Advertisement

Geopolymers: Past, Present, and Future of Low Carbon Footprint Eco-materials

  • Carlos Sotelo-Piña
  • Elsa Nadia Aguilera-González
  • Antonia Martínez-LuévanosEmail author
Reference work entry

Abstract

The geopolymers are large inorganic molecules, synthesized by an activated polycondensation reaction, either in a highly alkaline medium or in an acid medium, from substances rich in silicon (Si) and aluminum (Al). They have excellent mechanical and physical properties; high compressive strength, thermal stability, low shrinkage, resistance to fire and acid attacks and are also friendly to the environment. Geoplymers are synthesized at temperatures below 120 ° C, which implies a low energy consumption for its manufacture, compared to the high energy consumption required for the production of traditional ceramic materials. Some of the applications of geopolymers are the encapsulation of toxic waste, refractory coatings, manufacturing of aeronautical equipment, among others. Geopolymers are considered as the third generation of concrete, since they are viable for the preparation of cements, mortars and concrete with properties similar or higher than traditional materials used in construction. Geopolymers are obtained without carbon dioxide (CO2) emissions into the atmosphere.

References

  1. 1.
    Davidovits J (1991) Geopolymers: inorganic polymeric new materials. J Therm Anal 37:1633–1656CrossRefGoogle Scholar
  2. 2.
    Burciaga-Diaz O, Escalante-Garcia JI, Gorokhovsky A (2012) Geopolymers based on a coarse low-purity kaolin mineral: mechanical strength as a function of the chemical composition and temperature. Cem Concr Compos 34(1):18–24.  https://doi.org/10.1016/j.cemconcomp.2011.08.001CrossRefGoogle Scholar
  3. 3.
    Wan Q, Rao F, Song, S, García R. Estrella R, Patiño C, Zhang Y (2017) Geopolymerization reaction, microstructure and simulation of metakaolin-based geopolymers at extended Si/Al ratios. Cem Concr Compos 79:45–52CrossRefGoogle Scholar
  4. 4.
    Nikolov A, Rostovsky I, Nugteren H (2017) Geopolymer based on natural zeolite. Case Stud Constr Mater 6:198–205.  https://doi.org/10.1016/j.cscm.2017.03.001CrossRefGoogle Scholar
  5. 5.
    Villa C, Pecina E, Torres R, Gómez L (2010) Geopolymer synthesis using alkaline activation of natural zeolite. Constr Build Mater 24(11):2084–2090.  https://doi.org/10.1016/j.conbuildmat.2010.04.052CrossRefGoogle Scholar
  6. 6.
    Duan P, Yan Ch, Zhou W, Lou W (2016) Fresh properties, mechanical strength and microstructure of fly ash geopolymer paste reinforced with sawdust. Constr Build Mater 111:600–610. http://linkinghub.elsevier.com/retrieve/pii/S0950061816301519CrossRefGoogle Scholar
  7. 7.
    Izquierdo M, Querol X, Davidovits J, Antenucci D, Nugteren H, Fernández-Pereira C (2009) Coal fly ash-slag-based geopolymers: microstructure and metal leaching. J Hazard Mater 166(1):561–566CrossRefGoogle Scholar
  8. 8.
    Palomo A, Grutzeck MW, Blanco MT (1999) Alkali-activated fly ashes: a cement for the future. Cem Concr Res 29(8):1323–1329CrossRefGoogle Scholar
  9. 9.
    Paula M (2017) Red mud-based geopolymers with tailored alkali diffusion properties and pH buffering ability Guilherme Ascens a ~ o ant o. J Clean Prod 148:23–30CrossRefGoogle Scholar
  10. 10.
    Ye N, Yang J, Liang S, Hu J, Xiao B, Huang Q (2016) Synthesis and strength optimization of one-part geopolymer based on red mud. Constr Build Mater 111:317–325.  https://doi.org/10.1016/j.conbuildmat.2016.02.099CrossRefGoogle Scholar
  11. 11.
    Anon (2015) Investigation of novel waste glass and limestone binders using statistical methods. Constr Build Mater 82:296–303CrossRefGoogle Scholar
  12. 12.
    Duxson P, Fernández-Jiménez A, Provis J (2007) Geopolymer technology: the current state of the art. J Mater Sci 42 (9):2917–2933CrossRefGoogle Scholar
  13. 13.
    Bartolomè JF (1997) El Caolín: composición, estructura, génesis y aplicaciones. Boletin Sociedad española de Cerámica y Vidrio 36:20Google Scholar
  14. 14.
    Kenne B, Elimbi A, Cyr M, Manga J, Tchakoute K (2015) Effect of the rate of calcination of kaolin on the properties of metakaolinbased geopolymers. J Asian Ceramic Soc 3(1):130–138. http://www.sciencedirect.com/science/article/pii/S2187076414001225CrossRefGoogle Scholar
  15. 15.
    Malhotra VM, Mehta PK (1996) Pozzolanic and cementitious materials. Advances in concrete technology, vol 1. Gordon and Breach, AmsterdamGoogle Scholar
  16. 16.
    Van Deventer JSJ, Provis JL, Duxson P (2012) Technical and commercial progress in the adoption of geopolymer cement. Miner Eng 29:89–104.  https://doi.org/10.1016/j.mineng.2011.09.009CrossRefGoogle Scholar
  17. 17.
    Shi C, Jiménez AF, Palomo A (2011) New cements for the 21st century: the pursuit of an alternative to Portland cement. Cem Concr Res 41(7):750–763.  https://doi.org/10.1016/j.cemconres.2011.03.016CrossRefGoogle Scholar
  18. 18.
    Jiménez AF, Palomo A, Criado M (2005) Microstructure development of alkali-activated fly ash cement: a descriptive model. Cem Concr Res 35:1204–1209CrossRefGoogle Scholar
  19. 19.
    Zhang ZH, Zhu HJ, Zhou CH, Wang H (2016) Geopolymer from kaolin in China: an overview. Appl Clay Sci 119:31–41.  https://doi.org/10.1016/j.clay.2015.04.023CrossRefGoogle Scholar
  20. 20.
    Zibouche F, Kerdjoudj H, Lacaillerie J, Van Damme H (2009) Geopolymers from Algerian metakaolin. Influence of secondary minerals. Appl Clay Sci 43(3–4):453–458.  https://doi.org/10.1016/j.clay.2008.11.001CrossRefGoogle Scholar
  21. 21.
    Autef A, Joussein E, Gasnier G, Rossignol S (2013) Role of the silica source on the geopolymerization rate: a thermal analysis study. J Non-Cryst Solids 366(1):13–21.  https://doi.org/10.1016/j.jnoncrysol.2012.07.015CrossRefGoogle Scholar
  22. 22.
    Tchakoute, H, Rüscher Djobo, J, Kenne.B, Leonelli C (2015) Influence of gibbsite and quartz in kaolin on the properties of metakaolin-based geopolymer cements. Appl Clay Sci 107:188–194.  https://doi.org/10.1016/j.clay.2015.01.023CrossRefGoogle Scholar
  23. 23.
    De Souza H, Wagner T, De Souza P, Kiyohara P (2005) Thermal phase sequences in gibbsite/kaolinite clay: electron microscopy studies. Ceram Int 31(8):1077–1084CrossRefGoogle Scholar
  24. 24.
    Kurt C, Bittner J (2006) Encyclopedia of industrial chemistry. Sodium hydroxide. Wiley-VCH Verlag. Edit. Ullmann’s, GermanyGoogle Scholar
  25. 25.
    Davidovits J (2013) Geopolymer cement, a review. Geopolymer InstituteGoogle Scholar
  26. 26.
    Provis JL, van Deventer JSJ (2009) Geopolymers: structures, processing, properties and industrial applications. CRC Press LLC, Boca RatonCrossRefGoogle Scholar
  27. 27.
    Heah CY, Kamarudin H, Al Bakri A, Bnhussain M, Luqman M, Nizar I, Ruzaidi, C, Liew Y (2012) Study on solids-to-liquid and alkaline activator ratios on kaolin-based geopolymers. Constr Build Mater 35:912–922.  https://doi.org/10.1016/j.conbuildmat.2012.04.102CrossRefGoogle Scholar
  28. 28.
    Hounsi A, Lecomte-Nana G, Djétéli G, Blanchart P (2013) Kaolin-based geopolymers: effect of mechanical activation and curing process. Constr Build Mater 42:105–113.  https://doi.org/10.1016/j.conbuildmat.2012.12.069CrossRefGoogle Scholar
  29. 29.
    Xu H, Van Deventer JSJ (2002) Geopolymerisation of multiple minerals. Miner Eng 15(12):1131–1139CrossRefGoogle Scholar
  30. 30.
    Heah CY, Kamarudin H, Al Bakri A, Binhussain M, Luqman M, Nizar I, Ruzaidi C, Liew Y (2011) Effect of curing profile on kaolin-based geopolymers. Phys Procedia 22:305–311.  https://doi.org/10.1016/j.phpro.2011.11.048CrossRefGoogle Scholar
  31. 31.
    Perdikatsis V, Zaharaki D, Komnitsas K (2010) Use of analytical techniques for identification of inorganic polymer gel composition. J Mater Sci 45(10):2715–2724CrossRefGoogle Scholar
  32. 32.
    Davidovits J (2002) 30 years of successes and failures in geopolymer applications. Market trends and potential breakthroughs. In: Keynote conference on geopolymer conference, pp 1–16Google Scholar
  33. 33.
    Javadian H, Ghorbani F, Tayebi H (2015) Study of the adsorption of cd (II) from aqueous solution using zeolite-based geopolymer, synthesized from coal fly ash; kinetic, isotherm and thermodynamic studies. Arab J Chem 8(6):837–849.  https://doi.org/10.1016/j.arabjc.2013.02.018CrossRefGoogle Scholar
  34. 34.
    Arioz E, Arioz Ö, Koç ÖM (2013) The effect of curing conditions on the properties of geopolymer samples. Int J Chem Eng Appl 4(6):4–7Google Scholar
  35. 35.
    Lee W, van Deventer J (2003) Use of infrared spectroscopy to study geopolymerization of heterogeneous amorphous aluminosilicates. Langmuir 19:8726–8734CrossRefGoogle Scholar
  36. 36.
    Stebbins JF, Zhao P, Lee Sung K, Cheng Xing (1999) Reactive Al-O-Al sites in a natural zeolite: triple-quantum oxygen-17 nuclear magnetic resonance. Am Mineral 84:1680–1684CrossRefGoogle Scholar
  37. 37.
    Hind AR, Bhargava SK, Grocott SC (1999) The surface chemistry of Bayer process solids: a review. Colloids and Surf A-Physicochem Eng Asp 146:359–374CrossRefGoogle Scholar
  38. 38.
    Chandra S (1996) Waste materials used in concrete manufacturing. Noyes Publications, WestwoodGoogle Scholar
  39. 39.
    Liu Y, Lin C, Wu Y (2007) Characterization of red mud derived from a combined Bayer process and bauxite calcination method. J Hazard Mater 146:255–261CrossRefGoogle Scholar
  40. 40.
    Zanelli C, Alshaaer M, Dondi M, Labrincha JA, Rocha F (2013) Composition and technological properties of geopolymers based on metakaolin and red mud. Mater Des 52:648–654CrossRefGoogle Scholar
  41. 41.
    Power G, Gräfe M, Klauber C (2011) Hydrometallurgy bauxite residue issues: I. Current management, disposal and storage practices. Hydrometallurgy 108(1–2):33–45.  https://doi.org/10.1016/j.hydromet.2011.02.006CrossRefGoogle Scholar
  42. 42.
    Chandra R, Kishore R, Chandra B (2010) Neutralization of red mud using CO 2 sequestration cycle. J Hazar Mater 179(1–3):28–34.  https://doi.org/10.1016/j.jhazmat.2010.02.052CrossRefGoogle Scholar
  43. 43.
    Perera D, Cashion J, Blackford M, Zhang Z, Vance E (2007) Fe speciation in geopolymers with Si/al molar ratio of ∼ 2. J Eur Ceram Soc 27:2697–2703CrossRefGoogle Scholar
  44. 44.
    Dimas DD, Giannopoulou IP, Panias D (2009) Utilization of alumina red mud for synthesis of inorganic polymeric. Miner Process Extr Metall Rev 30(3):211–239CrossRefGoogle Scholar
  45. 45.
    Centre D (1997) Preparation of special cements from red. Waste Manag 16(8):665–670Google Scholar
  46. 46.
    Steinerová M, Hanslícek T, Straka P, Perná I, Siegl P, Svarcová T (2009) Reinforcement of the terracotta sculpture by geopolymer composite. Mater Des 30:3229–3234CrossRefGoogle Scholar
  47. 47.
    Sahu MK, Mandal S, Yadav LS, Dash SS, Patel RK (2016) Equilibrium and kinetic studies of cd (II) ion adsorption from aqueous solution by activated red mud. Desalin Water Treat 57:14251–14265CrossRefGoogle Scholar
  48. 48.
    Davidovits J (2008) Geopolymer. In: Davidovits J (ed) Geopolymer: chemistry and applications, 2nd edn. Institut Géopolymère, Saint-QuentinGoogle Scholar
  49. 49.
    Hussain M, Varely R, Cheng Y, Mathys Z, Simon G (2005) Synthesis and thermal behavior of inorganic – organic hybrid geopolymer composites. J Appl Polym Sci 96(1):112–121CrossRefGoogle Scholar
  50. 50.
    Kim D, Chilingar GV (2006) Geopolymer formation and its unique properties. J Environ Geogr 51:103–111Google Scholar
  51. 51.
    Henrichs SM (1992) Early diagenesis of organic matter in marine sediments: progress and perplexity. Mar Chem 39:119–149CrossRefGoogle Scholar
  52. 52.
    Ken PW, Ramli M, Ban CC (2015) An overview on the influence of various factors on the properties of geopolymer concrete derived from industrial by-products. Constr Build Mater 77:370–395.  https://doi.org/10.1016/j.conbuildmat.2014.12.065CrossRefGoogle Scholar
  53. 53.
    Ward CR, Taylor JC (1996) Quantitative mineralogical analysis of coals from the Callide Basin, Queensland, Australia using X-ray diffractometry and normative interpretation. Int J Coal Geol 30:211–229CrossRefGoogle Scholar
  54. 54.
    Temuujin J, Van Riessen A, Mackenzie KJD (2010) Preparation and characterisation of fly ash based geopolymer mortars. Constr Build Mater 24(10):1906–1910.  https://doi.org/10.1016/j.conbuildmat.2010.04.012CrossRefGoogle Scholar
  55. 55.
    Hardjito D, Rangan BV (2005) Development and properties of low-calcium fly ash-based geopolymer concrete. Research report GC, p 94. http://www.geopolymer.org/fichiers_pdf/curtin-flyash-GP-concrete-report.pdf
  56. 56.
    Kong DLY, Sanjayan JG, Sagoe-crentsil K (2007) Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cem Concr Res 37:1583–1589CrossRefGoogle Scholar
  57. 57.
    Palomo A, Ferna A (2005) Mid-infrared spectroscopic studies of alkali-activated fly ash structure. Microporous Mesoporous Mater 86:207–214CrossRefGoogle Scholar
  58. 58.
    Palomo A, Fernandez-jime A (2004) Alkaline activation of fly ashes: NMR study of the reaction products. J Am Ceram Soc 87:1141–1145CrossRefGoogle Scholar
  59. 59.
    Le-ping L, Xue-min C, Shu-heng Q, Jun-li Y, Zhang L (2010) Preparation of phosphoric acid-based porous geopolymers. Appl Clay Sci 50(4):600–603.  https://doi.org/10.1016/j.clay.2010.10.004CrossRefGoogle Scholar
  60. 60.
    Wang Y, Dai J, Ding Z, Xu W(2017) Phosphate-based geopolymer: formation mechanism and thermal stability. Mater Lett.  https://doi.org/10.1016/j.matlet.2017.01.022CrossRefGoogle Scholar
  61. 61.
    Kouamo H, Henning C (2017a) Applied clay science mechanical and microstructural properties of metakaolin-based geopolymer cements from sodium waterglass and phosphoric acid solution as hardeners: a comparative study. Appl Clay Sci 140:81–87.  https://doi.org/10.1016/j.clay.2017.02.002CrossRefGoogle Scholar
  62. 62.
    Perera D, Blackford M, Latella B, Sasaki Y, Vance E (2008) Relative strengths of phosphoric acid-reacted and alkali-reacted metakaolin materials. J Mater Sci 43:6562–6566CrossRefGoogle Scholar
  63. 63.
    Bai C, Conte A, Colombo P (2016) Author ’ s accepted manuscript frothing. Mater Lett.  https://doi.org/10.1016/j.matlet.2016.11.103CrossRefGoogle Scholar
  64. 64.
    Louati S, Baklouti S, Samet B (2016) Acid based geopolymerization kinetics: effect of clay particle size. Appl Clay Sci 132–133:571–578.  https://doi.org/10.1016/j.clay.2016.08.007CrossRefGoogle Scholar
  65. 65.
    Alehyen S, Achouri MEL, Taibi M (2017) Characterization, microstructure and properties of fly ash-based geopolymer. J Mater Environ Sci 8(5):1783–1796Google Scholar
  66. 66.
    van Russen A, Rickard W, Curtin University of Technology, Australia and J. Sanjayan, Monash University, Australia (2009) Geopolymers. In: van Deventer JSJ, Provis JL (eds) Geopolymers: structure, processing, properties and industrial applications, 1st edn. Woodhead Publishing Limited and CRC Press LLC, Padstow, p 461Google Scholar
  67. 67.
    Thokchom S, Ghosh P, Ghosh S (2009) Effect of water absorption, porosity and sorptivity on durability of geopolymer mortars. ARPN J Eng Appl Sci 4(7):28–32Google Scholar
  68. 68.
    Cui X, Liu L, He Y, Chen J, Zhou J (2011) A novel aluminosilicate geopolymer material with low dielectric loss. Mater Chem Phys 130(1–2):1–4.  https://doi.org/10.1016/j.matchemphys.2011.06.039CrossRefGoogle Scholar
  69. 69.
    Hanjitsuwan S, Chindaprasirt P, Pimraksa K (2011) Electrical conductivity and dielectric property of fly ash geopolymer pastes. Int J Miner Metall Mater 18(1):94–99.  https://doi.org/10.1007/s12613-011-0406-0CrossRefGoogle Scholar
  70. 70.
    Jumrat S, Chatveera B, Rattanadecho P (2011) Dielectric properties and temperature profile of fly ash-based geopolymer mortar ☆. Int Commun Heat Mass Transfer 38(2):242–248.  https://doi.org/10.1016/j.icheatmasstransfer.2010.11.020CrossRefGoogle Scholar
  71. 71.
    Norkhairunnisa M, Muhammad Fariz M (2015) Geopolymer: a review on physical properties of inorganic aluminosilicate coating materials. Mater Sci Forum 803(2014):367–373.  https://doi.org/10.4028/www.scientific.net/MSF.803.367CrossRefGoogle Scholar
  72. 72.
    Paper C, Khan I, Khairun A, Universiti A, Petronas T, Petronas UT, … Khan I (2014) Effect of Na/Al and Si/Al ratios on adhesion strength of geopolymers as coating material. Appl Mech Mater 625: 85–89.  https://doi.org/10.4028/www.scientific.net/AMM.625.85CrossRefGoogle Scholar
  73. 73.
    Zivica V, Pallou MT, Krizma M (2014) Geopolymer cements and their properties: a review. Build Res J 61(2):85–100CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Carlos Sotelo-Piña
    • 1
  • Elsa Nadia Aguilera-González
    • 2
  • Antonia Martínez-Luévanos
    • 2
    Email author
  1. 1.Maestría en Ciencia y Tecnología Química, Facultad de Ciencias QuímicasUniversidad Autónoma de CoahuilaSaltilloMexico
  2. 2.Advanced Ceramic Materials and Energy, Facultad de Ciencias QuímicasUniversidad Autónoma de CoahuilaSaltilloMexico

Personalised recommendations