Hydrogen Generation via Photoelectrochemical Splitting of Water

  • Pushpendra Kumar
  • Ashish KumarEmail author
Reference work entry


Overutilization of conventional fuels and narrow utilization of alternative energy sources leading to energy crisis is a grim matter of concern. Switching over to a new energy system from classical energy system is only a solution by which proper civilization of energy can be made. In this respect, hydrogen energy system has great potential to replace current energy system due to its various favorable properties. In this new energy regime, hydrogen will be the energy carrier and this will change whole economic, political, and social scenario as coal did at the foundation of the industrial age.

Among the three essential components of hydrogen – based energy scenario, i.e., production, storage, and transportation, the production of hydrogen has received considerable attention. While hydrogen can be generated using different technologies, only some of them are environment friendly. Of the many approaches to produce hydrogen from renewable sources, direct splitting of water into hydrogen and oxygen in a photoelectrochemical cell using solar energy is an ideal method.

To take this technology to the market, conversion efficiency should be 10% and material stability must be greater than 2000 h. To develop the PEC system having desired efficiency and stability is still a challenge and lot of research is going on to increase the efficiency to make this technology viable.

In this chapter, we will discuss the basic principle of PEC splitting of water to produce an energy carrier, hydrogen, along with different techniques, strategic tools and approaches to enhance the efficiency and stability of PEC system.


  1. 1.
    Bak T, Nowotny J, Rekas M, Sorrell CC (2002) Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int J Hydrog Energy 27:991–1022CrossRefGoogle Scholar
  2. 2.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRefGoogle Scholar
  3. 3.
    Bahadur L, Rao TN (1992) Photoelectrochemical studies of cobalt-doped ZnO sprayed thin film semiconductor electrodes in acetonitrile medium. Sol Energy Mater Sol Cells 27:347–360CrossRefGoogle Scholar
  4. 4.
    Avachat US, Jahagirdar AH, Dhere NG (2006) Multiple bandgap combination of thin film photovoltaic cells and a photoanode for efficient hydrogen and oxygen generation by water splitting. Sol Energy Mater Sol Cells 90:2464–2470CrossRefGoogle Scholar
  5. 5.
    Sun Y, Murphy Carl J, Reyes-Gil Karla R, Reyes-Garci Enrique A, Lilly Justin P, Raftery D (2008) Carbon-doped In2O3 films for photoelectrochemical hydrogen production. Int J Hydrog Energy 33:5967–5974CrossRefGoogle Scholar
  6. 6.
    Iqbal N, Khan I, Yamani ZHA, Qurashi A (2017) A facile one-step strategy for in-situ fabrication of WO3-BiVO4 nanoarrays for solar-driven photoelectrochemical water splitting applications. Sol Energy 144:604–611CrossRefGoogle Scholar
  7. 7.
    Choudhary S, Upadhyay S, Kumar P, Singh N, Satsangi VR, Shrivastav R, Dass S (2012) Nanostructured bilayered thin films in photoelectrochemical water splitting – a review. Int J Hydrog Energy 37:18713–18730CrossRefGoogle Scholar
  8. 8.
    Kumar P (2016) Photoelectrochemical splitting of water to produce a power appetizer hydrogen: a green system for future(A short review). Orient J Chem 32:1473–1483CrossRefGoogle Scholar
  9. 9.
    Li Y, Zhang JZ (2010) Hydrogen generation from photoelectrochemical water splitting based on nanomaterials. Laser Photonics Rev 4:517–528CrossRefGoogle Scholar
  10. 10.
    Lin Y, Yuan G, Liu R, Zhou S, Sheehan SW, Wang D (2011) Semiconductor nanostructure-based photoelectrochemical water splitting: a brief review. Chem Phys Lett 507:209–215CrossRefGoogle Scholar
  11. 11.
    Sze SM (2006) Physics of semiconductor devices. Wiley, New YorkCrossRefGoogle Scholar
  12. 12.
    Miller EL (2010) Solar hydrogen production by photoelectrochemical water splitting: the promise and challenge. In: Lionel Vayssieres, On solar hydrogen and nanotechnology. Wiley, New York, pp 3–35Google Scholar
  13. 13.
    Alexander BD, Kulesza PJ, Rutkowska I, Solarska R, Augustynski J (2008) Metal oxide photoanodes for solar hydrogen production. J Mater Chem 18:2298–2303CrossRefGoogle Scholar
  14. 14.
    Sahai S, Ikram A, Rai S, Shrivastav R, Dass S, Satsangi VR (2017) Quantum dots sensitization for photoelectrochemical generation of hydrogen: a review. Renew Sust Energ Rev 68:19–27CrossRefGoogle Scholar
  15. 15.
    Chen Z, Dinh HN, Miller E (2013) Photoelectrochemical water splitting – standards, experimental methods and protocols. Springer, New York. Scholar
  16. 16.
    Bott AW (1998) Electrochemistry of semiconductors. Curr Sep 17:87–91Google Scholar
  17. 17.
    Nozik AJ, Memming R (1996) Physical chemistry of semiconductor-liquid interfaces. J Phys Chem 100:13061–13078CrossRefGoogle Scholar
  18. 18.
    Butler MA, Ginley DS (1980) Review principles of Photoelectrochemical solar energy conversion. J Mater Sci 15:1–19CrossRefGoogle Scholar
  19. 19.
    Nowotny J, Sorrell CC, Bak T, Sheppard LR (2005) Solar-hydrogen: unresolved problems in solid-state science. Sol Energy 78:593–602CrossRefGoogle Scholar
  20. 20.
    Minggu LJ, Daud WRW, Kassim MB (2010) An overview of photocells and photoreactors for photoelectrochemical water splitting. Int J Hydrog Energy 35:5233–5244CrossRefGoogle Scholar
  21. 21.
    Fernández-Ibáñez P, Malato S, De Las Nieves FJ (2000) Oxide/electrolyte interface: electron transfer phenomena. Bol Soc Esp Cerám Vidrio 39:498–502CrossRefGoogle Scholar
  22. 22.
    Osterloh FE, Parkinson BA (2011) Recent developments in solar water-splitting photocatalysis. MRS Bull 36:17–22CrossRefGoogle Scholar
  23. 23.
    Cho S, Jang JW, Lee KH, Lee JS (2014) Research update: strategies for efficient photoelectrochemical water splitting using metal oxide photoanodes. APL Mater 2:010703. Scholar
  24. 24.
    Krol RVD, Liang Y, Schoonman J (2008) Solar hydrogen production with nanostructured metal oxides. J Mater Chem 18:2311–2320CrossRefGoogle Scholar
  25. 25.
    Zhang Q, Dandeneau CS, Zhou X, Cao G (2009) ZnO nanostructures fr dye-sensitized solar cells. Adv Mater 21:4087–4108CrossRefGoogle Scholar
  26. 26.
    Gui Q, Xu Z, Zhang H, Cheng C, Zhu X, Yin M, Song Y, Lu L, Chen X, Li D (2014) Enhanced Photoelectrochemical water splitting performance of anodic TiO2 nanotube arrays by surface passivation. ACS Appl Mater Interfaces 6:17053–17058CrossRefGoogle Scholar
  27. 27.
    Liang S, He J, Sun Z, Liu Q, Jiang Y, Cheng H, He B, Xie Z, Wei S (2012) Improving Photoelectrochemical water splitting activity of TiO2 nanotube arrays by tuning geometrical parameters. J Phys Chem C 116:9049–9053CrossRefGoogle Scholar
  28. 28.
    Kmentova H, Kment S, Wang L, Pausova S, Vaclavu T, Kuzel R, Han H, Hubicka Z, Zlamal M, Olejnicek J, Cada M, Krysa J, Zboril R (2016) Photoelectrochemical and structural properties of TiO2 nanotubes andnanorods grown on FTO substrate: comparative study betweenelectrochemical anodization and hydrothermal method used for thenanostructures fabrication. Catal Today 287:130–136CrossRefGoogle Scholar
  29. 29.
    Yang X, Wolcott A, Wang G, Sobo A, Fitzmorris RC, Qian F, Zhang JZ, Li Y (2009) Nitrogen-doped ZnO nanowire arrays for Photoelectrochemical water splitting. Nano Lett 9:2331–2336CrossRefGoogle Scholar
  30. 30.
    O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740CrossRefGoogle Scholar
  31. 31.
    Wang X, Tian Z, Yu T, Tian H, Zhang J, Yuan S, Zhang X, Li Z, Zou Z (2010) Effective electron collection in highly (110)-oriented ZnO porous nanosheet framework photoanode. Nanotechnology 21:065703. (5pp) (1–5)CrossRefGoogle Scholar
  32. 32.
    Zhao Y, Hoivik N, Wang K (2016) Recent advance on engineering titanium dioxide nanotubes for photochemical and photoelectrochemical water splitting. Nano 30:728–744Google Scholar
  33. 33.
    Eftekhari A, Babu VJ, Ramakrishna S (2017) Photoelectrode nanomaterials for photoelectrochemical water splitting. Int J Hydrog Energy 42:11078–11109CrossRefGoogle Scholar
  34. 34.
    Khan I, Ibrahim AAM, Sohail M, Qurashi A (2017) Sonochemical assisted synthesis of RGO/ZnO nanowire arrays for Photoelectrochemical water splitting. Ultrason Sonochem 37:669–675CrossRefGoogle Scholar
  35. 35.
    Kamat PV (2008) Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J Phys Chem C 112:18737–18753CrossRefGoogle Scholar
  36. 36.
    Kang SH, Leeb SY, Gang MG, Ahn KS, Kim JH (2014) Bifunctional effects of CdSe quantum dots and Nb2O5 interlayer forZnO Nanorods-based Photoelectrochemical water-splitting cells. Electrochim Acta 133:262–267CrossRefGoogle Scholar
  37. 37.
    Li Z, Cui X, Hao H, Lu M, Lin Y (2015) Enhanced photoelectrochemical water splitting from Si quantum dots/TiO2 nanotube arrays composite electrodes. Mater Res Bull 66:9–15. Scholar
  38. 38.
    Lin CJ, Kao LC, Huang Y, Banares MA, Liou SY (2015) Uniform deposition of coupled CdS and CdSe quantum dots on ZnO nanorod arrays as electrodes for photoelectrochemical solar water splitting. Int J Hydrog Energy 40:1388–1393CrossRefGoogle Scholar
  39. 39.
    Liu Z, Wu J, Zhang J (2016) Quantum dots and plasmonic Ag decorated WO3 nanorod photoanodes with enhanced photoelectrochemical performances. Int J Hydrog Energy 41: 20529–20535CrossRefGoogle Scholar
  40. 40.
    Lee YL, Chi CF, Liau SY (2010) CdS/CdSe Co-Sensitized TiO2 photoelectrode for efficient hydrogen generation in a photoelectrochemical cell. Chem Mater 22:922–927CrossRefGoogle Scholar
  41. 41.
    Shin K, Seok SI, Im SH, Park JH (2010) CdS or CdSe decorated TiO2 nanotube arrays from spray pyrolysis deposition: use in photoelectrochemical cells. Chem Commun 46:2385–2387CrossRefGoogle Scholar
  42. 42.
    Wang G, Yang X, Qian F, Zhang JZ, Li Y (2010) Double-sided CdS and CdSe quantum dot Co-Sensitized ZnO nanowire arrays for Photoelectrochemical hydrogen generation. Nano Lett 10:1088–1092CrossRefGoogle Scholar
  43. 43.
    Shet S (2010) Synthesis and characterization of band gap-reduced ZnO:N and ZnO:(Al,N) films for photoelectrochemical water splitting. J Mater Res 25:69–75CrossRefGoogle Scholar
  44. 44.
    Kale SS, Mane RS, Ganesh T, Pawar BN, Han SH (2009) Multiple band gap energy layered electrode for photoelectrochemical cells. Curr Appl Phys 9:384–389CrossRefGoogle Scholar
  45. 45.
    Jakani M, Campet G, Claverie J, Fichou D, Pouliquen J, Kossanyi J (1985) Photoelectrochemical properties of zinc oxide doped with 3d elements. J Solid State Chem 56: 269–277CrossRefGoogle Scholar
  46. 46.
    Xu L, Li X (2010) Influence of Fe doping on the structural and optical properties of ZnO thin films prepared by sol-gel method. J Cryst Growth 312:851–855CrossRefGoogle Scholar
  47. 47.
    Sharma V, Kumar P, Shrivatava J, Solanki A, Satsangi VR, Dass S, Shrivastav R (2011) Vertically aligned nanocrystalline Cu-ZnO thin films for photoelectrochemical splitting of water. J Mater Sci 46:3792–3801CrossRefGoogle Scholar
  48. 48.
    Hahn NT, Mullins CB (2010) Photoelectrochemical performance of nanostructured Ti- and Sn-doped α-Fe2O3 Photoanodes. Chem Mater 22:6474–6482CrossRefGoogle Scholar
  49. 49.
    Ling Y, Wang G, Wheeler DA, Zhang JZ, Li Y (2011) Sn-doped hematite nanostructures for Photoelectrochemical water splitting. Nano Lett 11:2119–2125CrossRefGoogle Scholar
  50. 50.
    Wang C, Feng Y, Cai L, Yang X, He J, Yan W, Liu Q, Sun Z, Hu F, Xie Z, Yao T, Wei S (2014) ZnO@S-doped ZnO Core/Shell nanocomposites for highly efficient solar water splitting. J Power Sources 269:24–30CrossRefGoogle Scholar
  51. 51.
    Singh AP, Kumari S, Shrivastav R, Dass S, Satsangi VR (2009) Improved photoelectrochemical response of haematite by high energy Ag9+ ions irradiation. J Phys D Appl Phys 42:085303. (5pp)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryLovely Professional UniversityPhagwaraIndia

Personalised recommendations