Handbook of Ecomaterials pp 1483-1497 | Cite as
Eco-fabrication of Nanomaterials for Multifunctional Textiles
Abstract
Nanotechnology is the hot spot of current technological innovation. Technology is supposed to lead to the ecological imbalance, somehow destruction of flora and fauna, water pollution, and other environmental disturbances. Textile industry is one of the major industries for economic point of view and also has direct impact on environment. In the recent time, there is an emergence of new eco-friendly and multidisciplinary approaches to textile functionalization such as coloration, microbial resistance, flame retardancy, self-cleaning property, comfortability factor, and the sustainable evolution of technologies to the environment and human race. Nanomaterials are gaining popularity for every aspect of functional textiles such as coloration, antimicrobial, and UV protection. This chapter emphasizes on functional textiles functionalized by nanotechnological advancements of sustainable and low impact on environment resources. Applications of nano-finished textiles in many of the sectors such as medicine and protective clothing are critically discussed with their future revolutionary evolution.
References
- 1.Rivero PJ, Urrutia A, Goicoechea J, Arregui FJ (2015) Nanomaterials for functional textiles and fibers. Nanoscale Res Lett 10(1):501CrossRefGoogle Scholar
- 2.Czajka R (2005) Development of medical textile market. Fibres Text East Eur 13(1):13–15Google Scholar
- 3.Gao Y, Cranston R (2008) Recent advances in antimicrobial treatments of textiles. Text Res J 78(1):60–72CrossRefGoogle Scholar
- 4.Samal SS, Jeyaraman P, Vishwakarma V (2010) Sonochemical coating of Ag-TiO2 nanoparticles on textile fabrics for stain repellency and self-cleaning-the Indian scenario: a review. J Miner Mater Charact Eng 9(06):519Google Scholar
- 5.Perelshtein I, Applerot G, Perkas N, Guibert G, Mikhailov S, Gedanken A (2008) Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity. Nanotechnology 19(24):245705CrossRefGoogle Scholar
- 6.Islam S, Shabbir M, Mohammad F (2017) Insights into the functional finishing of textile materials using nanotechnology. In: Muthu SS (ed) Textiles and clothing sustainability. Springer, Singapore, pp 97–115CrossRefGoogle Scholar
- 7.Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83CrossRefGoogle Scholar
- 8.Kelly FM, Johnston JH (2011) Colored and functional silver nanoparticle − wool fiber composites. ACS Appl Mater Interfaces 3(4):1083–1092CrossRefGoogle Scholar
- 9.Shateri-Khalilabad M, Yazdanshenas ME, Etemadifar A (2017) Fabricating multifunctional silver nanoparticles-coated cotton fabric. Arab J Chem 10:S2355–S2362CrossRefGoogle Scholar
- 10.Tang B, Sun L, Kaur J, Yu Y, Wang X (2014) In-situ synthesis of gold nanoparticles for multifunctionalization of silk fabrics. Dyes Pigments 103:183–190CrossRefGoogle Scholar
- 11.Tang B, Sun L, Li J, Kaur J, Zhu H, Qin S, Yao Y, Chen W, Wang X (2015) Functionalization of bamboo pulp fabrics with noble metal nanoparticles. Dyes Pigments 113:289–298CrossRefGoogle Scholar
- 12.Perelshtein I, Applerot G, Perkas N, Wehrschetz-Sigl E, Hasmann A, Guebitz GM, Gedanken A (2008) Antibacterial properties of an in situ generated and simultaneously deposited nanocrystalline ZnO on fabrics. ACS Appl Mater Interfaces 1(2):361–366CrossRefGoogle Scholar
- 13.Hatamie A, Khan A, Golabi M, Turner AP, Beni V, Mak WC, Sadollahkhani A, Alnoor H, Zargar B, Bano S, Nur O (2015) Zinc oxide nanostructure-modified textile and its application to biosensing, photocatalysis, and as antibacterial material. Langmuir 31(39):10913–10921CrossRefGoogle Scholar
- 14.Perelshtein I, Applerot G, Perkas N, Grinblat J, Gedanken A (2012) A one-step process for the antimicrobial finishing of textiles with crystalline TiO2 nanoparticles. Chemistry 18(15):4575–4582CrossRefGoogle Scholar
- 15.Mihailović D, Šaponjić Z, Radoičić M, Lazović S, Baily CJ, Jovančić P, Nedeljković J, Radetić M (2011) Functionalization of cotton fabrics with corona/air RF plasma and colloidal TiO2 nanoparticles. Cellulose 18(3):811–825CrossRefGoogle Scholar
- 16.Senić Ž, Bauk S, Vitorović-Todorović M, Pajić N, Samolov A, Rajić D (2011) Application of TiO2 nanoparticles for obtaining self-decontaminating smart textiles. Sci Tech Rev 61(3–4):63–72Google Scholar
- 17.Montazer M, Seifollahzadeh S (2011) Enhanced self-cleaning, antibacterial and UV protection properties of nano TiO2 treated textile through enzymatic pretreatment. Photochem Photobiol 87(4):877–883CrossRefGoogle Scholar
- 18.Becheri A, Dürr M, Nostro PL, Baglioni P (2008) Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. J Nanopart Res 10(4):679–689CrossRefGoogle Scholar
- 19.Rajendra R, Balakumar C, Ahammed HAM, Jayakumar S, Vaideki K, Rajesh E (2010) Use of zinc oxide nano particles for production of antimicrobial textiles. Int J Eng Sci Technol 2(1):202–208CrossRefGoogle Scholar
- 20.Singh G, Joyce EM, Beddow J, Mason TJ (2012) Evaluation of antibacterial activity of ZnO nanoparticles coated sonochemically onto textile fabrics. J Microbiol, Biotechnol Food Sci 2(1):106Google Scholar
- 21.Ibănescu M, Muşat V, Textor T, Badilita V, Mahltig B (2014) Photocatalytic and antimicrobial Ag/ZnO nanocomposites for functionalization of textile fabrics. J Alloys Compd 610:244–249CrossRefGoogle Scholar
- 22.Qi K, Chen X, Liu Y, Xin JH, Mak CL, Daoud WA (2007) Facile preparation of anatase/SiO2 spherical nanocomposites and their application in self-cleaning textiles. J Mater Chem 17(33):3504–3508CrossRefGoogle Scholar
- 23.Gowri S, Almeida L, Amorim T, Carneiro N, Pedro Souto A, Fátima Esteves M (2010) Polymer nanocomposites for multifunctional finishing of textiles-a review. Text Res J 80(13):1290–1306CrossRefGoogle Scholar
- 24.Shabbir M, Mohammad F (2017) Natural textile fibers: Polymeric Base materials for textile industry. In: Ahmad S, Iqram S (eds) Natural polymers: derivatives, blends and composites, vol II. Nova Science Publishers, Hauppauge, pp 89–102Google Scholar
- 25.Shabbir M, Mohammad F (2017) Sustainable production of regenerated cellulosic Fibres. In: Muthu SS (ed) Sustainable fibres and textiles. Woodhead publishing (Elsevier), Oxford, pp 171–189CrossRefGoogle Scholar
- 26.Scott K, Pomar-Portillo V, Vázquez-Campos S (2017) Nanomaterials in textiles. In: Metrology and standardization of nanotechnology: protocols and industrial innovations. Wiley, Weinheim, pp 559–572CrossRefGoogle Scholar
- 27.Won JO, Kang YS, Jung BS, Yoon YS, Korea Institute of Science (2004) Composite polymers containing nanometer-sized metal particles and manufacturing method thereof. US Patent 6,712,997Google Scholar
- 28.Perelshtein I, Applerot G, Perkas N, Guibert G, Mikhailov S, Gedanken A (2008) Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity. Nanotechnology 19(24):245705CrossRefGoogle Scholar
- 29.Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B: Biointerfaces 79(1):5–18CrossRefGoogle Scholar
- 30.Hegemann D, Hossain MM, Balazs DJ (2007) Nanostructured plasma coatings to obtain multifunctional textile surfaces. Prog Org Coat 58(2):237–240CrossRefGoogle Scholar
- 31.El-Shishtawy RM, Asiri AM, Abdelwahed NA, Al-Otaibi MM (2011) In situ production of silver nanoparticle on cotton fabric and its antimicrobial evaluation. Cellulose 18(1):75–82CrossRefGoogle Scholar
- 32.Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2007) Functional finishing of cotton fabrics using silver nanoparticles. J Nanosci Nanotechnol 7(6):1893–1897CrossRefGoogle Scholar
- 33.Shahid M, Cheng XW, Tang RC, Chen G (2017) Silk functionalization by caffeic acid assisted in-situ generation of silver nanoparticles. Dyes Pigments 137:277–283CrossRefGoogle Scholar
- 34.Ravindra S, Mohan YM, Reddy NN, Raju KM (2010) Fabrication of antibacterial cotton fibres loaded with silver nanoparticles via “green approach”. Colloids Surf A Physicochem Eng Asp 367(1):31–40CrossRefGoogle Scholar
- 35.Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677CrossRefGoogle Scholar
- 36.Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(1):177–182CrossRefGoogle Scholar
- 37.Danilczuk M, Lund A, Sadlo J, Yamada H, Michalik J (2006) Conduction electron spin resonance of small silver particles. Spectrochim Acta A Mol Biomol Spectrosc 63(1):189–191CrossRefGoogle Scholar
- 38.Kim JS, Kuk E, KN Y, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3(1):95–101CrossRefGoogle Scholar
- 39.Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346CrossRefGoogle Scholar
- 40.Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2(1):32CrossRefGoogle Scholar
- 41.Morabito K, Shapley NC, Mello C, Calvert P, Tripathi A (2009) Nanoparticles and their applications in ultraviolet protection: a review. Anal Chem 1:1–10Google Scholar
- 42.Kathirvelu S, D’souza L, Dhurai B (2009) UV protection finishing of textiles using ZnO nanoparticles. J. Fibre Text Res 34:267Google Scholar
- 43.Alongi J, Ciobanu M, Malucelli G (2011) Novel flame retardant finishing systems for cotton fabrics based on phosphorus-containing compounds and silica derived from sol–gel processes. Carbohydr Polym 85(3):599–608CrossRefGoogle Scholar
- 44.Gaan S, Sun G (2007) Effect of phosphorus and nitrogen on flame retardant cellulose: a study of phosphorus compounds. J Anal Appl Pyrolysis 78(2):371–377CrossRefGoogle Scholar
- 45.El-Hady MA, Farouk A, Sharaf S (2013) Flame retardancy and UV protection of cotton based fabrics using nano ZnO and polycarboxylic acids. Carbohydr Polym 92(1):400–406CrossRefGoogle Scholar
- 46.Sheshama M, Khatri H, Suthar M, Basak S, Ali W (2017) Bulk vs. Nano ZnO: influence of fire retardant behavior on sisal fibre yarn. Carbohydr Polym 175:257–264CrossRefGoogle Scholar
- 47.Zhang T, Yan H, Peng M, Wang L, Ding H, Fang Z (2013) Construction of flame retardant nanocoating on ramie fabric via layer-by-layer assembly of carbon nanotube and ammonium polyphosphate. Nanoscale 5(7):3013–3021CrossRefGoogle Scholar
- 48.Carosio F, Laufer G, Alongi J, Camino G, Grunlan JC (2011) Layer-by-layer assembly of silica-based flame retardant thin film on PET fabric. Polym Degrad Stab 96(5):745–750CrossRefGoogle Scholar
- 49.Karapanagiotis I (2016) Super-hydrophobic/oleophobic textiles. Adv Res Text Eng 1(1):1002Google Scholar
- 50.Attia NF, Moussa M, Sheta AM, Taha R, Gamal H (2017) Synthesis of effective multifunctional textile based on silica nanoparticles. Prog Org Coat 106:41–49CrossRefGoogle Scholar
- 51.Xue CH, Jia ST, Zhang J, Tian LQ (2009) Superhydrophobic surfaces on cotton textiles by complex coating of silica nanoparticles and hydrophobization. Thin Solid Films 517(16):4593–4598CrossRefGoogle Scholar
- 52.Xue CH, Jia ST, Chen HZ, Wang M (2008) Superhydrophobic cotton fabrics prepared by sol–gel coating of TiO2 and surface hydrophobization. Sci Technol Adv Mater 9(3):035001CrossRefGoogle Scholar