Advertisement

Photovoltaic Materials

  • Yifan Wang
  • Hailin Cong
  • Bing YuEmail author
Reference work entry

Abstract

Solar cells (SCs), also named as photovoltaics (PVs), which can turn solar energy into electricity, have been regarded as promising candidates for renewable sources and have drawn considerable attention in the past decades. Photovoltaic materials are semiconducting materials which can absorb light and generate electricity. They are one of the determinants of the performances of SCs. According to different PV materials, SCs can be mainly classified into three categories: the first one is silicon-based SCs, including monocrystalline silicon, polycrystalline silicon, and amorphous silicon; second is inorganic compounds-based SCs, with PV materials of gallium arsenide (GaAs), cadmium telluride (CdTe), cadmium sulfide (CdS), copper indium gallium selenide (CIGS), and copper indium selenide (CIS), etc.; and the third is organic materials-based SCs, which include dye-sensitized SCs (DSSCs) and organic SCs (OSCs). Nowadays, a newly emerging kind of PV materials has raised huge concern among scientists, that is, the perovskite SCs. In this chapter, a brief review of the above different PV materials is given and their future potentials in PV markets are predicted.

Notes

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (21574072, 21375069, 21675091, 21404065), the Natural Science Foundation for Distinguished Young Scientists of Shandong Province (JQ201403), the TaishanYoung Scholar Program of Shandong Province (tsqn20161027), the Key Research and Development Project of Shandong Province (2016GGX102028, 2016GGX102039), the Project of Shandong Province Higher Educational Science and Technology Program (J15LC20), the Scientific Research Foundation for the Returned Overseas Chinese Scholars of State Education Ministry (20111568), the People’s Livelihood Science and Technology Project of Qingdao (166257nsh, 173378nsh), the Innovation Leader Project of Qingdao (168325zhc), the China Postdoctoral Science Foundation (2017 M612199), the Postdoctoral Scientific Research Foundation of Qingdao, and the First Class Discipline Project of Shandong Province.

References

  1. 1.
    Gassensmith JJ, Arunkumar E, Barr L, Baumes JM, DiVittorio KM, Johnson JR, Noll BC, Smith BD (2007) Self-assembly of fluorescent inclusion complexes in competitive media including the interior of living cells. J Am Chem Soc 129:15054–15059CrossRefGoogle Scholar
  2. 2.
    Mangolini L (2013) Synthesis, properties, and applications of silicon nanocrystals. J Vac Sci Technol B 31:29CrossRefGoogle Scholar
  3. 3.
  4. 4.
    Becker C, Sontheimer T, Steffens S, Scherf S, Rech B (2011) Polycrystalline silicon thin films by high-rate electronbeam evaporation for photovoltaic applications – influence of substrate texture and temperature. Energy Procedia 10:61–65CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Parida B, Iniyan S, Goic R (2011) A review of solar photovoltaic technologies. Renew Sust Energ Rev 15:1625–1636CrossRefGoogle Scholar
  7. 7.
  8. 8.
  9. 9.
    Deb SK (1998) Recent developments in high eficiency photovoltaic cells. Renew Energy 15:467–472CrossRefGoogle Scholar
  10. 10.
    Asim N, Sopian K, Ahmadi S, Saeedfar K, Alghoul MA, Saadatian O, Zaidi SH (2012) A review on the role of materials science in solar cells. Renew Sust Energ Rev 16:5834–5847CrossRefGoogle Scholar
  11. 11.
    Goetzberger A, Hebling C, Schock H-W (2003) Photovoltaic materials, history, status and outlook. Mater Sci Eng R Rep 40:1–46CrossRefGoogle Scholar
  12. 12.
    Britt J, Ferekides C (1993) Thin-film cds/cdte solar cell with 15.8% efficiency. Appl Phys Lett 62:2851–2852CrossRefGoogle Scholar
  13. 13.
    Hegedus SS, McCandless BE (2005) Cdte contacts for cdte/cds solar cells: effect of cu thickness, surface preparation and recontacting on device performance and stability. Sol Energy Mater Sol Cells 88:75–95CrossRefGoogle Scholar
  14. 14.
    Böer KW (2011) Cadmium sulfide enhances solar cell efficiency. Energy Convers Manag 52:426–430CrossRefGoogle Scholar
  15. 15.
    Soliman MM, Shabana MM, Abulfotuh F (1996) Cds/cdte solar cell using sputtering technique. Renew Energy 8:386–389CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Repins I, Contreras MA, Egaas B, DeHart C, Scharf J, Perkins CL, To B, Noufi R (2008) 19.9%-efficient zno/cds/cuingase2 solar cell with 81•2% fill factor. Prog Photovolt Res Appl 16:235–239CrossRefGoogle Scholar
  18. 18.
  19. 19.
  20. 20.
    Zhao F, Dai S, Wu Y, Zhang Q, Wang J, Jiang L, Ling Q, Wei Z, Ma W, You W, Wang C, Zhan X (2017) Single-junction binary-blend nonfullerene polymer solar cells with 12.1% efficiency. Adv Mater.  https://doi.org/10.1002/adma.201700144CrossRefGoogle Scholar
  21. 21.
    Chen YS, Wan XJ, Long GK (2013) High performance photovoltaic applications using solution-processed small molecules. Acc Chem Res 46:2645–2655CrossRefGoogle Scholar
  22. 22.
    Dennler G, Scharber MC, Brabec CJ (2009) Polymer-fullerene bulk-heterojunction solar cells. Adv Mater 21:1323–1338CrossRefGoogle Scholar
  23. 23.
    Dang MT, Hirsch L, Wantz G, Wuest JD (2013) Controlling the morphology and performance of bulk heterojunctions in solar cells. Lessons learned from the benchmark poly(3-hexylthiophene):[6,6]-phenyl-c61-butyric acid methyl ester system. Chem Rev 113: 3734–3765CrossRefGoogle Scholar
  24. 24.
    Heeger AJ (2010) Semiconducting polymers: the third generation. Chem Soc Rev 39: 2354–2371CrossRefGoogle Scholar
  25. 25.
    Li G, Zhu R, Yang Y (2012) Polymer solar cells. Nat Phot 6:153–161CrossRefGoogle Scholar
  26. 26.
    O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal tio2 films. Nature 353:737–740CrossRefGoogle Scholar
  27. 27.
    Gao F, Wang Y, Shi D, Zhang J, Wang M, Jing X, Humphry-Baker R, Wang P, Zakeeruddin SM, Grätzel M (2008) Enhance the optical absorptivity of nanocrystalline tio2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. J Am Chem Soc 130:10720–10728CrossRefGoogle Scholar
  28. 28.
    Gong JW, Liang J, Sumathy K (2012) Review on dye-sensitized solar cells (dsscs): fundamental concepts and novel materials. Renew Sust Energ Rev 16:5848–5860CrossRefGoogle Scholar
  29. 29.
    Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Mueller E, Liska P, Vlachopoulos N, Graetzel M (1993) Conversion of light to electricity by cis-x2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(ii) charge-transfer sensitizers (x = cl-, br-, i-, cn-, and scn-) on nanocrystalline titanium dioxide electrodes. J Am Chem Soc 115:6382–6390CrossRefGoogle Scholar
  30. 30.
    Nazeeruddin MK, Pechy P, Gratzel M (1997) Efficient panchromatic sensitization of nanocrystalline tio2 films by a black dye based on a trithiocyanato-ruthenium complex. Chem Commun 18:1705–1706CrossRefGoogle Scholar
  31. 31.
    Yasuo C, Ashraful I, Yuki W, Ryoichi K, Naoki K, Liyuan H (2006) Dye-sensitized solar cells with conversion efficiency of 11.1%. Japn J Appl Phys 45:L638CrossRefGoogle Scholar
  32. 32.
    Grätzel M (2009) Recent advances in sensitized mesoscopic solar cells. Acc Chem Res 42: 1788–1798CrossRefGoogle Scholar
  33. 33.
    Mishra A, Fischer MKR, Bäuerle P (2009) Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angew Chem Int Ed 48:2474–2499CrossRefGoogle Scholar
  34. 34.
    Hwang S, Lee JH, Park C, Lee H, Kim C, Park C, Lee M-H, Lee W, Park J, Kim K, Park N-G, Kim C (2007) A highly efficient organic sensitizer for dye-sensitized solar cells. Chem Commun 46:4887–4889CrossRefGoogle Scholar
  35. 35.
    Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EW-G, Yeh C-Y, Zakeeruddin SM, Grätzel M (2011) Porphyrin-sensitized solar cells with cobalt (ii/iii)–based redox electrolyte exceed 12 percent efficiency. Science 334:629–634CrossRefGoogle Scholar
  36. 36.
    Tang CW (1986) Two-layer organic photovoltaic cell. Appl Phys Lett 48:183–185CrossRefGoogle Scholar
  37. 37.
    Yu G, Gao J, Hummelen J, Wudl F, Heeger A (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270:1789–1791CrossRefGoogle Scholar
  38. 38.
    Hiorns RC, de Bettignies R, Leroy J, Bailly S, Firon M, Sentein C, Khoukh A, Preud’homme H, Dagron-Lartigau C (2006) High molecular weights, polydispersities, and annealing temperatures in the optimization of bulk-heterojunction photovoltaic cells based on poly(3-hexylthiophene) or poly(3-butylthiophene). Adv Funct Mater 16:2263–2273CrossRefGoogle Scholar
  39. 39.
    Ma W, Kim JY, Lee K, Heeger AJ (2007) Effect of the molecular weight of poly(3-hexylthiophene) on the morphology and performance of polymer bulk heterojunction solar cells. Macromol Rapid Commun 28:1776–1780CrossRefGoogle Scholar
  40. 40.
    Hu HW, Jiang K, Yang GF, Liu J, Li ZK, Lin HR, Liu YH, Zhao JB, Zhang J, Huang F, Qu YQ, Ma W, Yan H (2015) Terthiophene-based d-a polymer with an asymmetric arrangement of alkyl chains that enables efficient polymer solar cells. J Am Chem Soc 137:14149–14157CrossRefGoogle Scholar
  41. 41.
    Zhao JB, Li YK, Yang GF, Jiang K, Lin HR, Ade H, Ma W, Yan H (2016) Efficient organic solar cells processed from hydrocarbon solvents. Nat Energy 1:7Google Scholar
  42. 42.
    Wang E, Wang L, Lan L, Luo C, Zhuang W, Peng J, Cao Y (2008) High-performance polymer heterojunction solar cells of a polysilafluorene derivative. Appl Phys Lett 92:033307CrossRefGoogle Scholar
  43. 43.
    Du C, Li C, Li W, Chen X, Bo Z, Veit C, Ma Z, Wuerfel U, Zhu H, Hu W, Zhang F (2011) 9-alkylidene-9h-fluorene-containing polymer for high-efficiency polymer solar cells. Macromolecules 44:7617–7624CrossRefGoogle Scholar
  44. 44.
    Chan S-H, Chen C-P, Chao T-C, Ting C, Lin C-S, Ko B-T (2008) Synthesis, characterization, and photovoltaic properties of novel semiconducting polymers with thiophene−phenylene−thiophene (tpt) as coplanar units. Macromolecules 41:5519–5526CrossRefGoogle Scholar
  45. 45.
    Chen Y-C, Yu C-Y, Fan Y-L, Hung L-I, Chen C-P, Ting C (2010) Low-bandgap conjugated polymer for high efficient photovoltaic applications. Chem Commun 46:6503–6505CrossRefGoogle Scholar
  46. 46.
    Guo X, Zhang M, Tan J, Zhang S, Huo L, Hu W, Li Y, Hou J (2012) Influence of d/a ratio on photovoltaic performance of a highly efficient polymer solar cell system. Adv Mater 24: 6536–6541CrossRefGoogle Scholar
  47. 47.
    Liang Y, Wu Y, Feng D, Tsai S-T, Son H-J, Li G, Yu L (2009) Development of new semiconducting polymers for high performance solar cells. J Am Chem Soc 131:56–57CrossRefGoogle Scholar
  48. 48.
    He Z, Zhong C, Huang X, Wong W-Y, Wu H, Chen L, Su S, Cao Y (2011) Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv Mater 23:4636–4643CrossRefGoogle Scholar
  49. 49.
    He Z, Zhong C, Su S, Xu M, Wu H, Cao Y (2012) Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat Photon 6:591–595CrossRefGoogle Scholar
  50. 50.
    Liao S-H, Jhuo H-J, Cheng Y-S, Chen S-A (2013) Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (ptb7-th) for high performance. Adv Mater 25:4766–4771CrossRefGoogle Scholar
  51. 51.
    Lin Y, Li Y, Zhan X (2012) Small molecule semiconductors for high-efficiency organic photovoltaics. Chem Soc Rev 41:4245–4272CrossRefGoogle Scholar
  52. 52.
    Kan B, Li M, Zhang Q, Liu F, Wan X, Wang Y, Ni W, Long G, Yang X, Feng H, Zuo Y, Zhang M, Huang F, Cao Y, Russell TP, Chen Y (2015) A series of simple oligomer-like small molecules based on oligothiophenes for solution-processed solar cells with high efficiency. J Am Chem Soc 137:3886–3893CrossRefGoogle Scholar
  53. 53.
    Liu Y, Chen C-C, Hong Z, Gao J, Yang Y, Zhou H, Dou L, Li G (2013) Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency. Sci Rep 3:3356CrossRefGoogle Scholar
  54. 54.
    Liu Y, Wan X, Yin B, Zhou J, Long G, Yin S, Chen Y (2010) Efficient solution processed bulk-heterojunction solar cells based a donor-acceptor oligothiophene. J Mater Chem 20:2464–2468CrossRefGoogle Scholar
  55. 55.
    Yin B, Yang L, Liu Y, Chen Y, Qi Q, Zhang F, Yin S (2010) Solution-processed bulk heterojunction organic solar cells based on an oligothiophene derivative. Appl Phys Lett 97: 023303CrossRefGoogle Scholar
  56. 56.
    Zhou J, Wan X, Liu Y, Zuo Y, Li Z, He G, Long G, Ni W, Li C, Su X, Chen Y (2012) Small molecules based on benzo[1,2-b:4,5-b′]dithiophene unit for high-performance solution-processed organic solar cells. J Am Chem Soc 134:16345–16351CrossRefGoogle Scholar
  57. 57.
    Zhou J, Zuo Y, Wan X, Long G, Zhang Q, Ni W, Liu Y, Li Z, He G, Li C, Kan B, Li M, Chen Y (2013) Solution-processed and high-performance organic solar cells using small molecules with a benzodithiophene unit. J Am Chem Soc 135:8484–8487CrossRefGoogle Scholar
  58. 58.
    Sun YM, Welch GC, Leong WL, Takacs CJ, Bazan GC, Heeger AJ (2012) Solution-processed small-molecule solar cells with 6.7% efficiency. Nat Mater 11:44–48CrossRefGoogle Scholar
  59. 59.
    Gupta V, Kyaw AKK, Wang DH, Chand S, Bazan GC, Heeger AJ (2013) Barium: an efficient cathode layer for bulk-heterojunction solar cells. Sci Rep 3:1965CrossRefGoogle Scholar
  60. 60.
    Hummelen JC, Knight BW, Lepeq F, Wudl F, Yao J, Wilkins CL (1995) Preparation and characterization of fulleroid and methanofullerene derivatives. J Org Chem 60:532–538CrossRefGoogle Scholar
  61. 61.
    Wienk MM, Kroon JM, Verhees WJH, Knol J, Hummelen JC, van Hal PA, Janssen RAJ (2003) Efficient methano 70 fullerene/mdmo-ppv bulk heterojunction photovoltaic cells. Angew Chem Int Ed 42:3371–3375CrossRefGoogle Scholar
  62. 62.
    Zhao G, He Y, Li Y (2010) 6.5% efficiency of polymer solar cells based on poly(3-hexylthiophene) and indene-c60 bisadduct by device optimization. Adv Mater 22: 4355–4358CrossRefGoogle Scholar
  63. 63.
    Sun YP, Cui CH, Wang HQ, Li YF (2011) Efficiency enhancement of polymer solar cells based on poly(3-hexylthiophene)/indene-c70 bisadduct via methylthiophene additive. Adv Energy Mater 1:1058–1061CrossRefGoogle Scholar
  64. 64.
    Dai SX, Zhao FW, Zhang QQ, Lau TK, Li TF, Liu K, Ling QD, Wang CR, Lu XH, You W, Zhan XW (2017) Fused nonacyclic electron acceptors for efficient polymer solar cells. J Am Chem Soc 139:1336–1343CrossRefGoogle Scholar
  65. 65.
    Wang W, Yan C, Lau T-K, Wang J, Liu K, Fan Y, Lu X, Zhan X (2017) Fused hexacyclic nonfullerene acceptor with strong near-infrared absorption for semitransparent organic solar cells with 9.77% efficiency. Adv Mater.  https://doi.org/10.1002/adma.201701308CrossRefGoogle Scholar
  66. 66.
    Lin YZ, Zhao FW, Wu Y, Chen K, Xia YX, Li GW, Prasad SKK, Zhu JS, Huo LJ, Bin HJ, Zhang ZG, Guo X, Zhang MJ, Sun YM, Gao F, Wei ZX, Ma W, Wang CR, Hodgkiss J, Bo ZS, Inganas O, Li YF, Zhan XW (2017) Mapping polymer donors toward high-efficiency fullerene free organic solar cells. Adv Mater 29:9Google Scholar
  67. 67.
    Zhan X, Tan Z, Domercq B, An Z, Zhang X, Barlow S, Li Y, Zhu D, Kippelen B, Marder SR (2007) A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells. J Am Chem Soc 129:7246–7247CrossRefGoogle Scholar
  68. 68.
    Cheng P, Yan C, Li Y, Ma W, Zhan X (2015) Diluting concentrated solution: a general, simple and effective approach to enhance efficiency of polymer solar cells. Energy Environ Sci 8: 2357–2364CrossRefGoogle Scholar
  69. 69.
    Sun D, Meng D, Cai Y, Fan B, Li Y, Jiang W, Huo L, Sun Y, Wang Z (2015) Non-fullerene-acceptor-based bulk-heterojunction organic solar cells with efficiency over 7%. J Am Chem Soc 137:11156–11162CrossRefGoogle Scholar
  70. 70.
    Meng D, Sun D, Zhong C, Liu T, Fan B, Huo L, Li Y, Jiang W, Choi H, Kim T, Kim JY, Sun Y, Wang Z, Heeger AJ (2016) High-performance solution-processed non-fullerene organic solar cells based on selenophene-containing perylene bisimide acceptor. J Am Chem Soc 138: 375–380CrossRefGoogle Scholar
  71. 71.
    Yan H, Chen Z, Zheng Y, Newman C, Quinn JR, Dotz F, Kastler M, Facchetti A (2009) A high-mobility electron-transporting polymer for printed transistors. Nature 457:679–6U1CrossRefGoogle Scholar
  72. 72.
    Ko SW, Verploegen E, Hong S, Mondal R, Hoke ET, Toney MF, McGehee MD, Bao ZN (2011) 3,4-disubstituted polyalkylthiophenes for high-performance thin-film transistors and photovoltaics. J Am Chem Soc 133:16722–16725CrossRefGoogle Scholar
  73. 73.
    Gao L, Zhang ZG, Xue LW, Min J, Zhang JQ, Wei ZX, Li YF (2016) All-polymer solar cells based on absorption-complementary polymer donor and acceptor with high power conversion efficiency of 8.27%. Adv Mater 28:1884–1890CrossRefGoogle Scholar
  74. 74.
    Lin YZ, Wang JY, Zhang ZG, Bai HT, Li YF, Zhu DB, Zhan XW (2015) An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv Mater 27:1170–1174CrossRefGoogle Scholar
  75. 75.
    Lin YZ, Zhao FW, He Q, Huo LJ, Wu Y, Parker TC, Ma W, Sun YM, Wang CR, Zhu DB, Heeger AJ, Marder SR, Zhan XW (2016) High-performance electron acceptor with thienyl side chains for organic photovoltaics. J Am Chem Soc 138:4955–4961CrossRefGoogle Scholar
  76. 76.
    Zhao WC, Qian DP, Zhang SQ, Li SS, Inganas O, Gao F, Hou JH (2016) Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv Mater 28:4734–4739CrossRefGoogle Scholar
  77. 77.
    Kazim S, Nazeeruddin MK, Gratzel M, Ahmad S (2014) Perovskite as light harvester: a game changer in photovoltaics. Angew Chem Int Ed 53:2812–2824CrossRefGoogle Scholar
  78. 78.
    Gratzel M (2014) The light and shade of perovskite solar cells. Nat Mater 13:838–842CrossRefGoogle Scholar
  79. 79.
    Jung HS, Park NG (2015) Perovskite solar cells: from materials to devices. Small 11:10–25CrossRefGoogle Scholar
  80. 80.
    Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051CrossRefGoogle Scholar
  81. 81.
    Im J-H, Lee C-R, Lee J-W, Park S-W, Park N-G (2011) 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3:4088–4093CrossRefGoogle Scholar
  82. 82.
    Chung I, Lee B, He J, Chang RPH, Kanatzidis MG (2012) All-solid-state dye-sensitized solar cells with high efficiency. Nature 485:486–489CrossRefGoogle Scholar
  83. 83.
    https://www.Nrel.Gov/pv/assets/images/efficiency-chart.PngGoogle Scholar
  84. 84.
  85. 85.
    Sum TC, Mathews N (2014) Advancements in perovskite solar cells: Photophysics behind the photovoltaics. Energy Environ Sci 7:2518–2534CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical EngineeringQingdao UniversityQingdaoChina
  2. 2.Laboratory for New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, College of Materials Science and EngineeringQingdao UniversityQingdaoChina

Personalised recommendations