mystore+zpuv4702+1057198140
  168. 168.
    Corrigendum to ‘Solar cell efficiency tables (version 49)’ [Prog Photovolt Res Appl. 2017; 25:3–13] vol 25(4):333–334, published online: 17 Feb 2017Google Scholar
  169. 169.
    Hou J, Guo X (2013) Active layer materials for organic solar cells. In: Choy WCH (ed) Organic solar cells, green energy and technology. Springer, London. doi: https://doi.org/10.1007/978-1-4471-4823-4_2Google Scholar
  170. 170.
    Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ (2006) Design rules for donors in bulk-heterojunction solar cells – towards 10 % energy-conversion efficiency. Adv Mater 18(6):789–794.  https://doi.org/10.1002/adma.200501717CrossRefGoogle Scholar
  171. 171.
    Kaur N, Singh M, Pathak P, Wagner T, Nunzid JM (2014) Organic materials for photovoltaic applications: review and mechanism. Synth Met 190:20–26Google Scholar
  172. 172.
    Torre GD, Bottari G (2017) Phthalocyanines and subphthalocyanines: perfect partners for fullerenes and carbon nanotubes in molecular photovoltaics. Adv Energy Mater 2017:1601700Google Scholar
  173. 173.
    Leznoff CC, Lever ABP (1993) Phthalocyanines: properties and applications. VCH Publishers, New YorkGoogle Scholar
  174. 174.
    McKeown NB (1998) Phthalocyanine materials. Synthesis, structure and function. Cambridge University Press, CambridgeGoogle Scholar
  175. 175.
    Torre GD, Nicolau M, Torres T (2001) Supramolecular photosensitive and elec-troactive materials. Academic, New YorkGoogle Scholar
  176. 176.
    Kadish KM, Smith KM, Guillard R (2003) The porphyrin handbook. Academic, San DiegoGoogle Scholar
  177. 177.
    Torres T (2006) From subphthalocyanines to subporphyrins. Angew Chem Int Ed Engl 45(18):2834–2837Google Scholar
  178. 178.
    Xiao B, Zhang M, Yan J, Luo G, Gao K, Liu J, You Q, Wang HB, Gao C, Zhao B, Zhao X, Wu H, Liu F (2017) High efficiency organic solar cells based on amorphous electron-donating polymer and modified fullerene acceptor. Nano Energy 39:478–488Google Scholar
  179. 179.
    Yan J, Saunders BR (2014) Third-generation solar cells: a review and comparison of polymer:fullerene, hybrid polymer and perovskite solar cells. RSC Adv 2014(4):43286–43314Google Scholar
  180. 180.
    Pan J, Yin H, Xie YZ, Sun GY, ZM S (2017) The conversion of donor to acceptor and rational design for diketopyrrolopyrrole-containing small molecule acceptors by introducing nitrogen-atoms for organic solar cells. RSC Adv 7:31800Google Scholar
  181. 181.
    Elumalai NK, Uddin A (2016) Open circuit voltage of organic solar cells: an in-depth review. Energy Environ Sci 9:391–410Google Scholar
  182. 182.
    Wienk MM, Kroon JM, Verhees WJH, Knol J, Hummelen JC, van Hal PA, Janssen RAJ (2003) Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. Angew Chem Int Ed Eng 42:3371–3375Google Scholar
  183. 183.
    Bakulin A, Hummelen JC, Pshenichnikov MS, van Loosdrecht PHM (2010) Ultrafast hole-transfer dynamics in polymer/PCBM bulk heterojunctions. Adv Funct Mater 20:1653–1660Google Scholar
  184. 184.
    Ye Q, Xu JW (2015) Bulk heterojunction solar cells – opportunities and challenges. In: Kosyachenko LA (ed) Solar cells – new approaches and reviews, pp 359–388. doi: https://doi.org/10.5772/58490Google Scholar
  185. 185.
    Mayer AC, Scully SR, Hardin BE, Rowell MW, McGehee MD (2007) Polymer-based solar cells. Mater Today 10:11Google Scholar
  186. 186.
    He YJ, Chen HY, Hou JH, Li YF (2010) Indene – C60 bisadduct: a new acceptor for high performance polymer solar cells. J Am Chem Soc 132:1377–1382.  https://doi.org/10.1021/ja908602jCrossRefGoogle Scholar
  187. 187.
    Zhao GJ, He YJ, Li YF (2010) 6.5% efficiency of polymer solar cells based onpoly(3-hexylthiophene) and indene-C60 bisadduct by device optimization. Adv Mater 22:4355–4358.  https://doi.org/10.1002/adma.201001339CrossRefGoogle Scholar
  188. 188.
    He YJ, Zhao GJ, Peng B, Li YF (2010) High-yield synthesis and electrochemical and photovoltaic properties of indene-c70 bisadduct. Adv Funct Mater 20:3383–3389.  https://doi.org/10.1002/adfm.201001122CrossRefGoogle Scholar
  189. 189.
    Kooistra FB, Mihailetchi VD, Popescu LM, Kronholm D, Blom PWM, Hummelen JC (2006) New C84 derivative and its application in a bulk heterojunction. Solar Cell Chem Mater 18:3068–3073.  https://doi.org/10.1021/cm052783zCrossRefGoogle Scholar
  190. 190.
    Stevenson S, Rice G, Glass T, Harich K, Cromer F, Jordan MR, Craft J, Hadju E, Bible R, Olmstead MM, Maitra K, Fisher AJ, Balch A, Dorn HC (1999) Small-bandgap endohedral metallofullerenes in high yield and purity. Nature 401:55–57.  https://doi.org/10.1038/43415CrossRefGoogle Scholar
  191. 191.
    Li S, Zhang Z, Shi M, Lia CZ, Chen H (2017) Molecular electron acceptors for efficient fullerene-free organic solar cells. Phys Chem Chem Phys 19:3440–3458Google Scholar
  192. 192.
    Yaacobi-Gross N, Soreni-Harari M, Zimin M, Kababya S, Schmidt A, Tessler N (2011) Molecular control of quantum-dot internal electric field and its application to CdSe-based solar cells. Nat Mater 10:974Google Scholar
  193. 193.
    Freitas SJND, Grova IR, Akcelrud LC, Arici E, Sariciftci NS, Nogueira AF (2010) The effects of CdSe incorporation into bulk heterojunction solar cells. J Mater Chem 20:4845Google Scholar
  194. 194.
    Reynolds LX, Lutz T, Dowland S, MacLachlan A, King S, Haque SA (2012) Charge photogeneration in hybrid solar cells: a comparison between quantum dots and in situ grown CdS. Nanoscale 4(5):1561–1564.  https://doi.org/10.1039/c2nr12081jCrossRefGoogle Scholar
  195. 195.
    Leventis HC, King SP, Sudlow A, Hill MS, Molloy KC, Haque SA (2010) Nanostructured hybrid polymer − inorganic solar cell active layers formed by controllable in situ growth of semiconducting sulfide networks. Nano Lett 10(4):1253–1258.  https://doi.org/10.1021/nl903787jCrossRefGoogle Scholar
  196. 196.
    Yu W, Zhang H, Fan Z, Zhang J, Wei H, Zhou D, Xu B, Li F, Tian W, Yang B (2011) Efficient polymer/nanocrystal hybrid solar cells fabricated from aqueous materials. Energy Environ Sci 4:2831–2834.  https://doi.org/10.1039/C1EE01485DCrossRefGoogle Scholar
  197. 197.
    Kuo CY, MS S, Hsu YC, Lin HN, Wei KH (2010) An organic hole transport layer enhances the performance of colloidal pbse quantum dot photovoltaic devices. Adv Funct Mater 20:3555Google Scholar
  198. 198.
    Ma W, Swisher SL, Ewers T, Engel J, Ferry VE, Atwater HA, Alivisatos AP (2011) Photovoltaic performance of ultrasmall PbSe quantum dotsACS. Nano 5:8140–8147.  https://doi.org/10.1021/nn202786gCrossRefGoogle Scholar
  199. 199.
    Noone KM, Anderson NC, Horwitz NE, Munro AM, Kulkarni AP, Ginger DS (2009) Absence of photoinduced charge transfer in blends of PbSe quantum dots and conjugated polymers. ACS Nano 3:1345Google Scholar
  200. 200.
    Fu H, Tsang SW (2012) Infrared colloidal lead chalcogenide nanocrystals: synthesis, properties, and photovoltaic applications. Nanoscale 4:2187–2201.  https://doi.org/10.1039/C2NR11836JCrossRefGoogle Scholar
  201. 201.
    Lee SJ, Kovalenko MV, Huang J, Chung DS, Talapin DV (2011) Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nat Nanotechnol 6:348.  https://doi.org/10.1038/nnano.2011.46CrossRefGoogle Scholar
  202. 202.
    Bisri SZ, Piliego C, Yarema M, Heiss W, Loi MA (2013) Low driving voltage and high mobility ambipolar field-effect transistors with PbS colloidal nanocrystals. Adv Mater 25(31):4309–4314.  https://doi.org/10.1002/adma.201205041CrossRefGoogle Scholar
  203. 203.
    Tang J, Kemp KW, Hoogland S, Jeong KS, Liu H, Levina L, Furukawa M, Wang X, Debnath R, Cha D, Chou KW, Fischer A, Amassian A, Asbury JB, Sargent EH (2011) Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat Mater 10:765–771.  https://doi.org/10.1038/nmat3118CrossRefGoogle Scholar
  204. 204.
    Sykora M, Koposov AY, McGuire JA, Schulze RK, Tretiak O, Pietryga JM, Klimov VI (2010) Effect of air exposure on surface properties, electronic structure, and carrier relaxation in PbSe nanocrystals. ACS Nano 4(4):2021–2024.  https://doi.org/10.1021/nn100131wCrossRefGoogle Scholar
  205. 205.
    Seo J, Cho MJ, Lee D, Cartwright AN, Prasad PN (2011) Efficient heterojunction photovoltaic cell utilizing nanocomposites of lead sulfide nanocrystals and a low-bandgap polymer. Adv Mater 23:3984Google Scholar
  206. 206.
    Yue W, Zhao Y, Shao S, Tian H, Xie Z, Geng Y, Wang F (2009) Novel NIR-absorbing conjugated polymers for efficient polymer solar cells. J Mater Chem 19:2199Google Scholar
  207. 207.
    Chen G, Seo J, Yang C, Prasad PN (2013) Nanochemistry and nanomaterials for photovoltaics. Chem Soc Rev 2013(42):8304–8338Google Scholar
  208. 208.
    Piliego C, Manca M, Kroon R, Yarema M, Szendrei K, Andersson MR, Heissc W, Loi MA (2012) Charge separation dynamics in a narrow band gap polymer – PbS nanocrystal blend for efficient hybrid solar cells. J Mater Chem 22:24411–24416Google Scholar
  209. 209.
    Morgenstern FSF, Böhm ML, Kist RJP, Sadhanala A, Gélinas S, Rao A, Greenham NC (2016) Charge generation and electron-trapping dynamics in hybrid nanocrystal-polymer solar cells. J Phys Chem C 120(34):19064–19069.  https://doi.org/10.1021/acs.jpcc.6b07591CrossRefGoogle Scholar
  210. 210.
    Goodwin H, Jellicoe TC, Davis NJLK, Böhm ML (2017) Multiple exciton generation in quantum dot-based solar cells. Nanophotonics 7(1):111–126.  https://doi.org/10.1515/nanoph-2017-0034CrossRefGoogle Scholar
  211. 211.
    Böhm ML, Jellicoe TC, Rivett J, Sadhanala A, Davis NJLK, Morgenstern FSF, Goedel KC, Govindasamy J, Benson CGM, Greenham NC (2015) Size and energy level tuning of quantum dot solids via a hybrid ligand complex. J Phys Chem Lett 6:3510–3514.  https://doi.org/10.1021/acs.jpclett.5b01751CrossRefGoogle Scholar
  212. 212.
    Böhm ML, Kist RJP, Morgenstern FSF, Ehrler B, Zarra S, Kumar A, Vaynzof Y, Greenham NC (2014) The influence of nanocrystal aggregates on photovoltaic performance in nanocrystal-polymer bulk heterojunction solar cells. Adv Energy Mater 4:1400139.  https://doi.org/10.1002/aenm.201400139CrossRefGoogle Scholar
  213. 213.
    Jiang X, Schaller R, Lee S, Pietryga J, Klimov V, Zakhidov A (2007) PbSe nanocrystal/conducting polymer solar cells with an infrared response to 2 micron. J Mater Res 22(8):2204–2210.  https://doi.org/10.1557/jmr.2007.0289CrossRefGoogle Scholar
  214. 214.
    Zhang Y, Ram MK, Stefanakos EK, Goswami DY (2012) Synthesis, characterization, and applications of ZnO nanowires. J Nanomater 2012:624520.  https://doi.org/10.1155/2012/624520CrossRefGoogle Scholar
  215. 215.
    Soltani R, Katbab AA, Ameri T (2017) Recent developments in quantum dots/CNT co-sensitized organic solar cells. J Mater Sci Eng 6:347.  https://doi.org/10.4172/2169-0022.1000347CrossRefGoogle Scholar
  216. 216.
    Hoppe H, Sariciftci NS (2004) Organic solar cells: an overview. J Mater Res 19(7):1924–1945.  https://doi.org/10.1557/JMR.2004.0252CrossRefGoogle Scholar
  217. 217.
    Tessler N, Preezant Y, Rappaport N, Roichman Y (2009) Charge transport in disordered organic materials and its relevance to thin-film devices: a tutorial review. Adv Mater 21(27):2741.  https://doi.org/10.1002/adma.20080354CrossRefGoogle Scholar
  218. 218.
    Tress W (2015) Modelling organic solar cells: theory, experiment, and device simulation. Springer International Publishing AG, pp 215–271.  https://doi.org/10.1007/978-3-319-10097-5Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sanjay Tiwari
    • 1
    Email author
  • Tanya Tiwari
    • 2
  • Sue A. Carter
    • 3
  • J. Campbell Scott
    • 4
  • J. V. Yakhmi
    • 5
  1. 1.Photonics Research Laboratory, S.O.S. in Electronics and PhotonicsPt. Ravishankar Shukla UniversityRaipurIndia
  2. 2.Department of EEE, BITS-PILANI, PILANI CampusPilaniIndia
  3. 3.Department of PhysicsUniversity of CaliforniaSanta CruzUSA
  4. 4.IBM Almaden Research CenterSan JoseUSA
  5. 5.Homi Bhabha National Institute (HBNI), AnushaktinagarMumbaiIndia

Personalised recommendations