Advertisement

Protein Nanotechnology

  • Jayachandra S. YaradoddiEmail author
  • Merja Hannele Kontro
  • Sharanabasava V. Ganachari
  • M. B. Sulochana
  • Dayanand Agsar
Reference work entry

Abstract

Medical management should be well-preserved; in particular, a fast, easy, and cheap diagnosis. Sometimes, a RNA and DNA nanobio-based diagnostic may not provide precise data with regard to specific disorders. Therefore, some quantifiable protein information and molecular folding are required for the analysis of such disorders. Proteins at minute concentrations are typically undetectable under normal circumstances nowadays, and can be measured and quantified using protein nanotechnology methods. On the other hand, protein machinery carry out tasks that are unsafe for cell behavior, comprising DNA duplication, intracellular carriage, ion pumps, and cellular motility. They have changed with unbelievable multiplicity, precision, efficacy, and a substantial number of studies in contemporary biology have been intended to expose the vital mechanisms or processes of their primary function. This chapter also emphasizes the recent developments in protein nanotechnology, with a special focus on molecular cytoskeletal motors, dyneins, myosins, and kinesins. They constitute a subcategory of protein machineries; they have distinguished properties and are able to convert biochemical energy to work automatically.

Keywords

Protein nanotechnology 3D structure of protein Biomolecular motors Microtubules Immobilization System design Protein stability Nanobio-based diagnostic 

References

  1. 1.
    Feynman R (1960) There’s plenty of room at the bottom: an invitation to enter a new field of physics. Eng Sci 23(5):22–36Google Scholar
  2. 2.
    Wattiaux R, Laurent N, Wattiaux-De Coninck S, Jadot M (2000) Endosomes, lysosomes: their implication in gene transfer. Adv Drug Deliv Rev 41:201–208CrossRefGoogle Scholar
  3. 3.
    Caron NJ, Torrente Y, Camirand G, Bujold M, Chapdelaine P, Leriche K, Bresolin N, Tremblay JP (2001) Intracellular delivery of a Tat-eGFP fusion protein into muscle cells. Mol Ther 3:310–318CrossRefGoogle Scholar
  4. 4.
    Torchilin VP, Levchenko TS, Rammohan R, Volodina N, Papahadjopoulos-Sternberg B, D’Souza GG (2003) Cell transfection in vitro and in vivo with nontoxic TAT peptide- liposome-DNA complexes. Proc Natl Acad Sci U S A 100:1972–1977CrossRefGoogle Scholar
  5. 5.
    Zhao M, Kircher MF, Josephson L, Weissleder R (2002) Differential conjugation of tat peptide to superparamagnetic nano- particles and its effect on cellular uptake. Bioconjug Chem 13:840–844CrossRefGoogle Scholar
  6. 6.
    Mai JC, Shen H, Watkins SC, Cheng T, Robbins PD (2002) Efficiency of protein transduction is cell type-dependent and is enhanced by dextran sulfate. J Biol Chem 277:30208–30218CrossRefGoogle Scholar
  7. 7.
    Sawant RM, Hurley JP, Salmaso S, Kale A, Tolcheva E, Levchenko TS, Torchilin VP (2006) “SMART” drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers. Bioconjug Chem 17(4):943–949CrossRefGoogle Scholar
  8. 8.
    Illum, L. (2007). Nanoparticulate systems for nasal delivery of drugs: a real improvement over simple systems? J Pharm Sci 96 473–483CrossRefGoogle Scholar
  9. 9.
    Coester C, Kreuter J, von Briesen H, Langer K (2000) Preparation of avidin-labelled gelatin nanoparticles as carriers for biotinylated peptide nucleic acid (PNA). Int J Pharm 196:147–149CrossRefGoogle Scholar
  10. 10.
    Zwiorek K, Kloeckner J, Wagner K, Coeste C (2004) Gelatin nanoparticles as a new and simple gene delivery system. J Pharm Pharm Sci 7(4):22–28Google Scholar
  11. 11.
    Xu X, Capito RM, Spector M (2008) Delivery of plasmid IGF-1 to chondrocytes via cationizedgelatin nanoparticles. J Biomed Mater Res 84((1):73–83CrossRefGoogle Scholar
  12. 12.
    Mrksich M, Whitesides GM (1996) Using self-assembled monolayers to understand the interactions of man-made surfaces with proteins and cells. Annu Rev Biophys Biomol Struct 25:55–78CrossRefGoogle Scholar
  13. 13.
    Ratner BD, Bryant SJ (2004) Biomaterials: where we have been and where we are going. Annu Rev Biomed Eng 6:41–75CrossRefGoogle Scholar
  14. 14.
    Hancock WO, Howard J (2002) Kinesin: processivity and chemomechanical coupling. In: Schliwa M (ed) Molecular motors. Wiley-VCH, WeinheimGoogle Scholar
  15. 15.
    Howard J, Hunt AJ, Baek S (1993) Assay of microtubule movement driven by single kinesin molecules. Methods Cell Biol 39:137–147CrossRefGoogle Scholar
  16. 16.
    Limberis L, Stewart RJ (2000) Toward kinesin-powered microdevices. Nanotechnology 11:47–51CrossRefGoogle Scholar
  17. 17.
    Huang YM, Uppalapati M, Hancock WO, Jackson TN (2005) Microfabricated capped channels for biomolecular motor-based transport. IEEE Adv Packag 28:564–570CrossRefGoogle Scholar
  18. 18.
    Udabage P, McKinnon IR, Augustin MA (2003) The use of sedimentation field flow fractionation and photon correlation spectroscopy in the characterization of casein micelles. J Dairy Res 70:453–459CrossRefGoogle Scholar
  19. 19.
    Waugh DF (1971) Milk proteins: chemistry and molecular biology, vol 552. Academic, New YorkGoogle Scholar
  20. 20.
    Bhattacharyya J, Das KP (1999) Molecular chaperone-like properties of an unfolded protein, alpha(s)-casein. J Biol Chem 274:15505–15509CrossRefGoogle Scholar
  21. 21.
    Hua W, Young EC, Fleming ML, Gelles J (1997) Coupling of kinesin steps to ATP hydrolysis. Nature 388:390–393CrossRefGoogle Scholar
  22. 22.
    Gelles J, Berliner E, Young EC, Mahtani HK, Perez-Ramirez B, Anderson K (1995) Structural and functional features of one- and two-headed biotinated kinesin derivatives. Biophys J 68:276S–281S, discussion 282SGoogle Scholar
  23. 23.
    Berliner E, Young EC, Anderson K, Mahtani HK, Gelles J (1995) Failure of a single-headed kinesin to track parallel to microtubule protofilaments. Nature 373:718CrossRefGoogle Scholar
  24. 24.
    Cheng LJ, Kao MT, Meyhöfer E, Guo J (2005) Highly efficient guiding of microtubule transport with imprinted CYTOP Nanotracks. Small 1:409–414CrossRefGoogle Scholar
  25. 25.
    Lakamper S, Kallipolitou A, Woehlke G, Schliwa M, Meyhofer E (2003) Single fungal kinesin motor molecules move processively along microtubules. Biophys J 84:1833–1843CrossRefGoogle Scholar
  26. 26.
    Block SM, Goldstein LS, Schnapp BJ (1990) Bead movement by single kinesin molecules studied with optical tweezers. Nature 348:348–352CrossRefGoogle Scholar
  27. 27.
    Hancock WO, Howard J (1999) Kinesin’s processivity results from mechanical and chemical coordination between the ATP hydrolysis cycles of the two motor domains. Proc Natl Acad Sci U S A 96:13147–13152CrossRefGoogle Scholar
  28. 28.
    Turner DC, Chang C, Fang K, Brandow SL, Murphy DB (1995) Selective adhesion of functional microtubules to patterned silane surfaces. Biophys J 69:2782–2789CrossRefGoogle Scholar
  29. 29.
    Mallik R, Carter BC, Lex SA, King SJ, Gross SP (2004) Cytoplasmic dynein functions as a gear in response to load. Nature 427:649–652CrossRefGoogle Scholar
  30. 30.
    Brouhard GJ, Hunt AJ (2005) Microtubule movements on the arms of mitotic chromosomes: polar ejection forces quantified in vitro. Proc Natl Acad Sci U S A 102:13903–13908CrossRefGoogle Scholar
  31. 31.
    Desai A, Verma S, Mitchison TJ, Walczak CE (1999) Kin I kinesins are microtubule destabilizing enzymes. Cell 96:69–78CrossRefGoogle Scholar
  32. 32.
    Desai A, Walczak CE (2001) Assays for microtubule-destabilizing kinesins. Methods Mol Biol 164:109–121Google Scholar
  33. 33.
    Hancock WO Unpublished observationsGoogle Scholar
  34. 34.
    Yokokawa R, Yoshida Y, Takeuchi S, Kon T, Sutoh K, Fujita H (2005) Evaluation of cryopreserved microtubules immobilized in microfluidic channels for bead-assay-based transportation system. IEEE Adv Packag 28:577CrossRefGoogle Scholar
  35. 35.
    McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H, Schueller OJ, Whitesides GM (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21:27–40CrossRefGoogle Scholar
  36. 36.
    Kim TS, Nanjundaswamy HK, Lin C-T, Lakamper S, Cheng LJ, Hoff D, Hasselbrink EF, Guo LJ, Kurabayashi K, Hunt AJ, Meyhofer E (2003) Biomolecular motors as novel prime movers for microTAS: microfabrication and materials issues. In: Northrup MA, Jensen KF, Harrison DJ (eds) 7th international conference on micro total analysis systems, vol 2. Transducers Research Foundation, Squaw Valley, pp 33–36Google Scholar
  37. 37.
    Brunner C, Ernst KH, Hess H, Vogel V (2004) Lifetime of biomolecules in polymerbased hybrid nanodevices. Nanotechnology 15:S540–S548CrossRefGoogle Scholar
  38. 38.
    Verma V, Hancock WO, Catchmark JM (2005) Micro- and nanofabrication processes for hybrid synthetic and biological system fabrication. IEEE Adv Packag 28:584CrossRefGoogle Scholar
  39. 39.
    Uppalapati M, Huang YM, Jackson TN, Hancock WO (2008) Enhancing the stability of kinesin motors for microscale transport applications. Lab Chip 8(2):358–61.  https://doi.org/10.1039/b714989aCrossRefGoogle Scholar
  40. 40.
    Han F, Wang Y, Sims CE, Bachman M, Chang R, Li GP, Allbritton NL (2003) Fast electrical lysis of cells for capillary electrophoresis. Anal Chem 75:3688–3696CrossRefGoogle Scholar
  41. 41.
    Irimia D, Tompkins RG, Toner M (2004) Single-cell chemical lysis in picoliter-scale closed volumes using a microfabricated device. Anal Chem 76:6137–6143CrossRefGoogle Scholar
  42. 42.
    Nelson DL, Lehninger AL, Cox MM (2017) Lehninger principles of biochemistry. Macmillan Higher Education, BasingstokeGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jayachandra S. Yaradoddi
    • 1
    • 5
    Email author
  • Merja Hannele Kontro
    • 2
  • Sharanabasava V. Ganachari
    • 1
  • M. B. Sulochana
    • 3
  • Dayanand Agsar
    • 4
  1. 1.Centre for Material Science, Advanced Research in Nanoscience and Nanotechnology, School of Mechanical EngineeringKLE Technological University (formerly known as B.V. Bhoomaraddi College of Engineering and Technology)HubballiIndia
  2. 2.Department of Environmental SciencesUniversity of HelsinkiLahtiFinland
  3. 3.Department of PG Studies and Research in BiotechnologyGulbarga UniversityKalaburagiIndia
  4. 4.Department of PG Studies and Research in MicrobiologyGulbarga UniversityKalaburagiIndia
  5. 5.Extremz Biosciences Private Limited (Govt. of Karnataka Funded Startup)KLE Technological University (formerly known as B.V. Bhoomaraddi College of Engineering and Technology)HubballiIndia

Personalised recommendations